Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.5

On the Largest Integer that is not a Sum of Distinct Positive nth Powers

Doyon Kim
Department of Mathematics and Statistics
Auburn University
Auburn, AL 36849
USA
dzk0028@auburn.edu

Abstract

It is known that for an arbitrary positive integer n the sequence $S\left(x^{n}\right)=\left(1^{n}, 2^{n}, \ldots\right)$ is complete, meaning that every sufficiently large integer is a sum of distinct nth powers of positive integers. We prove that every integer $$
m \geq(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b,
$$ where $a=n!2^{n^{2}}, b=2^{n^{3}} a^{n-1}, r=2^{n^{2}-n} a$, is a sum of distinct positive nth powers.

\section*{1 Introduction}

Let $S=\left(s_{1}, s_{2}, \ldots\right)$ be a sequence of integers. The sequence S is said to be complete if every sufficiently large integer can be represented as a sum of distinct elements of S. For a complete sequence S, the largest integer that is not representable as a sum of distinct elements of S is called the threshold of completeness of S. We let θ_{S} denote the threshold of completeness of S.

The threshold of completeness is often very difficult to find even for a simple sequence. For an arbitrary positive integer n, let $S\left(x^{n}\right)$ denote the sequence of nth powers of positive integers, i.e., $S\left(x^{n}\right)=\left(1^{n}, 2^{n}, \ldots\right)$. The completeness of the sequence was proved in 1948, by Sprague [6]. In 1954, Roth and Szekeres [5] further generalized the result by proving

that if $f(x)$ is a polynomial that maps integers into integers, then $S(f)=(f(1), f(2), \ldots)$ is complete if and only if $f(x)$ has a positive leading coefficient and for any prime p there exists an integer m such that p does not divide $f(m)$. In 1964, Graham [2] re-proved the theorem of Roth and Szekeres using alternative elementary techniques.

However, little is known about the threshold of completeness of $S\left(x^{n}\right)$. The value $\theta_{S\left(x^{n}\right)}$ is known only for $n \leq 6$. The values are as follows: $\theta_{S(x)}=0, \theta_{S\left(x^{2}\right)}=128[7], \theta_{S\left(x^{3}\right)}=12758$ [2], $\theta_{S\left(x^{4}\right)}=5134240$ [3], $\theta_{S\left(x^{5}\right)}=67898771$ [4], $\theta_{S\left(x^{6}\right)}=11146309947$ [1]. Sprague, Roth and Szekeres, and Graham proved that $S\left(x^{n}\right)$ is complete, but they were not interested in the size of $\theta_{S\left(x^{n}\right)}$. The values $\theta_{S\left(x^{n}\right)}$ for $3 \leq n \leq 6$ were found by methods that require lengthy calculations assisted by computer, and they do not give any idea on the size of $\theta_{S\left(x^{n}\right)}$ for general n.

In this paper, we establish an upper bound of $\theta_{S\left(x^{n}\right)}$ as a function of n. Using the elementary techniques Graham used in his proof, it is possible to obtain an explicit upper bound of the threshold of completeness of $S\left(x^{n}\right)=\left(1^{n}, 2^{n}, 3^{n}, \ldots\right)$. Since the case $n=1$ is trivial, we let n be a positive integer greater than 1 . We prove the following theorem:

Theorem 1. Let $a=n!2^{n^{2}}, b=2^{n^{3}} a^{n-1}$ and $r=2^{n^{2}-n} a$. Then

$$
\theta_{S\left(x^{n}\right)}<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b .
$$

The theorem yields the result

$$
\theta_{S\left(x^{n}\right)}=O\left((n!)^{n^{2}-1} \cdot 2^{2 n^{4}+n^{3}+n^{2}+\left(2-\frac{\ln 3}{\ln 2}\right) n}\right) .
$$

The upper bound of $\theta_{S\left(x^{n}\right)}$ given by the formula is much greater than $4^{n^{4}}$, while the actual values of $\theta_{S\left(x^{n}\right)}$ for $2 \leq n \leq 6$ are less than $4^{n^{2}}$. So the upper bound obtained in this paper is most likely far from being tight.

