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Abstract

We extend theorems of Serret and Pavone for solving f(x, y) = ax2+bxy+cy2 = µ,
where a > 0, gcd(x, y) = 1, y > 0. Here d = b2 − 4ac > 0 is not a perfect square and
0 < |µ| <

√
d/2. If µ > 0, Serret proved that x/y is a convergent to ρ = (−b+

√
d)/2a

or σ = (−b −
√
d)/2a. If µ < 0, we are able to modify Pavone’s approach and show

that with at most one exception, the solutions are convergents to ρ or σ.
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1 Introduction

In 1885, Serret [13] studied the quadratic diophantine equation

f(x, y) = ax2 + bxy + cy2 = µ, (1)

where a > 0, gcd(a, b, c) = 1, d = b2 − 4ac is positive and nonsquare and 0 < |µ| <
√
d/2.

Serret showed that if µ > 0, then any relatively prime solution (x, y) with y > 0 is a
convergent to ρ = (−b +

√
d)/2a or σ = (−b −

√
d)/2a. However he was unable to deal

conclusively with the case µ < 0. This was done by Pavone [11] in the special case when
|µ| = m(f) is the least of the absolute values of integers represented by f for integers x and
y, not both zero. We remark that Lagrange [3, Thm. 86] proved m(f) <

√
d/2.

We modify Pavone’s proof when −
√
d/2 < µ < 0, to show that either x/y is a convergent

to ρ or σ, or has the form (pm − pm−1, qm − qm−1) or (Pr − Pr−1, Qr −Qr−1), where

ρ = [a0, . . . , am, b1, . . . , bn], σ = [c0, . . . , cr, d1, . . . , dn],

where am 6= bn, cr 6= dn and ph/qh and Pk/Qk denote convergents of ρ and σ, respectively.
Barnes [1, Lemma 16] gave a result that overlaps with Serret’s theorem when a > 0 > c.
Finally, we remark that there is a continued fraction algorithm [8] for solving (1), irre-

spective of the size of µ.

2 Definitions and Lemmas

Definition 1. We call an indefinite form g(x, y) = Ax2 +Bxy+Cy2 Hermite reduced if the
roots θ1 and θ2 of g(x, 1) = 0 satisfy θ1 > 1 and −1 < θ2 < 0. Equivalently, θ1 = [b1, . . . , bn]
and θ2 = −[0, bn, . . . , b1], where the bi are positive integers. See [12, pp. 73–76].

Remark 2. The term Hermite reduced was introduced in [4]. Markov had previously used
the concept in his Master’s dissertation [2] and [7].

The following sequences were introduced in [4] and [11].

Definition 3. Let θ1 = [a0, a1, . . . , ] and θ2 = −[0, a−1, a−2, . . . , ] be as in Definition 1 and
let the doubly-infinite sequences (Sk), (Tk) be defined as follows:

S0 = T−1 = 1, S−1 = T0 = 0,

Sk+1 = akSk + Sk−1, Tk+1 = akTk + Tk−1, k ≥ 0, (2)

S−k−1 = −a−kS−k + S−k+1, T−k−1 = −a−kT−k + T−k+1, k ≥ 1.

.

Remark 4. For k ≥ 1, the convergents to θ1 are given by

Sk/Tk = Ak−1/Bk−1 = [a0, . . . , ak−1].
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To determine the convergents to θ2, we note that

S−k−1/T−k−1 = −[0, a−1, . . . , a−k]

and use the following result from [5].

θ2 =

{

[−1, 1, a−1 − 1, a−2, . . .], if a−1 > 1;

[−1, a−2 + 1, a−3, . . .], if a−1 = 1.

Then for k ≥ 0, the convergents to θ2 are given by

(A0, B0) = (−1, 1) and (Ak, Bk) = (−1)k+1(S−k, T−k), k ≥ 1 if a−1 > 1,

(Ak, Bk) = (−1)k+1(S−k−2, T−k−2), k ≥ 0, if a−1 = 1. (3)

We note that for k ≥ 1, S−k−1 is positive exactly when k is odd, and T−k−1 is negative
exactly when k is odd.

We now give a simple proof of Serret’s theorem.

