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Abstract

We derive formulas for the number of polycubes of size n and perimeter t that are

proper in n − 1 and n − 2 dimensions. These formulas complement computer based

enumerations of perimeter polynomials in percolation problems. We demonstrate this

by computing the perimeter polynomial for n = 12 in arbitrary dimension d.
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1 Introduction

A d-dimensional polycube of size n is a set of face-connected cells in the lattice Zd. Two fixed
polycubes are considered equivalent if one can be transformed into the other by translation.
Figure 1 shows all 3-dimensional fixed polycubes of size 4. Polycubes are a classical topic
in recreational mathematics and combinatorics [10]. In statistical physics and percolation
theory, polycubes are called lattice animals [11, 19].

t = 18(2) t = 17(9) t = 16(8) t = 16(8) t = 16(8) t = 15(15) t = 16(16)

Figure 1: Polycubes of size n = 4 in d = 3 dimensions and their perimeter t. The leftmost
polycube is proper in 1 dimension, the two rightmost polycubes are proper in 3 dimensions.
All other polycubes are proper in 2 dimensions. Numbers in parentheses denote the perimeter
of the polycube embedded in its proper dimension.

Let Ad(n) denote the number of fixed polycubes of size n in dimension d. The On-Line
Encyclopedia of Integer Sequences [18] contains several sequences Ad(n), like A3(n) A001931,
A4(n) A151830, A5(n) A151831, . . . , A9(n) A151835.

Some polycubes that contribute to Ad(n) span less than d dimensions. A polycube that
spans i dimensions is called proper in i dimensions. See Figure 1 for examples. Following
Lunnon [13], we denote the number of fixed polycubes of size n that are proper in dimension
i by DX(n, i). A polycube of size n can span at most n − 1 dimensions. The sequences
DX(n, n− 1) A127670, DX(n, n− 2) A171860 and DX(n, n− 3) A191092 are also part of the
On-Line Encyclopedia of Integer Sequences [18].

Since each polycube that lives in Z
d is proper in some dimension ≤ d, we have

Ad(n) =
n−1∑

i=1

(
d

i

)

DX(n, i) , (1)

a classical formula due to Lunnon [13]. The binomial factor reflects the fact that we can
choose the i dimensions of a proper polycube from the d dimensions of the host lattice. Note
that for given n, (1) allows us to easily compute Ad(n) for any value of d provided we know
the numbers DX(n, i) for all i < n.

In percolation theory [19] we are interested in counting fixed polycubes of a given size
n according to their perimeter t, i.e., to the number of adjacent cells that are empty (see
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again Figure 1). If each cell of the lattice is occupied independently with probability p, the
average number of occupied clusters of size n per lattice site reads

∑

t

g
(d)
n,tp

n(1− p)t , (2)

where g
(d)
n,t denotes the number of fixed d-dimensional polycubes of size n and perimeter t.

The g’s define the perimeter polynomials

P (d)
n (q) =

∑

t

g
(d)
n,tq

t . (3)

The perimeter polynomials comprise a considerable amount of information about the per-
colation problem in Z

d. The total number of fixed polycubes of size n can be computed
from the perimeter polynomial as Ad(n) = P

(d)
n (1). In fact, one can compute Ad(n+1) from

the perimeter polynomials up to size n [14, Eq. (7)]. Hence, in terms of enumerations it is
more efficient to enumerate the perimeter polynomials even if one is only interested in the
total number of poycubes Ad(n). Note also that in two and three dimensions, one can derive

explicit formulas for g
(2)
n,2n+2−k [2] and g

(3)
n,4n+2−k [3] for k = 0, 1, 2, 3, i.e., for lattice animals

for which the perimeter deviates by k from the maximum possible value.
Again, we can distinguish between general and proper polycubes. Let G

(i)
n,t denote the

number of fixed polycubes of size n and that are proper in dimension i and that have
perimeter t in Z

i. We then have

g
(d)
n,t =

n−1∑

i=1

(
d

i

)

G
(i)
n,t−2(d−i)n , (4)

as an analogy to Lunnon’s formula (1). We also have

DX(n, i) =
∑

t

G
(i)
n,t . (5)

Equation (4) tells us that for given n and t, g
(d)
n,t is a polynomial in d of degree n−1. We can

compute this polynomial if we know the numbers G
(1)
n,t, . . . , G

(n−1)
n,t . For n = 4, for example,

one can enumerate the proper polycubes with pencil and paper to get

G
(1)
4,2 = 1 G

(2)
4,8 = 9 G

(2)
4,9 = 8 G

(3)
4,15 = 8 G

(3)
4,16 = 24 ,

and G
(i)
4,t = 0 for all other values of i and t. With these numbers, (4) then yields

g
(d)
4,t = dδt,8d−6 +

d(d− 1)

2
[9δt,8d−8 + 8δt,8d−7] +

d(d− 1)(d− 2)

3
[9δt,8d−9 + 8δt,8d−8] ,

where δx,y is the usual Kronecker delta.
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The numbers G
(i)
n,t can be found by enumerating polycubes on a computer. Computer

based enumerations of polycubes have a long tradition in computer science and in statistical
physics, see Luther and Mertens [14] and references therein. This approach, however, is
limited by the exponential growth of the number of proper polycubes with n. The hardest
problems in terms of exhaustive enumeration are the “diagonal” and “sub-diagonal” numbers
G

(n−1)
n,t and G

(n−2)
n,t , but it turns out that one can compute these numbers using combinatorial

arguments instead of exhaustive enumerations. This is the main result of this paper.
We start by reviewing the link between proper polycubes and edge-labeled trees. In

Section 3 we demonstrate how this link can be explored to compute the numbers G
(n−1)
n,t .