2 Preliminary results

Let $S=\left(s_{1}, s_{2}, \ldots\right)$ be a sequence of integers.
Definition 2. The set $P(S)$ is a set of all sums of the form $\sum_{k=1}^{\infty} \epsilon_{k} s_{k}$ where ϵ_{k} is 0 or 1 , all but a finite number of ϵ_{k} are 0 and at least one of ϵ_{k} is 1 .

Definition 3. The sequence S is complete if $P(S)$ contains every sufficiently large integer.
Definition 4. If S is complete, the threshold of completeness θ_{S} is the largest integer that is not in $P(S)$.

Definition 5. The set $A(S)$ is a set of all sums of the form $\sum_{k=1}^{\infty} \delta_{k} s_{k}$ where δ_{k} is $-1,0$ or 1 and all but a finite number of δ_{k} are 0 .

Definition 6. Let k be a positive integer. The sequence S is a $\Sigma(k)$-sequence if $s_{1} \leq k$, and

$$
s_{n} \leq k+\sum_{j=1}^{n-1} s_{j}, \quad n \geq 2
$$

For example, if $S=(2,4,8,16, \ldots)$ then S is a $\Sigma(2)$-sequence since $2^{n}=2+\sum_{j=1}^{n-1} 2^{j}$ for all $n \geq 2$.
Definition 7. Let c and k be positive integers. The sequence S is (c, k)-representable if $P(S)$ contains k consecutive integers $c+j, 1 \leq j \leq k$.

For example, if $S=(1,3,6,10, \ldots)$ is a sequence of triangle numbers then S is $(8,3)$ representable since $\{9,10,11\} \subset P(S)$.
Definition 8. For a positive integer m, we define $\mathbb{Z}_{m}(S)$ to be the sequence $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, where $0 \leq \alpha_{i}<m$ and $s_{i} \equiv \alpha_{i}(\bmod m)$ for all i.

The two following lemmas, slightly modified from Lemma 1 and Lemma 2 in Graham's paper [2], are used to obtain the upper bound.
Lemma 9. For a positive integer k, let $S=\left(s_{1}, s_{2}, \ldots\right)$ be a strictly increasing $\Sigma(k)$-sequence of positive integers and let $T=\left(t_{1}, t_{2}, \ldots\right)$ be (c, k)-representable. Then $U=\left(s_{1}, t_{1}, s_{2}, t_{2}, \ldots\right)$ is complete and $\theta_{U} \leq c$.
Proof. It suffices to prove that every positive integer greater than c belongs to $P(U)$. The proof proceeds by induction. Note that all the integers $c+t, 1 \leq t \leq k$ belong to $P(T)$, and all the integers $c+s_{1}+t, 1 \leq t \leq k$ belong to $P(U)$. If $1 \leq t \leq k$ then

$$
c+t \in P(T) \subset P(U)
$$

and if $k+1 \leq t \leq k+s_{1}$, then $1 \leq k-s_{1}+1 \leq t-s_{1} \leq k$ and we have

$$
c+t=c+\left(t-s_{1}\right)+s_{1} \in P(U)
$$

Therefore all the integers

$$
c+t, \quad 1 \leq t \leq k+s_{1}
$$

belong to $P(U)$. Now, let $n \geq 2$ and suppose that all the integers

$$
c+t, \quad 1 \leq t \leq k+\sum_{j=1}^{n-1} s_{j}
$$

belong to $P(U)$, and that for every such t there is a $P(U)$ representation of $c+t$ such that none of $s_{m}, m \geq n$ is in the sum. Since all the integers $c+t+s_{n}, 1 \leq t \leq k+\sum_{j=1}^{n-1} s_{j}$ belong to $P(U)$ and $c+1+s_{n} \leq c+1+k+\sum_{j=1}^{n-1} s_{j}$, all the integers

$$
c+t, \quad 1 \leq t \leq k+\sum_{j=1}^{n} s_{j}
$$

belong to $P(U)$. Since S is a strictly increasing sequence of positive integers, this completes the induction step and the proof of lemma.