Proposition 5. Assume 0 < µ <
√
d/2. Let (p, q) be a relatively prime solution of f(x, y) =

ax2+bxy+cy2 = µ, with q > 0, where a > 0. Then p/q is a convergent to ρ = (−b+
√
d)/2a

or σ = (−b−
√
d)/2a.

Proof. We have

a

(

p

q
− ρ

)(

p

q
− σ

)

=
µ

q2
.

We cannot have σ < p/q < ρ. First assume p/q > ρ. Then

p

q
− ρ =

µ

a(p
q
− ρ+ ρ− σ)q2

<

√
d

2a(ρ− σ)q2
=

1

2q2
.

Hence p/q is a convergent pk/qk, k ≥ 0, to ρ by Lagrange [6, Thm. 184]. There is a similar
argument if p/q < σ.

We replace Pavone’s Lemma 2 by a more general result:

Lemma 6. Let g(x, y) be a Hermite reduced form Ax2 + Bxy + Cy2, D = B2 − 4AC with
roots θ1 = [b1, . . . , bn] and θ2 = −[0, bn, . . . , b1] and let (Sk), (Tk) be the sequences defined in
(2). Suppose g(p, q) = µ, where 0 < |µ| <

√
D/2, with gcd(p, q) = 1. Then there exists a k

such that
(p, q) = ±(Sk, Tk).
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Proof. If (p, q) = (±1, 0), we can take k = 0, whereas if (p, q) = (0,±1), we can take k = −1.
So we assume p and q are nonzero. Then p/q is a convergent to θ1 or θ2. For if A and µ
have the same sign, the result follows from Serret’s theorem. If A and µ have opposite signs,
then as A and C have opposite sign, C and µ have the same sign and we instead consider
the equation Cq2 + Bqp + Ap2 = µ. We know by Serret’s theorem that q/p is a convergent
to one of 1/θ1 or 1/θ2, so p/q will be a convergent Ah/Bh, h ≥ 0, to one of θ1 or θ2. In the
former case, (p, q) = ±(Sk, Tk) for some k ≥ 1. From Remark 4, the only convergent to θ2
that is not Sk/Tk is A0/B0 = −1/1, and this occurs when bn > 1. We show that this is
impossible here.

We can assume A > 0 and that g(−1, 1) = µ, where |µ| <
√
d/2. Then A(−1− θ1)(−1−

θ2) = µ, so (1 + θ1)(1 + θ2) = µ/A. Then as θ1 > 1 and −1 < θ2 < 0, we have µ > 0. Hence

1 + θ2 =
µ

A(1 + θ1)
<

1

2
,

as 1+θ1 = 1+θ2+θ1−θ2 > θ1−θ2 =
√
d/A. Hence 1/1 is a convergent to −θ2 = [0, bn, . . . , b1],

which means that bn = 1.

We replace Pavone’s Lemma 4 by the following result:

Lemma 7. Let g(x, y) be a Hermite reduced form with roots θ1 = [b1, . . . , bn] and θ2 =
−[0, bn, . . . , b1]. Suppose bn > 1, bn−1 = 1 and that g(S−2, T−2) = µ, where |µ| <

√
d/2. Then

bn−2 = 1.

Proof. For 1 ≤ i ≤ n, let

Wi = [bi, bi+1, . . . , bn, b1, . . . , bi−1] + [0, bi−1, . . . , b1, bn, . . . , bi].

Then Wi =
√
d/|g(Si−1, Ti−1) (see [7, p. 385]). Hence, as the Wi are periodic with period n,

we have

Wn−1 = [bn−1, bn, b1, . . . , bn−2] + [0, bn−2, . . . , b1, bn, bn−1]

=
√
d/|g(S−2, T−2)|

=
√
d/|µ| > 2.

Hence if bn−1 = 1, we have

Wn−1 = [1, bn, b1, . . . , bn−2] + [0, bn−2, . . . , b1, bn, bn−1]

< 1 + 1/bn + 1/bn−2.

So if bn > 1, we have

2 < Wn−1 < 1 + 1/bn + 1/bn−2 ≤ 1 + 1/2 + 1/bn−2.

Hence 1/2 < 1/bn−2 and so bn−2 < 2, giving bn−2 = 1.
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The next result is due to Pavone [11].