The computation of G
(n−2)
n,t is more involved and requires some preparation. We start by

deriving formulas for the perimeter of polycubes that correspond to certain classes of edge-
labeled trees in Section 4. Then we introduce a sort of Prüfer code for edge-labeled trees
(Section 5) that finally allows us to compute the number of edge-labeled trees that enter

the computation of G
(n−2)
n,t . In Section 7 we demonstrate how the combinatorial arguments

complement exhaustive enumerations by computing the perimeter polynomial P
(d)
12 (q) for

arbitrary dimension d.

2 Proper polycubes and tainted trees

A polycube of size n can barely span n − 1 dimensions. In particular, in a polycube that
contributes to DX(n, n− 1), every pair of adjacent cells must span a new dimension. There
can not be any loops. Apparently, the computation of DX(n, n−1) is an exercise in counting
trees. Let us work out that exercise.

Consider the adjacency graph of a polycube, i.e, the graph in which each vertex represents
a cell of the polycube and two vertices are connected if the corresponding cells are neighbors
in the polycube. The edges of this graph are labeled with the dimension along which the
two cells touch each other.

In the case DX(n, n − 1) every edge in the adjacency graph has a unique label that
corresponds to one of the n − 1 dimensions. Hence, the adjacency graph has exactly n − 1
edges, i.e., it is an edge labeled tree. And since there are two possible directions for each
dimension, we get

DX(n, n− 1) = 2n−1 · number of edge-labeled trees of size n.

The number of vertex labeled trees of size n is given by nn−2, the famous formula pub-
lished by Cayley in 1889 [8]. The number of edge labeled trees is smaller by a factor n, i.e.,
it is nn−3. The earliest reference for a proof we could find is from 1995 [7], but the formula
seems to have been known for much longer. We will give another proof in Section 5. Anyway,
the number of proper polycubes of size n in dimension n− 1 reads

DX(n, n− 1) = 2n−1 nn−3 . (6)

4



This formula has been known and used in the statistical physics community for a long time[9],
but a formal proof has been published only recently [5].

The computation of DX(n, n− k) for k > 1 is more complicated because the correspon-
dence between proper polycubes and edge-labeled trees gets more involved. For k > 1, the
adjacency graph of a proper polycube can have loops, i.e., it is represented by more than one
spanning tree. On the other hand, some labeled spanning trees represent impossible poly-
cubes with overlapping cells. Yet a careful consideration of all these cases has yielded the
formulas for DX(n, n−2) [5] and DX(n, n−3) [1]. Recently, Barequet and Shalah [4] proved
the formulas for DX(n, n−4) and DX(n, n−5). Using non-rigorous arguments, DX(n, n−k)
has been computed up to k = 7 [14]. In this contribution we will show how combinatorial

arguments can be used to compute G
(n−1)
n,t and G

(n−2)
n,t .

3 Computation of G
(n−1)
n,t

For G
(n−1)
n,t we need to know the perimeter of a polycube represented by a given tree. It turns

out that the perimeter is determined by the degree sequence δ = (δ1, . . . , δn) of the tree, not
to be mixed up with the double indexed Kronecker delta δx,y:

Theorem 1. Let δ = (δ1, . . . , δn) denote the degree sequence of the adjacency graph of a

proper n-cell polycube in (n− 1) dimensions. The perimeter t1 of the polycube depends only

on n and δ and it is given by

t1(δ) = (2n− 1)(n− 1)− 1

2

n∑

i=1

δ2i . (7)

Proof. If we ignore the fact that some perimeter sites can be shared by several cells of the
polycube, the perimeter of an n-cell polycube in d dimensions would be

t⋆n,d =
n∑

i=1

(2d− δi) = 2dn− 2(n− 1) . (8)

Now consider a cell of the polycube with degree δi > 1. If the polycube is proper in (n− 1)
dimensions, each pair of adjacent cells spans a fresh two dimensional plane. The perimeter
site that sits in the corner of that plane is shared by two cells of the polycube, and these are
the only perimeter sites have been over counted in t⋆n,n−1. The true perimeter then reads

t1(δ) = t⋆n,n−1 −
n∑

i=1

(
δi
2

)

= (2n− 1)(n− 1)− 1

2

n∑

i=1

δ2i .
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We also need the number of edge-labeled trees with a given degree sequence. This number
is given by

T (δ) =
1

n
·
(
α1(δ), . . . , αn−1(δ)

)
! ·

(
δ1 − 1, . . . , δn − 1

)
! (9)

where δ represents an ordered degree sequence and αk(δ) denotes the number of vertices with
degree k. The notation (n1, . . . , nk)! refers to the multinomial coefficient

(n1, n2, . . . , nk)! =
(n1 + n2 + · · ·+ nk)!

n1!n2! · · · nk!
for all ni ≥ 0. (10)

For later convenience, we define (n1, . . . , nk)! to be zero if any of the ni’s is negative. Eq. (9)
is a well known result (see Cameron [7], for example). We will re-derive it in Section 5.

Equipped with (7) and (9) we can easily compute G
(n−1)
n,t for all possible values of t by

summing over all ordered degree sequences δ = (δ1, . . . , δn) of trees of size n:

G
(n−1)
n,t =

∑

δ

T (δ) δt,t1(δ) . (11)

This leaves us with the problem of how many ordered degree sequences δ there are and how
to generate them. The identity

∑
δi = 2|E| = 2(n − 1) (valid on trees) tells us that the

sequences δ− 1 = (δ1 − 1, . . . , δn − 1) correspond to the integer partitions of n− 2. There is
no closed formula for the number of partitions A000041, but asymptotically the number of
partitions of n scales like [12]

∼ 1

4n
√
3
eπ
√

2n/3 . (12)

Despite this (sub-)exponential growth, the number of summands in (11) is much smaller than
the number of proper animals. For n = 12, for example, there are only 42 ordered degree
sequences, compared to DX(12, 11) = 211 129 = 10567230160896 proper animals. There are
many algorithms to generate all partitions of an integer, see Zoghbi and Stojmenović [20] for
a review. The fastest algorithms generate each partition in constant time, simpler algorithms
have time complexity O(n) per partition.