Lemma 10. Let $S=\left(s_{1}, s_{2}, \ldots\right)$ be a strictly increasing sequence of positive integers. If $s_{k} \leq 2 s_{k-1}$ for all $k \geq 2$, then S is a $\Sigma\left(s_{1}\right)$-sequence.

Proof. For $k \geq 2$, we have

$$
\begin{aligned}
s_{k} & \leq 2 s_{k-1}=s_{k-1}+s_{k-1} \\
& \leq s_{k-1}+2 s_{k-2}=s_{k-1}+s_{k-2}+s_{k-2} \\
& \leq s_{k-1}+s_{k-2}+2 s_{k-3} \leq \cdots \\
& \leq s_{1}+\sum_{j=1}^{k-1} s_{j} .
\end{aligned}
$$

Therefore, S is a $\Sigma\left(s_{1}\right)$-sequence.
Lemma 9 shows that if a sequence S can be partitioned into one $\Sigma(k)$-sequence and one (c, k)-representable sequence then S is complete with $\theta_{S} \leq c$. What we aim to do is to partition $S\left(x^{n}\right)$ into two such sequences for some c and k.

Let $f(x)=x^{n}$ and let $S(f)=(f(1), f(2), \ldots)$. Let $a=n!2^{n^{2}}$ and $r=2^{n^{2}-n} a$. Partition the elements of the sequence $S(f)$ into four sets B_{1}, B_{2}, B_{3} and B_{4} defined by

$$
\begin{aligned}
& B_{1}=\left\{f(\alpha a+\beta): 0 \leq \alpha \leq 2^{n^{2}-n}-1,1 \leq \beta \leq 2^{n}\right\}, \\
& B_{2}=\left\{f(\alpha a+\beta): 0 \leq \alpha \leq 2^{n^{2}-n}-1,2^{n}+1 \leq \beta \leq a, \alpha a+\beta<2^{n^{2}-n} a\right\}, \\
& B_{3}=\left\{f\left(2^{n^{2}-n} a\right), f\left(2^{n^{2}-n} a+2\right), f\left(2^{n^{2}-n} a+4\right), \ldots\right\}, \\
& B_{4}=\left\{f\left(2^{n^{2}-n} a+1\right), f\left(2^{n^{2}-n} a+3\right), f\left(2^{n^{2}-n} a+5\right), \ldots\right\},
\end{aligned}
$$

so that

$$
B_{1} \cup B_{2}=\{f(1), f(2), \ldots, f(r-1)\}
$$

and

$$
B_{3} \cup B_{4}=\{f(r), f(r+1), f(r+2), \ldots\} .
$$

Let S, T, U and W be the strictly increasing sequences defined by

$$
\begin{aligned}
S & =\left(s_{1}, s_{2}, \ldots, s_{2^{2}}\right), \quad s_{j} \in B_{1}, \\
T & =\left(t_{1}, t_{2}, \ldots\right), \quad t_{j} \in B_{3}, \\
U & =\left(u_{1}, u_{2}, \ldots\right), \quad u_{j} \in B_{1} \cup B_{3}, \\
W & =\left(w_{1}, w_{2}, \ldots\right), \quad w_{j} \in B_{2} \cup B_{4} .
\end{aligned}
$$

Then the sequences U and W partition the sequence $S(f)$. First, using Lemma 10, we show that W is a $\Sigma(a)$-sequence.

Lemma 11. For $a=n!2^{n^{2}}$ and $r=2^{n^{2}-n} a$,

$$
\frac{f(r+1)}{f(r-1)}<\frac{f\left(a+2^{n}+1\right)}{f(a)}<\frac{f\left(2^{n}+2\right)}{f\left(2^{n}+1\right)} \leq 2 .
$$

Proof. Re-write the inequalities as

$$
\left(1+\frac{2}{r-1}\right)^{n}<\left(1+\frac{2^{n}+1}{a}\right)^{n}<\left(1+\frac{1}{2^{n}+1}\right)^{n} \leq 2 .
$$