Lemma 8. Let f(x, y) = ax2 + bxy + cy2 and let ρ = [a0, . . . , am, b1, . . . , bn] and σ =
[c0, . . . , cr, d1, . . . , dn] be the roots of f(x, 1) = 0. Also let ph/qh and Ph/Qh denote the
convergents of ρ and σ, respectively. We do not require the periods to have minimal lengths,
but assume m and r are minimal, i.e., am 6= bn and cr 6= dn. It is also convenient to assume
n ≥ 4.

Let θ1 = [b1, . . . , bn], θ2 = −[0, bn, . . . , b1] and let Sk, Tk be the sequences (2) for θ1 and
θ2. Then

(

pm pm−1

qm qm−1

)(

Sk

Tk

)

=

(

pm+k

qm+k

)

, k ≥ −1. (4)

Moreover, there exists i, 1 ≤ i ≤ 3, such that

σ = [c0, . . . , cr, bn−i, . . . , b1, bn, bn−1, . . . , bn−i+1], (5)

and
(

pm pm−1

qm qm−1

)(

S−k

T−k

)

= ±
(

Pr+k−(i+1)

Qr+k−(i+1)

)

, k ≥ i. (6)

Also i = 3 implies bn−1 = 1, while bn = bn−1 = 1 implies i = 3.

Remark 9. A list of the possible continued fraction expansions (5) for σ is given at [9].

3 Extending Pavone’s theorem

Theorem 10. Let f(x, y) = ax2 + bxy + cy2, a > 0, d = b2 − 4ac > 0 and not square. Let p
and q > 0 be relatively prime integers, such that f(p, q) = µ. Let the roots of f(x, 1) = 0 be
ρ = [a0, . . . , am, b1, . . . , bn] and σ = [c0, . . . , cr, d1, . . . , dn], where am 6= bn and cr 6= dn. Let
the convergents of ρ and σ be denoted by ph/qh and Ph/Qh, respectively.

(i) If 0 < µ <
√
d/2, then p/q is a convergent to ρ or σ.

(ii) If −
√
d/2 < µ < 0, then p/q is a convergent to ρ or σ, or

(p, q) = (pm − pm−1, qm − qm−1) or (Pr − Pr−1, Qr −Qr−1). (7)

Proof. We assume f(p, q) = ap2 + bpq + cq2 = µ, where 0 < |µ| <
√
d/2 and gcd(p, q) = 1.

We follow Pavone’s argument closely and define g(x, y) by

g(x, y) = f(pmx+ pm−1y, qmx+ qm−1y).

Then g is Hermite reduced with roots θ1 = [b1, . . . , bn] and θ2 = −[0, bn, . . . , b1] and with
sequences Sk, Tk for θ1 and θ2 defined in (2). Define integers α and β by

pmα + pm−1β = p, qmα + qm−1β = q.
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Then g(α, β) = µ and by Lemma 6, there exists an integer k such that (α, β) = ±(Sk, Tk).
Hence

(

p
q

)

= ±
(

pm pm−1

qm qm−1

)(

Sk

Tk

)

.

Let i be the integer satisfying equations (5) and (6). If i = 1 or 2, then by (4) and (6)

(

p
q

)

= ±
(

ph
qh

)

or ±
(

Ph

Qh

)

for some h, and p/q is a convergent to ρ or σ. If i = 3, then the pair

(

Sk

Tk

)

occurs in (4)

or (6) for all k 6= −2. Hence either p/q is a convergent to ρ or σ, or

(

p
q

)

= ±
(

pm pm−1

qm qm−1

)(

S−2

T−2

)

= ±
(

pm pm−1

qm qm−1

)(

1
−bn

)

and
(p, q) = ±(pm − bnpm−1, qm − bnqm−1).

However we can interchange ρ and σ and similarly deduce that

(p, q) = ±(Pr − bn−2Pr−1, Qr − bn−2Qr−1).

If bn = 1, we have qm − bnqm−1 = qm − qm−1 > 0 and

(p, q) = (pm − pm−1, qm − qm−1).

If bn > 1, then bn−1 = 1 by Lemma 8, and as g(S−2, T−2) = µ, it follows from Lemma 7
that bn−2 = 1. Hence Qr − bn−2Qr−1 = Qr −Qr−1 > 0 and

(p, q) = (Pr − Pr−1, Qr −Qr−1).

Definition 11. A solution (p, q) of (1) with gcd(p, q) = 1 and q > 0 that is not a convergent
to ρ or σ is called an exceptional solution.