In summary, the evaluation of (11) ist much faster than the exhaustive enumeration of

proper animals. For example, the computation of G
(11)
12,t takes only a tiny fraction of a second

on a laptop. The equivalent explicit enumeration of lattice animals would take about 25
years of CPU time, see Section 7. A simple Python script that computes G

(n−1)
n,t can be

found on the project webpage [16].

4 Perimeter formulas for G
(n−2)
n,t

Computing the perimeter values for G
(n−2)
n,t is a bit more complicated. Again, we represent a

polycube by an edge-labeled tree with n nodes and, in this case, n− 2 distinct edge labels.
In such a polycube all but one connection between two adjacent cells span a new dimension.
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Type Pattern Perimeter and Description Count

xx b b b

x x txx(δ) = t2(δ) + 1
Antiparallel orientation of x does not
correspond to a legal polycube.

2n−3 Txx(δ)

xyx

b b

b b

x

y

x

txyx(δ, δa, δb) = t2(δ)−(δa−1)−(δb−1)
Corresponding polycubes have 4 span-
ning trees.

2n−3 Txyx(δ)

xyzx

b b

b*

*

bb

x

x

y

z
txyzx(δ) = t2(δ)− 1 2n−3 Txyzx(δ)

Table 1: Counting polycubes of size n that are proper in n−2 dimensions. The three patterns
that lead to over counting and/or a perimeter value that is different form t2(δ). Txx, Txyx

and Txyzx denote the number of undirected, edge-labeled trees with the corresponding error
patterns. Every tree that does not contain any of these patterns represents exactly 2n−2

polycubes with perimeter t2(δ). Note that flipping the direction of both edges with the same
label x at the same time yields a polycube that must not be counted since it is only the
mirror image in the x-dimension. Hence, the factor 2n−2 for the error free case. The factor
2n−3 in the error classes arises from the fact that an antiparallel orientation of the x-edge
does not correspond to a legal polycube (case xx), and a parallel orientation of the x-edge
induces no correction to the default perimeter t2(δ) (cases xyz and xyzx).
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In contrast to the previous case there is no longer a one-to-one map between polycubes
and edge-labeled trees. We need to take care of the three “error patterns” shown in Table 1.

Consider the case where two adjacent edges of the tree share the same label. We call
this configuration xx. If the directions of these edges are antiparallel, the corresponding
polycube will have overlapping cells. If their directions are parallel, the polycube is valid
but has a larger perimeter than the error-free case.

An n-cell polycube that is proper in n− 2 dimensions can have a loop, in which case it is
represented by more than one spanning tree. The loopy polycubes all contain a quadrilateral.
The corresponding tree then contains the pattern xyx of adjacent edge labels. Only one
fourth of those trees contribute to the number of polycubes, and their perimeter is also
special.

Taking into account the patterns xx and xyx is enough to correctly computeDX(n, n−2),

but to compute G
(n−2)
n,t an additional pattern has to be considered: a pattern xyzx of adjacent

edges represents exactly one polycube, but its perimeter is different from the perimeter of
other trees with the same degree sequence. But let’s start with the most simple, error free
case:

Theorem 2. Let δ = (δ1, . . . , δn) denote the degree sequence of a directed edge labeled tree

with n− 2 distinct edge labels not containing any of the error patterns in Table 1. Then the

perimeter of the corresponding polycube is

t2(δ) = (2n2 − 5n+ 1)− 1

2

n∑

i=1

δ2i . (13)

Proof. As with t1 we start with t⋆n,d and subtract the number of those perimeter cells that
are shared by two cells. Since we excluded all error patterns, the two equally-labeled edges
are far apart from each other. This means that the tree locally looks like a tree with n− 1
distinct edge labels. Consequently all pairs of cells that are adjacent to a common cell span
a fresh two dimensional plane and hence share a perimeter cell:

t2(δ) = t⋆n,n−2 −
n∑

i=1

(
δi
2

)

= (2n2 − 5n+ 1)− 1

2

n∑

i=1

δ2i .

Theorem 3. Let δ = (δ1, . . . , δn) denote the degree sequence of a directed edge labeled tree

with n − 2 distinct edge labels containing the pattern xx. Then the perimeter of the corre-

sponding polycube is

txx(δ) = t2(δ) + 1 . (14)

Proof. The same argument as in Theorem 2 applies to all pairs of edges that are adjacent to
a common cell, except the two equally-labeled edges. They do not span a plane but form a
one dimensional line, hence we have to add back the perimeter cell that has been inaccurately
subtracted in t2(δ).
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Theorem 4. Let δ = (δ1, . . . , δn) denote the degree sequence of a directed edge labeled tree

with n− 2 distinct edge labels containing the pattern xyx. Let δa and δb be the degrees of the

two vertices that lie at the ends of the path formed by the two equally-labeled edges and the

edge separating them. Then the perimeter of the corresponding polycube is

txyx(δ) = t2(δ)− (δa − 1)− (δb − 1) . (15)

Proof. Polycubes containing a quadrilateral have four spanning trees. To construct a span-
ning tree for a given polycube, one of the four edges of the quadrilateral has to be removed.
The missing edge would connect the cells a and b. Since the edge is missing from the tree
there are more pairs of cells that are neighbours than we count in t2. In t2 we subtract

(
δa
2

)

+

(
δb
2

)

pairs of cells, but if the edge were present we would have subtracted
(
δa + 1

2

)

+

(
δb + 1

2

)

.