It is clear that

$$
\frac{r-1}{2}>\frac{a}{2^{n}+1}>2^{n}+1
$$

which proves the first two inequalities. The proof of the third inequality

$$
\left(1+\frac{1}{2^{n}+1}\right)^{n} \leq 2 \Longleftrightarrow 1 \leq\left(2^{\frac{1}{n}}-1\right)\left(2^{n}+1\right)
$$

is also straightforward.
Corollary 12. The sequence W is a $\Sigma(a)$-sequence.
Proof. Note that $w_{1}=\left(2^{n}+1\right)^{n}$. For every $k \geq 2, \frac{w_{k}}{w_{k-1}}$ satisfies one of the following equalities:

$$
\begin{align*}
\frac{w_{k}}{w_{k-1}} & =\frac{f(\alpha+1)}{f(\alpha)}, \quad \text { for } \quad \alpha \geq 2^{n}+1 \tag{1}\\
\frac{w_{k}}{w_{k-1}} & =\frac{f\left(\beta a+2^{n}+1\right)}{f(\beta a)}, \quad \text { for } \quad \beta \geq 1 \tag{2}\\
\frac{w_{k}}{w_{k-1}} & =\frac{f(\gamma+2)}{f(\gamma)}, \quad \text { for } \quad \gamma \geq r-1 \tag{3}
\end{align*}
$$

Also, for every $\alpha \geq 2^{n}+1, \beta \geq 1$ and $\gamma \geq r-1$ we have

$$
\begin{aligned}
\frac{f(\alpha+1)}{f(\alpha)} & \leq \frac{f\left(2^{n}+2\right)}{f\left(2^{n}+1\right)} \\
\frac{f\left(\beta a+2^{n}+1\right)}{f(\beta a)} & \leq \frac{f\left(a+2^{n}+1\right)}{f(a)} \\
\frac{f(\gamma+2)}{f(\gamma)} & \leq \frac{f(r+1)}{f(r-1)}
\end{aligned}
$$

Thus, by Lemma $11, \frac{w_{k}}{w_{k-1}} \leq 2$ for $k \geq 2$, and therefore by Lemma $10, W$ is a $\Sigma\left(\left(2^{n}+1\right)^{n}\right)$ sequence. To complete the proof, it remains to prove that $\left(2^{n}+1\right)^{n}<a$ for all $n>1$. The inequality is true for $n=2$ and $n=3$, and for $n>3$ we have

$$
\left(2^{n}+1\right)^{n}<\left(2^{n}+2^{n}\right)^{n}=2^{n} 2^{n^{2}}<n!2^{n^{2}}=a .
$$

Therefore, W is a $\Sigma(a)$-sequence.

Now, we prove that U is (d, a)-representable for some positive integer d. By Lemma 9, the value d is the upper bound of $\theta_{S\left(x^{n}\right)}$. Note that the sequences S and T partition U. Lemma 13 shows that $P(S)$ contains a complete residue system modulo a, and Lemma 14 and 15 together show that $P(T)$ contains arbitrarily long arithmetic progression of integers with common difference a. The properties of S and T are used in Lemma 16 to prove that $P(U)$ contains a consecutive integers.

Lemma 13. The set $P(S)$ contains a complete residue system modulo a.
Proof. It suffices to prove that $\{1,2, \ldots, a\} \subset P\left(\mathbb{Z}_{a}(S)\right)$. Let $S_{1}, S_{2}, \ldots, S_{2^{n}}$ be the sequences defined by

$$
S_{j}=\left(j^{n}, j^{n}, \ldots, j^{n}\right), \quad 1 \leq j \leq 2^{n}
$$

where $\left|S_{j}\right|=2^{n^{2}-n}$ for all j. Since for each $0 \leq \alpha \leq 2^{n^{2}-n}-1,1 \leq \beta \leq 2^{n}$ we have

$$
f(\alpha a+\beta) \equiv \beta^{n} \quad(\bmod a),
$$

and S is the sequence of such $f(\alpha a+\beta)$ in increasing order, the sequences $S_{1}, S_{2}, \ldots, S_{2^{n}}$ partition the sequence $\mathbb{Z}_{a}(S)$. Note that

$$
P\left(S_{1}\right)=\left\{1,2, \ldots, 2^{n^{2}-n}\right\}, \quad P\left(S_{2}\right)=\left\{2^{n}, 2 \cdot 2^{n}, 3 \cdot 2^{n}, \ldots, 2^{n^{2}-n} \cdot 2^{n}\right\}
$$