Remark 12. From the above proof, we see that if a solution is given by a convergent pk/qk
to ρ, then k ≥ m − 1. Similarly, if a solution is given by a convergent Pj/Qj to σ, then
j ≥ r − 1.
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4 Fundamental solutions

We need some definitions and lemmas associated with the diophantine equation

ax2 + bxy + cy2 = µ. (8)

The integer solutions of (8) divide into equivalence classes under the relation (x1, y1) and
(x2, y2) are equivalent if and only if

x2 =
x1(u− bv)

2
− cvy1, y2 =

y1(u+ bv)

2
+ avx1,

where u and v are integers satisfying u2 − dv2 = 4.

Definition 13. A fundamental solution (u, v) of a class of solutions K of (8), is one where
v has least non-negative value when (u, v) belongs to K. Let u′ = −(au + bv)/a be the
conjugate solution to u. If u′ is not integral, or if (u′, v) is not equivalent to (u, v), this
determines (u, v). If u′ is integral and (u′, v) is equivalent to (u, v), where u 6= u′, we choose
u > u′. There are finitely many equivalence classes, each indexed by a fundamental solution.

Reference [10] contains more information about the fundamental solutions.

Lemma 14. ([14, p. 383]). Solutions (x1, y1) and (x2, y2) of (8) are equivalent if and only
if x1y2 − x2y1 ≡ 0 (mod |µ|).

We find the fundamental solutions when |µ| <
√
d/2, by examining the continued frac-

tions for ρ and σ. It can be proved that the different classes will be represented in the
first period (and second period if the period is odd). We first check to see if an exceptional
solution exists. Then we examine the the convergents pm/qm, . . . and Pr/Qr, . . . of the first
period of ρ and σ, and additionally the second period, if the period-length is odd, using the
equations

aA2
n−1 + bAn−1Bn−1 + cB2

n−1 =

{

(−1)nQn/2, with ρ = (−b+
√
d)/2a;

(−1)n+1Qn/2, with σ = (−b−
√
d)/2a,

to check if for ρ, we have µ = (−1)nQn/2, or for σ, we have µ = (−1)n+1Qn/2.
We then use Lemma 14 to test for equivalence of solutions using (pm−1, qm−1), (Pr−1, Qr−1)

and any exceptional solution.

Proposition 15. If (p, q) is an exceptional solution of (1), then it is a fundamental solution
if |µ| > 1.

Proof. Suppose (p, q) is an exceptional solution of (1). Then from the proof of Theorem 10,
we have

(p, q) = (pm − bnpm−1, qm − bnqm−1) = (Pr − bn−2Pr−1, Qr − bn−2Qr−1).
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We have to compare (p, q) with the convergents ph/qh and Pk/Qk of ρ and σ that give
solutions of (1). By Remark 12, we know that h ≥ m− 1 and k ≥ r − 1.

Now q = qm − bnqm−1 < qm ≤ qk if k ≥ m and q = Qr − bn−2Qr−1 < Qr ≤ Qj if j ≥ r.
Also (p, q) is not equivalent to (pm−1, qm−1) or (Pr−1, Qr−1) if |µ| > 1. For

(p, q) ∼ (pm−1, qm−1) ⇐⇒ pm−1(qm − bnqm−1)− qm−1(pm − bnpm−1) ≡ 0 (mod |µ|)
⇐⇒ pm−1qm − qm−1pm ≡ 0 (mod |µ|)
⇐⇒ (−1)m ≡ 0 (mod |µ|).

Similarly with (Pr−1, Qr−1).

Remark 16. If µ = −1, the situation is more complicated. For example, the equation
x2+xy−y2 = −1 has one solution class, with fundamental solution (0, 1) and an exceptional
solution (−1, 1).

5 Examples

Example 17. Consider the equation x2+xy−100y2 = −10. Here d = 401, |µ| = 10 <
√
d/2.

Also

ρ = (−1 +
√
401)/2 = [9, 1, 1, 19], σ = (−1−

√
401)/2 = [−11, 2, 19, 1, 1].