Unfortunately, this is still not correct, because two of those pairs span the plane of the
quadrilateral and must not be subtracted. The correct count isare

txyx(δ) = t2(δ) +

(
δa
2

)

+

(
δb
2

)

−
[(

δa + 1

2

)

+

(
δb + 1

2

)

− 2

]

= t2(δ)− (δa − 1)− (δb − 1) .

Theorem 5. Let δ = (δ1, . . . , δn) denote the degree sequence of a directed edge labeled tree

with n− 2 distinct edge labels containing the pattern xyzx. Then the perimeter of the corre-

sponding polycube is

txyzx(δ) = t2(δ)− 1 . (16)

Proof. The two end vertices of the path connecting the two equally-labeled, antiparallel edges
have two common neighbouring perimeter cells. One of them is accounted for correctly. It is
adjacent to the two end points and to another point in the polycube and those are counted
three times. On the other hand, it lies in two planes formed by the cells of the pattern xyzx,
which means it is subtracted twice. Only the double counting of the other perimeter cell is
missed and must be corrected.

5 Prüfer-like bijection for edge-labeled trees

In order to characterize and count the edge-labeled trees with the patterns listed in Table 1,
we will use a bijection between edge-labeled trees of size n and sequences of integers 0, . . . , n−
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1 of length n−3, which is very similar to the Prüfer code for vertex labeled trees. En passant
we will prove equations (6) and (9). Our exposition of the Prüfer code follows Pikhurko
[17]. We explain it here in detail to establish the connection between Prüfer code and error
patterns in the next section.

2

4 1
3

0

L = (0, 2, 3)

v

2

5 3

4
1

0

S = (4, 1)

v 3

4
1

0
2

5

S = S + (5)

v

4

0
2

5
1

3

S = S + (1)

Figure 2: An example for the Prüfer code for edge-labeled trees. The code for this tree reads
C = (1, 5, 1).

Let T be a tree with n vertices and edge labels 0, 1, . . . , n−2, and let L be the sorted list
of labeled edges that are incident to a leaf. We subdivide the edge n− 2 into two edges by
adding a new vertex v. The new edge which lies on the unique path from v to the smallest
element in L inherits the old label n− 2. The other new edge gets the new label n− 1. See
Fig. 2 for an illustration of this step and the rest of the procedure.

We now construct a sequence S = (s1, s2 . . .) of edge labels. Starting from the empty
sequence, repeat the following procedure for each i ∈ L in increasing order. Let i, e1, e2, . . .
denote the path from i to v. Move along this path and stop when you encounter an edge
ei ∈ {n− 1, n− 2, s1, s2 . . .}. Append the sequence (ei, ei−1, . . . , e1) to S.

Note that S always starts with n− 2 and has length n− 2. We form the sequence C(T )
from S by removing the first entry n− 2. This is the code for the edge-labeled tree T .

For the reverse construction consider a sequence C of length n− 3 consisting of integers
from the set {0, . . . , n− 1}. We obtain a new sequence S from C by adding a leading n− 2.
We define L = (ℓ1, ℓ2, . . . ) as the list of all labels not contained in S, sorted in increasing
order ℓ1 < ℓ2 < . . . . Note that L contains at least two elements. Obviously, an element of
S equals n− 2, n− 1 or some previously occurring element of S exactly |L| times. Cutting
S before each such element gets us subsequences S1, . . . , S|L|. Note that each Si begins with
n− 1, n− 2 or a label contained in some previous Sj, j < i.

We append ℓi to Si to create the sequence Pi. Each Pi represents a path from the interior
of the tree to one of its leafs, and we will use these paths to assemble the tree.

We start with T being the path consisting of n− 1 and n− 2 adjacent to the vertex v.
For i = 1, . . . , |L| we append the path Pi to T along its unique common edge e. Of the two
possible ways for doing this, we choose the one for which the path connecting v and ℓi uses
the edge e.

10



Finally, we remove the vertex v and merge the two edges n− 1 and n− 2 to a single edge
with label n− 2.

This concludes the proof that there is a one-to-one correspondence between edge-labeled
trees of size n and sequences of length n − 3 in which each element is a number between 0
and n− 1. In particular this proves that the number of edge-labeled trees is nn−3 and hence
(6).

The connection between the degree sequence δ and the code C is given by the following
theorem:

Theorem 6. Let T be an edge-labeled tree of size n with code C and degree sequence δ =
(δ1, . . . , δn). Then for i = 1, . . . , n the sequence S = (n − 2, C) contains a label li exactly
δi − 1 times and vice versa.

Proof. Let vi be a vertex with degree δi. One of its δi edges lies in the unique path from vi
to the extra vertex v. Let li be the label of that edge. Then there are exactly δi − 1 paths
that go through vi and li to reach v. Hence, S contains the label li exactly δi − 1 times.

Theorem 6 allows us to derive the number of edge labeled trees with a given degree
sequence, i.e., equation (9). See Figure 3 for an example. Note that the numbers in S
come in groups of size δi − 1, and there are (δ1 − 1, . . . , δn − 1)! different ways to arrange
these group elements. This gives the second multinomial coefficient in (9). Next we have to
count the number of ways to assign labels to the different groups in S. Note that codes like
S = (a, a, b, b, b, c, c, c) and S = (a, a, c, c, c, b, b, b) correspond to the same set of edge-labeled
trees. Therefore we must count the number of maps from {1, . . . , n} to (a, b, c) with b and
c being indistinguishable. In general, the number of groups in S of the size d is given by
αd. Hence, the number of different label assignments reads (α1, . . . , αn−1)!, which is the first
multinomial coefficient in (9). Finally, the factor 1/n takes into account the fact that the
first entry in S is fixed to the value n− 2.

δ = (1, 1, 1, 1, 1, 1, 1, 3, 4, 4)

α = (7, 0, 1, 2, 0, 0, 0, 0, 0)

According to Theorem 6 , the code S must be of the form

S = (a, a, b, b, b, c, c, c) or permutations.