Since for every integer $1 \leq m \leq 2^{n^{2}-n}\left(1+2^{n}\right)$ there exist $0 \leq \alpha \leq 2^{n^{2}-n}, 1 \leq \beta \leq 2^{n}$ such that

$$
m=\alpha 2^{n}+\beta
$$

we have

$$
P\left(S_{1} \cup S_{2}\right)=\left\{1,2,3, \ldots, 2^{n^{2}-n}\left(1+2^{n}\right)\right\}
$$

Likewise, for every $j \geq 3$, the inequality

$$
j^{n}<2^{n}(j-1)^{n}<2^{n^{2}-n}\left(1+2^{n}+\cdots+(j-1)^{n}\right)
$$

holds, and therefore for every $1 \leq m \leq 2^{n^{2}-n}\left(1+2^{n}+\cdots+j^{n}\right)$ there exists $0 \leq \alpha \leq 2^{n^{2}-n}$, $1 \leq \beta \leq 2^{n^{2}-n}\left(1+2^{n}+\cdots(j-1)^{n}\right)$ such that $m=\alpha j^{n}+\beta$. Therefore

$$
P\left(\mathbb{Z}_{a}(S)\right)=P\left(S_{1} \cup S_{2} \cup \cdots \cup S_{2^{n}}\right)=\left\{1,2,3, \ldots, 2^{n^{2}-n}\left(1+2^{n}+3^{n}+\cdots+2^{n^{2}}\right)\right\}
$$

It remains to prove that

$$
a=n!2^{n^{2}} \leq 2^{n^{2}-n}\left(1+2^{n}+3^{n}+\cdots+2^{n^{2}}\right)
$$

Since

$$
\left(\frac{1+2^{n}+\cdots+2^{n^{2}}}{2^{n}}\right)^{\frac{1}{n}} \geq \frac{1+2+\cdots+2^{n}}{2^{n}}
$$

we have

$$
2^{n^{2}-n}\left(1+2^{n}+\cdots+2^{n^{2}}\right) \geq\left(1+2+\cdots+2^{n}\right)^{n}=\left(\frac{2^{n}\left(2^{n}+1\right)}{2}\right)^{n}
$$

Since $2^{n}+1>2 j$ for every positive integer $j \leq n$, we have

$$
\begin{aligned}
\frac{2^{n^{2}-n}\left(1+2^{n}+\cdots+2^{n^{2}}\right)}{n!2^{n^{2}}} & \geq\left(\frac{2^{n}\left(2^{n}+1\right)}{2}\right)^{n} \cdot \frac{1}{n!2^{n^{2}}} \\
& =\frac{\left(2^{n}+1\right)^{n}}{n!2^{n}} \\
& =\prod_{j=1}^{n} \frac{2^{n}+1}{2 j} \\
& >1
\end{aligned}
$$

Therefore, $a=n!2^{n^{2}}<2^{n^{2}-n}\left(1+2^{n}+\cdots+2^{n^{2}}\right)$ and it completes the proof.
Lemma 14. For every positive integer m,

$$
a \in A\left(\left(f(m), f(m+2), f(m+4), \ldots, f\left(m+\frac{2}{3}\left(2^{2 n}-1\right)\right)\right)\right.
$$

Proof. Define $\Delta_{k}: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$ by:

$$
\begin{aligned}
& \Delta_{1}(g(x))=g(4 x+2)-g(4 x), \\
& \Delta_{k}(g(x))=\Delta_{1}\left(\Delta_{k-1}(g(x))\right), \quad 2 \leq k \leq n,
\end{aligned}
$$

so that for $1 \leq k \leq n, \Delta_{k}(f(x))$ is a polynomial of degree $n-k$. For example,

$$
\begin{gathered}
\Delta_{2}(f(x))=\Delta_{1}(f(4 x+2)-f(4 x)) \\
=(f(16 x+10)+f(16 x))-(f(16 x+8)+f(16 x+2))
\end{gathered}
$$

and

$$
\begin{aligned}
\Delta_{3}((f(x))= & \Delta_{1}\left(\Delta_{2}(f(x))\right) \\
= & (f(64 x+42)+f(64 x+32)+f(64 x+8)+f(64 x+2)) \\
& -(f(64 x+40)+f(64 x+34)+f(64 x+10)+f(64 x)) .
\end{aligned}
$$