The double periods for ρ and σ give the solutions

(p0, q0) = (9, 1) (P3, Q3) = (−431, 41)
(p4, q4) = (390, 41) (P5, Q5) = (−16410, 1561)

Also (−10, 1) = (P1 − P0, Q1 − Q0) is an exceptional solution, where P1/Q1 = −21/2
and P0/Q0 = −11/1; also neither (pm−1, qm−1) = (p−1, q−1) = (1, 0) nor (Pr−1, Qr−1) =
(P0, Q0) = (−11, 1) is a solution of x2 + xy − 100y2 = −10. We also have

(9, 1) ∼ (−431, 41) 6∼ (−10, 1),

(390, 41) ∼ (−16410, 1561) ∼ (−10, 1).

Hence the fundamental solutions are (9, 1) and (−10, 1), and the complete solution is

x = (9u+ 191v)/2; x = (−10u+ 210v)/2, (9)

y = (u+ 19v)/2; y = (u− 19v)/2, (10)

where u2 − 401v2 = 4.
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Example 18. Consider the equation 69x2 + 71xy + 15y2 = −13. Here d = 901, |µ| = 13 <√
d/2. Then

ρ = (−71 +
√
901)/138 = [−1, 1, 2, 2, 1, 2, 1, 1, 1, 1],

σ = (−71−
√
901)/138 = [−1, 3, 1, 2, 1, 2, 1, 1, 1],

and we have the exceptional solution

(−1, 2) = (P1 − P0, Q1 −Q0) = (p2 − p1, q2 − q1),

where P1/Q1 = −2/3, P0/Q0 = −1/1 and p2/q2 = −1/3, p1/q1 = 0/1.
The double periods for ρ and σ give the solutions

(p6, q6) = (−11, 37) (P7, Q7) = (−71, 97)
(p14, q14) = (−1141, 3842) (P13, Q13) = (−2461, 3362)

Also neither (pm−1, qm−1) = (p1, q1) = (0, 1) nor (Pr−1, Qr−1) = (P0, Q0) = (−1, 1) is a
solution of 69x2 + 71xy + 15y2 = −13 and

(−11, 37) ∼ (−71, 97) 6∼ (−1, 2),

(−1141, 3842) ∼ (−2461, 3362) ∼ (−1, 2).

Hence the fundamental solutions are (−1, 2) and (−11, 37), and the complete solution is
given by

x = (−u+ 11v)/2; x = (−11u− 329v)/2, (11)

y = (2u+ 4v)/2; y = (37u+ 1109v)/2, (12)

where u2 − 901v2 = 4.

Example 19. Consider the equation 2x2 + 5xy + y2 = −2. Here d = 17, |µ| = 2 <
√
d/2.

Then

ρ = (−5 +
√
17)/4 = [−1, 1, 3, 1], σ = (−5−

√
17)/4 = [−3, 1, 2, 1, 1, 3].

There is no exceptional solution, as i = 2 here.
The double periods for ρ and σ give the solutions

(p0, q0) = (−1, 1) (P3, Q3) = (−9, 4)
(p2, q2) = (−1, 4) (P5, Q5) = (−57, 25)

Also (pm−1, qm−1) = (p−1, q−1) = (1, 0) and (Pr−1, Qr−1) = (P1, Q1) = (−2, 1) are not
solutions of 2x2 + 5xy + y2 = −2. We also have

(−1, 1) ∼ (−57, 25) 6∼ (−1, 4) ∼ (−9, 4).
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Hence the fundamental solutions are (−1, 1) and (−1, 4) and the complete solution is
given by

x = (−u+ 3v)/2; x = (−u− 3v)/2, (13)

y = (u+ v)/2; y = (4u+ 16v)/2, (14)

where u2 − 17v2 = 4.
If instead we consider the equation 2x2 + 5xy + y2 = −1, again there are no exceptional

solutions. Also the double periods for ρ and σ now give the solutions

(p4, q4) = (−2, 9) (P1, Q1) = (−130, 57)

Here (Pr−1, Qr−1) = (P1, Q1) = (−2, 1) is a solution of 2x2 + 5xy + y2 = −1, whereas
(pm−1, qm−1) = (p−1, q−1) = (1, 0) is not a solution. Also

(−2, 9) ∼ (−130, 57) ∼ (−2, 1).

Hence the fundamental solution is (−2, 1) and the complete solution is given by

x = −u+ 4v, y = (u− 3v)/2,

where u2 − 17v2 = 4.
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