There are (2, 3, 3)! = 560 such arrangements. Assignment of
labels: {1, . . . , 10} 7→ (a, b, c) with b, c indistinguishable. There
are (7, 1, 2)! = 10 · 9 · 8/2 = 360 possible assignments.

Figure 3: Example for counting the number of edge-labeled trees with a given degree sequence
using the Prüfer code. According to Equation (9) there are 560 ·360/10 = 20160 edge labeled
trees with the given degree sequence δ.
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6 Computing G
(n−2)
n,t

We are now ready to compute the number of edge-labeled trees containing one of the pat-
terns in Table 1 according to their degree sequence. The idea is to express the patterns as
restrictions on the Prüfer code C.

First, note that two edges now carry the same label. We still use 0, . . . , n − 2 for the
labels, but with the convention that the label n− 2 is identified with one of the other labels.
By taking into account a factor n− 2, we can fix this shared label to be 0.

Let’s start with the pattern xx, i.e., with trees in which two adjacent edges carry the
same label. What are the codes C that correspond to trees in which the labels 0 and n− 2
are assigned to adjacent edges? Recall that C contains paths from leaf edges to the edges
n− 2 or n− 1 (which also represents the edge n− 2 in the original tree) or to edges already
present in C. Hence, 0 and n− 2 are incident if the first appearance of 0 in C is of the form
(. . . , n− 2, 0, . . .) or (. . . , n− 1, 0, . . .). If 0 lies on the very first path (from the smallest leaf
to n − 2), the ending edge n − 2 is removed from S, so another possibility is C = (0, . . .).
If 0 is a leaf edge, i.e., 0 6∈ C), then it is the smallest leaf edge and hence the origin of the
very first path in C. If 0 and n − 2 are incident, there are no edges for the second path to
terminate other than n−2 or n−1. Hence, C = (n−2, . . .) or C = (n−1, . . .). In summary,
the pattern xx is represented by these five classes of C:

1. C = (n− 2, . . . ), 0 6∈ C,

2. C = (n− 1, . . . ), 0 6∈ C,

3. C = (0, . . . ),

4. C = (. . . , n− 2, 0, . . . ) for the first occurrence of 0 in C,

5. C = (. . . , n− 1, 0, . . . ) for the first occurrence of 0 in C.

Let Txx,1(δ) denote the number of edge-labeled trees in class 1. We illustrate the compu-
tation of Txx,1(δ) using the example from Figure 3. The first two entries of S must be equal,
hence S must be of the form

S =

{
(a, a; b, b, b, c, c, c) with (3, 3)! = 20 arrangements, or
(b, b; a, a, b, c, c, c) with (1, 2, 3)! = 60 arrangements.

Note that the part left of the semicolon is not to be rearranged and that the vertex in which
the edges 0 and n−2 meet has either degree 3 or degree 4. In general, it can have any degree
d ≥ 3, and the corresponding number of arrangements is given by

(δ1 − 1, . . . , δn − 1)!
(d− 2)(d− 1)

(n− 2)(n− 3)
, (17)

where the factor (d− 2)(d− 1)/((n− 2)(n− 3)) takes care of the fact that two edges of some
vertex with degree d are no longer taking part in the rearrangements in S.
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We also need to count the number of ways to assign labels to the elements of S. The
value of the first two entries of S is fixed to n− 2, and the value 0 is not allowed in S. This
leaves us with n− 2 possible values to be assigned to the other entries of S. In our example
we have

S =

{
(a, a; b, b, b, c, c, c) with 8 · 7/2 = 28 label assignments,
(b, b; a, a, b, c, c, c) with 8 · 7 = 56 assignments.

In general, the number of label assignments for the class xx, 1 is given by

(α1 − 1, α2, . . . , αd − 1, . . . , αn−1)! = (α1, . . . , αn−1)!
α1αd

n(n− 1)
(18)

if d ≥ 3 is the degree of the vertex incident to the two edges with the same label. Combining
(17), (18) and (9) and taking into account the factor n − 2 from fixing the shared label to
be 0 provides us with

Txx,1(δ) =
(δ1 − 1, . . . , δn − 1)!

n− 3

n−1∑

d=3

(d− 2)(d− 1) (α1 − 1, α2, . . . , αd − 1, . . . , αn−1)!

= T (δ)
α1

(n− 1)(n− 3)

n−1∑

d=3

(d− 2)(d− 1)αd .

(19)

The second case is similar except for the fact that we need to consider two degrees d and
d′. As above, d denotes the degree of the vertex that joins edges 0 and n − 2. The degree
d′ denotes the degree of the vertex that connects the edge n − 1 to its first path in S. The
number of arrangements of labels in S that is compatible with S = (n − 2, n − 1, . . .) then
reads

(δ1 − 1, . . . , δn − 1)! · (d− 1)(d′ − 1)

(n− 2)(n− 3)
, (20)

and the number of label assignments is given by

(α1, . . . , αn−1)! ·
α1

n(n− 1)(n− 2)
·
{

αdαd′ if d 6= d′,
αd(αd − 1) if d = d′.