It is easy to check that there are 2^{k-1} positive terms and 2^{k-1} negative terms in $\Delta_{k}(f(x))$, and all of the terms are distinct. Therefore, for each $1 \leq k \leq n$, there exist 2^{k} distinct integers $\alpha_{k}(1)>\alpha_{k}(2)>\cdots>\alpha_{k}\left(2^{k-1}\right), \beta_{k}(1)>\beta_{k}(2)>\cdots>\beta_{k}\left(2^{k-1}\right)$ with $\alpha_{k}(1)>\beta_{k}(1)$ such that

$$
\Delta_{k}(f(x))=\sum_{i=1}^{2^{k-1}} f\left(2^{2 k} x+\alpha_{k}(i)\right)-\sum_{i=1}^{2^{k-1}} f\left(2^{2 k} x+\beta_{k}(i)\right)
$$

Since $\alpha_{1}(1)=2$ and $\alpha_{k}(1)=4 \alpha_{k-1}(1)+2$ for $k \geq 2$, we have

$$
\alpha_{k}(1)=\frac{2}{3}\left(2^{2 k}-1\right) .
$$

Also, we have $\left\{\alpha_{k}\left(2^{k-1}\right), \beta_{k}\left(2^{k-1}\right)\right\}=\{0,2\}$. Therefore

$$
\Delta_{k}(f(x)) \in A\left(\left(f\left(2^{2 k} x\right), f\left(2^{2 k} x+2\right), \ldots, f\left(2^{2 k} x+\frac{2}{3}\left(2^{2 k}-1\right)\right)\right)\right)
$$

On the other hand, since

$$
\begin{aligned}
\Delta_{1}(f(x)) & =f(4 x+2)-f(4 x) \\
& =(4 x+2)^{n}-(4 x)^{n} \\
& =n 2^{2 n-1} x^{n-1}+\text { terms of lower degree, }
\end{aligned}
$$

we have

$$
\begin{aligned}
\Delta_{n}(f(x)) & =n(n-1)(n-2) \cdots 1 \cdot 2^{2 n-1} 2^{2 n-3} 2^{2 n-5} \cdots 2^{1} \\
& =n!2^{n^{2}} \\
& =a .
\end{aligned}
$$

Therefore,

$$
a \in A\left(\left(f\left(2^{2 n} x\right), f\left(2^{2 n} x+2\right), \ldots, f\left(2^{2 n} x+\frac{2}{3}\left(2^{2 n}-1\right)\right)\right)\right)
$$

Since the $\Delta_{n}(f(x))$ is a polynomial of degree 0 , the value $a=\Delta_{n}(f(x))$ is independent of x. Therefore, we can replace $2^{2 n} x$ with an arbitrary positive integer m and we have

$$
a \in A\left(\left(f(m), f(m+2), f(m+4), \ldots, f\left(m+\frac{2}{3}\left(2^{2 n}-1\right)\right)\right)\right) .
$$

Lemma 15. For every positive integer t, there exists a positive integer c such that all the integers

$$
c+j a, \quad 1 \leq j \leq t
$$

belong to $P(T)$ and

$$
c<(t-1) 2^{n-1}\left(r+\frac{2}{3}(t-1)\left(2^{2 n}-1\right)+2(t-2)\right)^{n}-a .
$$