(21)

Combining (20) and (21) and using the identity

n−1∑

d=1

(d− 1)αd = n− 2 (22)

provides us with

Txx,2(δ) = T (δ)
α1

(n− 1)(n− 2)(n− 3)

[

(n− 2)2 −
n−1∑

d=2

(d− 1)2αd

]

. (23)
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For the third case S = (n− 2, 0, . . .) we need to consider the two degrees d and d′ of the
vertices incident to the edge 0. The number of arrangements in S is again given by (20). We
no longer have the constraint 0 6∈ S, hence the number of label assignments is

(α1, . . . , αn−1)! ·
1

n(n− 1)
·
{

αdαd′ if d 6= d′,
αd(αd − 1) if d = d′,

(24)

which gets us

Txx,3(δ) = T (δ)
1

(n− 1)(n− 3)

[

(n− 2)2 −
n−1∑

d=2

(d− 1)2αd

]

. (25)

For the fourth class of xx-patterns we again consider the degrees d and d′ of the vertices
incident to the edge with label 0. Let d′ denote the degree of the vertex that is not incident
to the edge n− 2. Then 0 appears d′ − 1 times in S. If j denotes the position of the first 0
in S there are (

n− 2− j

d′ − 2

)

ways to distribute the other 0’s to the right of position j. Now j ≥ 3 (the case j = 2
corresponds to the previous class xx, 3) and the total number of arrangements of the 0’s in
S reads

n−2∑

j=3

(
n− 2− j

d′ − 2

)

=
n−5∑

k=0

(
k

d′ − 2

)

=

(
n− 4

d′ − 1

)

. (26)

Besides all the 0’s, we have also two entries n− 2 in S with fixed positions, both with degree
d. Hence, the total number of arrangements in S is

(δ1 − 1, . . . , δn − 1)! · (d− 1)(d− 2)

(n− 2)(n− 3)
· (d

′ − 1)! (n− 4− (d′ − 1))!

(n− 4)!
·
(
n− 4

d′ − 1

)

︸ ︷︷ ︸

=1

. (27)

The number of label assignments is again given by (24), and combining these counts we get

Txx,4(δ) = T (δ)
n− 1− α1

(n− 1)(n− 3)

n−1∑

d=3

(d− 1)(d− 2)αd . (28)

The fifth and final class of the error pattern xx is characterized by the degrees d and d′ of
the endpoints of edge 0 and d′′, the degree of the endpoint of edge n− 2 that is not incident
to edge n − 2. The argument with the first position of the 0 entry in S works exactly as
above and leaves us with

(δ1 − 1, . . . , δn − 1)! · (d− 1)(d′′ − 1)

(n− 2)(n− 3)
(29)
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for the number of arrangements in S. The number of label assignments reads

(α1, . . . , αn−1)!

n(n− 1)(n− 2)
·







αdαd′αd′′ if d, d′, d′′ are pairwise different,
αd(αd − 1)αd′ if d = d′′ and d 6= d′,
αd(αd − 1)αd′′ if d = d′ and d 6= d′′,
αd′(αd′ − 1)αd if d′ = d′′ and d′ 6= d,
αd(αd − 1)(αd − 2) if d = d′ = d′′.

(30)

Combining these counts provides us with

Txx,5(δ) = T (δ)
n− 2− α1

(n− 1)(n− 2)(n− 3)

[

(n− 2)2 −
n−1∑

d=2

(d− 1)2 αd

]

. (31)

Now the total number of edge-labeled trees in this error class is the sum Txx = Txx,1 + · · ·+
Txx,5, which yields the surprisingly simple expression

Txx(δ) = (n− 2)T (δ)

∑

d

(
d
2

)
αd

(
n−1
2

) , (32)

With the benefit of hindsight, this formula could have been written down without going
through all the combinatorial arguments above: (n − 2)T (δ) is the number of edge-labeled
trees with n − 2 distinguishable labels, and the other factor is the fraction of all pairs of
edges that are incident to a common vertex (with degree d, sum over d).

The reason we went through all the combinatorics to arrive at the simple formula (32)
is to demonstrate the principle. It turns out that for Txyx and Txyzx, there are no such
simple formulas, and going through the various classes of constraints on C seems to be the
only way to compute Txyx and Txyzx. The actual computation is similar in spirit to the
computation of Txx, but the number of classes is larger and the corresponding formulas
are more complicated. We present the results in Appendices A and B. The corresponding
formulas have been implemented in a Python script that computes G

(n−2)
n,t for given n. This

script (and the script for G
(n−1)
n,t ) can be found on the project webpage [16].

7 Application

To compute the perimeter polynomial P
(d)
n (q) for arbitrary dimension d, it suffices to know

the numbers G
(i)
n,t for i = 1, . . . , n− 1. Since it is more efficient to enumerate lattice animals

without keeping track of their spanning dimension, computer enumerations usually yield g
rather than G. But we can compute G from g because (4) can be inverted [6]:

G
(i)
n,t =

i∑

d=1

(−1)i−d

(
i

d

)

g
(d)
n,t+2(d−i)n . (33)
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d = 2 3 4 5 6 7 8 9 10
n ≤ 22 18 15 14 14 13 11 11 11

Table 2: Parameters for which enumeration data for g
(d)
n,t are available [14, 15].

The available enumeration data (Table 2) suffices to compute P
(d)
n (q) for n ≤ 11. For

n = 12, we need additional data for the number of lattice animals of size 12 in dimensions 8,
9, 10 and 11, but thanks to our combinatorial results we need to run exhaustive enumerations
only in dimensions 8 and 9. How much computation time does this save us?

For fixed value of n, the number of polycubes to be enumerated grows only polynomially
with d, but we are talking about large numbers here. Let

Ad(n) =
∑

t

g
(d)
n,t (34)

be the total number of polycubes of size n in dimension d. These numbers are known for all
values of d and n ≤ 14 [14]. In particular,

A10(12)

A9(12)
=

7 412 808 050 184 625

2 001 985 304 489 169
≃ 3.7

A11(12)

A9(12)
=

23 882 895 566 952 721

2 001 985 304 489 169
≃ 11.9 .

Our combinatorial method saves us about 15.6 times the CPU time of the largest enumeration
task n = 12 and d = 9. The enumeration algorithm takes about 100 clock cycles to generate
a polycube [14], which implies a counting rate of roughly 3 · 107 polycubes per second on
a 3 GHz CPU. The enumeration for n = 12 and d = 9 takes 2.12 years on a single CPU,
and our combinatorics saves us 33 years of CPU time. In practice, the enumeration is of
course parallelized and run on hundreds of CPUs, reducing the wallclock time from “years”
to “days.” In this setup, our combinatorics still saves us about one months of computation.

The new (and the previous) data for g
(d)
12,t and G

(d)
12.t for d = 8, 9, 10, 11 are available on

the project website [16].
What about the perimeter polynomials for n = 13 and arbitrary d? The combinatorics

provide the data for d = 12 and d = 11, but we would still need to explicitly enumerate

A8(13) = 13 228 272 325 440 164 (14 years)

A9(13) = 67 341 781 440 810 531 (71 years)

A10(13) = 282 338 750 889 253 800 (298 years)

polycubes. The corresponding estimates of single CPU times are given in parentheses. Note
that our combinatorial results here save us about 1073 years (for A11(13)) and 3416 years
(for A12(13)) of CPU time, but the remaining enumeration task is still out of reach unless
one is willing to devote a substantial number of CPUs and time to accomplish it.
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8 Conclusions

We have derived combinatorial methods to compute G
(n−1)
n,t and G

(n−2)
n,t , the number of lattice

animals of size n and perimeter t that are proper in dimension n−1 or n−2. These methods
complement data from exhaustive enumerations. In particular, they replace the hardest
enumeration tasks by an evaluation of these formulas, which is much faster. The approach
outlined in this paper can be extended to derive formulas for G

(n−k)
n,t for k > 2, but the

complexity increases considerably with k since more and more “error patterns” need to be
identified and analysed.

A The case Txyz

For the xyx case we have:

1. C = (1)(n− 2) . . . , 0 6∈ C, free variables: dn−1

2. C = (1)(n− 1) . . . , 0 6∈ C, free variables: dn−1

3. C = (1)(1) . . . , 0 6∈ C, free variables: dn−1

4. C = (1)(0) . . . , free variables: d0, dn−1

5. C = (1) . . . (1)(0) . . . , first 0 at position j, no 0 in the first . . . , free variables: d0, dn−1

6. C = . . . (n−2)(1)(0) . . . , first 0 at position j, no 0 and 1 in the first . . . , free variables:
d0, dn−1

7. C = . . . (n−1)(1)(0) . . . , first 0 at position j, no 0 and 1 in the first . . . , free variables:
d0, dn−2

8. C = . . . (n − 2)(1) . . . (1)(0) . . . , first 1 at position k, first 0 at position j, no 0 and 1
in the first . . . , no 0 in the second . . . , free variables: d0, dn−1

9. C = . . . (n − 1)(1) . . . (1)(0) . . . , first 1 at position k, first 0 at position j, no 0 and 1
in the first . . . , no 0 in the second . . . , free variables: d0, dn−2

One thing that is special about the xyx case is that we have to specify the degrees of the
two vertices at the end of the path that connects the equally-labeled edges. One of these
two vertices is always 0 and the other one is either n− 1 or n− 2. This means we must not
sum over the degree of these nodes, but leave their degree as a free argument in the Txyx,i

formulas. This is necessary because the perimeter of the corresponding polycube depends
on these two degrees, as explained earlier.

To shorten the formulas we introduce the following variables

Xk(δ) =
n−1∑

d=1

dkαd , (35)
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and we will omit the dependence on δ and just write X2, X3, etc.

Txyx,1(δ, dn−1) =Txyx,3(δ, dn−1) =
T (δ)α1

(n− 1)(n− 2)(n− 3)(n− 4)
×

(

4n2 − 6n+ 2−X2(n+ 2) +X3 +
[

2d3n−1 −X2(dn−1 − n− 3)

− 6d2n−1 − d2n−1n+ 7dn−1n− 4n2 −X3 − 2dn−1 + 4
]

αdn−1

)

,

(36)

Txyx,2(δ, dn−1) = T (δ)α1 αdn−1
(dn−1 − 1)

n2 + (1− 2dn−1)n− 2 + 2d2n−1 −X2

(n− 1)(n− 2)(n− 3)(n− 4)
, (37)

where 1 ≤ dn−1 ≤ n− 1.

Txyx,4(δ, d0, dn−1) + Txyx,5(δ, d0, dn−1) =
T (δ)αd0

(n− 1)(n− 2)(n− 3)(n− 4)
×

(

− 12d30 − (d0 − 5)n2 +X2(3d0 − n− 5) + 30d20 + 3(2d20 − 7d0 + 3)n

+
[

4d30 + 3d20dn−1 + 3d0d
2
n−1 + 2d3n−1 + (d0 − 5)n2 −X2(2d0 + dn−1 − n− 5)

− 11d20 − 10d0dn−1 − 9d2n−1 − (3d20 + 2d0dn−1 + d2n−1 − 12d0 − 9dn−1 + 9)n

−X3 + 3d0 + 5dn−1 + 8
]
αdn−1

+X3 − 8d0 − 8
)

,

(38)

Txyx,6(δ, d0, dn−1) + Txyx,8(δ, d0, dn−1) =
T (δ)αd0

(n− 1)(n− 2)(n− 3)(n− 4)
×

(

− 6d30 +X2(2d0 − n− 4) + 20d20 + 2(d20 − 7d0 + 3)n+ 4n2 +X3 − 6d0 − 6

+
[
2d30 + d20dn−1 + d0d

2
n−1 + 2d3n−1 −X2(d0 + dn−1 − n− 4)− 7d20 − 6d0dn−1

− 7d2n−1 − (d20 + d2n−1 − 7d0 − 7dn−1 + 6)n− 4n2 −X3 + 3d0 + 3dn−1 + 6
]
αdn−1

)

,

(39)

where 2 ≤ d0 ≤ n− 1 and 1 ≤ dn−1 ≤ n− 1.

Txyx,7(δ, d0, dn−2) + Txyx,9(δ, d0, dn−2) =
T (δ)αd0

(n− 1)(n− 2)(n− 3)(n− 4)
×

(

− 6d30 − (d0 − 1)n2 +X2(d0 − 1) + 10d20 + (4d20 − 7d0 + 3)n

+
[
2d20dn−2 + 2d0d

2
n−2 + 2d3n−2 + (dn−2 − 1)n2 − 2d20 −X2(dn−2 − 1)− 4d0dn−2

− 4d2n−2 − (2d0dn−2 + 2d2n−2 − 2d0 − 5dn−2 + 3)n+ 2d0 + 2
]
αdn−2

− 2d0 − 2
)

,

(40)

where 2 ≤ d0 ≤ n− 1 and 2 ≤ dn−2 ≤ n− 1.
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Combining the above equations yields for all d, d0 ≥ 1:

Txyx(δ, d0, d) =
T (δ)αd0(αd − δd0,d)

(n− 1)(n− 2)(n− 3)(n− 4)

(

6 d3 + 2 (3 d− 10)d20 + 6 d30 + 16

+ (d+ d0 − 10)n2 − (3X2 − 8)d− 20 d2 + (6 d2 − 3X2 − 20 d+ 8)d0

−
[
4 d2 + (4 d− 21)d0 + 4 d20 − 2X2 − 21 d+ 18

]
n+ 10X2 − 2X3

)

.

(41)

Since we need the number of all edge-labeled trees in the class xyx to compute the number
of error-free trees, we compute this formula as well. Combining the above formulas after
summing over the free variables results in

Txyx(δ) = T (δ)
−6n2 + 10n− 4 + 2X2(n+ 1)− 2X3

(n− 1)(n− 2)
. (42)

B The case Txyzx

For the xyzx case we have the following restrictions

1. C = (1)(2)(n− 2) . . . , 0 6∈ C

2. C = (1)(2)(n− 1) . . . , 0 6∈ C

3. C = (1)(2)(1) . . . , 0 6∈ C

4. C = (1)(2)(2) . . . , 0 6∈ C

5. C = (1)(2)(0) . . .

6. C = (1) . . . (1)(2)(0) . . .

7. C = (1)(2) . . . (2)(0) . . .

8. C = (1) . . . (1)(2) . . . (2)(0) . . .

9. C = . . . (n− 2)(1)(2)(0) . . .

10. C = . . . (n− 2)(1) . . . (1)(2)(0) . . .

11. C = . . . (n− 2)(1)(2) . . . (2)(0) . . .

12. C = . . . (n− 2)(1) . . . (1)(2) . . . (2)(0) . . .

13. C = . . . (n− 1)(1)(2)(0) . . .

14. C = . . . (n− 1)(1) . . . (1)(2)(0) . . .
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15. C = . . . (n− 1)(1)(2) . . . (2)(0) . . .

16. C = . . . (n− 1)(1) . . . (1)(2) . . . (2)(0) . . .

The first four restrictions are quite similar to the case xx1, except that there are two more
fixed positions. Like label 0, these labels could be any label except the one chosen for 0. To
correct for this, we have to multiply all counts by (n− 3)(n− 4) like we did with (n− 2) for
label 0.

Txyzx,1(δ) = Txyzx,3(δ) = Txyzx,4(δ) =

T (δ)α1
−4n3 − 6n2 + 22n− 12 +X2(n

2 + 11n− 4)− 2X3(n+ 3) + 2X4

(n− 1)(n− 2)(n− 3)(n− 5)
.
(43)

Txyzx,2(δ) =

T (δ)α1
n4 + 10n3 − 5n2 − 22n+ 16− 6X2(n

2 + 3n− 2) + 8X3(n+ 1)− 6X4

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
.

(44)

Txyzx,5(δ) + Txyzx,6(δ) + Txyzx,7(δ) + Txyzx,8(δ) =
T (δ)

(n− 1)(n− 2)(n− 3)(n− 5)
×

(

− 7n4 + 22n3 + 75n2 + 4 (2n3 + 3n2 − 11n+ 6)α1 − 178n+ 88

+ 2 (n3 + 5n2 − (n2 + 11n− 4)α1 − 46n+ 18)X2

− 4 (n2 − (n+ 3)α1 − 2n− 11)X3 + 2X4(2n− 2α1 − 9)
)

.

(45)

Txyzx,9(δ) + Txyzx,10(δ) + Txyzx,11(δ) + Txyzx,12(δ) =
T (δ)

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
×

(

− 2 (2n3 + 3n2 − 11n+ 6)(n− 3) + 2 (2n3 + 3n2 − 11n+ 6)α1

+ ((n2 + 11n− 4)(n− 3)− (n2 + 11n− 4)α1)X2

− 2 ((n+ 3)(n− 3)− (n+ 3)α1)X3 + 2X4(n− α1 − 3)
)

.

(46)

Txyzx,13(δ) + Txyzx,14(δ) + Txyzx,15(δ) + Txyzx,16(δ) =
T (δ)

(n− 1)(n− 2)(n− 3)(n− 5)
×

(

n4 + 10n3 − 5n2 − 22n+ 16)(n− 4)− (n4 + 10n3 − 5n2 − 22n+ 16)α1

− 6 ((n2 + 3n− 2)(n− 4)− (n2 + 3n− 2)α1)X2

+ 8 ((n+ 1)(n− 4)− (n+ 1)α1)X3 − 6X4(n− α1 − 4)
)

.

(47)
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Combining the above formulas results in

Txyzx(δ) =
T (δ)

(n− 1)(n− 2)(n− 3)

(

− 10n3 − 12n2 + 50n− 28

+ 3 (n2 + 9n− 4)X2 − 2X3(3n+ 7) + 6X4

)

.

(48)
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