Proof. Let $\alpha=\frac{2}{3}\left(2^{2 n}-1\right)$, and let $T_{1}, T_{2}, \ldots, T_{t-1}$ be the sequences defined by

$$
\begin{aligned}
T_{1} & =(f(r), f(r+2), f(r+4), \ldots, f(r+\alpha)) \\
T_{2} & =(f(r+\alpha+2), f(r+\alpha+4), \ldots, f(r+2 \alpha+2)) \\
T_{3} & =(f(r+2 \alpha+4), f(r+2 \alpha+6), \ldots, f(r+3 \alpha+4)), \ldots \\
T_{t-1} & =(f(r+(t-2) \alpha+2(t-2)), \ldots, f(r+(t-1) \alpha+2(t-2))) .
\end{aligned}
$$

By Lemma 14, $a \in A\left(T_{j}\right)$ for every $1 \leq j \leq t-1$, and there exists

$$
A_{j}, B_{j} \in P\left(T_{j}\right)
$$

such that $A_{j}-B_{j}=a$, both A_{j} and B_{j} consist of 2^{n-1} terms, and all 2^{n} terms of A_{j} and B_{j} are distinct. Let

$$
\begin{aligned}
C_{1} & =B_{1}+B_{2}+B_{3}+\cdots+B_{t-1}, \\
C_{2} & =A_{1}+B_{2}+B_{3}+\cdots+B_{t-1}, \\
C_{3} & =A_{1}+A_{2}+B_{3}+\cdots+B_{t-1}, \cdots \\
C_{j} & =\sum_{i=1}^{j-1} A_{i}+\sum_{i=j}^{t-1} B_{i}, \cdots \\
C_{t} & =A_{1}+A_{2}+A_{3}+\cdots+A_{t-1} .
\end{aligned}
$$

Then each C_{j} belongs to $P(T)$, and $\left(C_{1}, C_{2}, \ldots, C_{t}\right)$ is an arithmetic progression of t integers with common difference a. Thus, they are exactly the integers $c+j a, 1 \leq j \leq t$ with $c=C_{1}-a=B_{1}+B_{2}+\cdots+B_{t-1}-a$. Since each $B_{j}, 1 \leq j \leq t-1$ is a sum of 2^{n-1} terms in T, and all of the terms are less than or equal to

$$
f(r+(t-1) \alpha+2(t-2))=\left(r+\frac{2}{3}(t-1)\left(2^{2 n}-1\right)+2(t-2)\right)^{n}
$$

we have

$$
c=C_{1}-a<(t-1) 2^{n-1}\left(r+\frac{2}{3}(t-1)\left(2^{2 n}-1\right)+2(t-2)\right)^{n}-a .
$$

Finally, we show that $P(U)$ contains a consecutive integers $k_{1}+t_{1}, k_{2}+t_{2}, \ldots, k_{a}+t_{a}$, where $\left\{k_{1}, k_{2}, \ldots, k_{a}\right\}$ is a complete residue system of a in $P(S)$ and $t_{1}, t_{2}, \ldots, t_{a}$ are taken from the arithmetic progression in $P(T)$.
Lemma 16. Let $b=2^{n^{3}} a^{n-1}$. The sequence U is (d, a)-representable for a positive integer d such that

$$
d<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b .
$$

Proof. By Lemma 15, $P(T)$ contains an arithmetic progression of b integers,

$$
c+j a, \quad 1 \leq j \leq b
$$

with

$$
c<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-a .
$$

By Lemma 13, there exist positive integers $1=k_{1}<k_{2}<\cdots<k_{a}$ in $P(S)$ such that $\left\{k_{1}, k_{2}, \ldots, k_{a}\right\}$ is a complete residue system modulo a. For $1 \leq j \leq a$, let

$$
n_{j}=\left\lfloor\frac{k_{a}-k_{j}}{a}\right\rfloor+1
$$

Then for each $1 \leq j \leq a$,

$$
\frac{k_{a}-k_{j}}{a}<n_{j} \leq \frac{k_{a}-k_{j}}{a}+1 \Longleftrightarrow k_{a}<n_{j} a+k_{j} \leq k_{a}+a
$$

Also, if $i \neq j$ then $n_{i} a+k_{i} \not \equiv n_{j} a+k_{j}(\bmod a)$. Therefore

$$
\left\{c+n_{1} a+k_{1}, c+n_{2} a+k_{2}, \ldots, c+n_{a} a+k_{a}\right\}
$$

is the set of a consecutive integers

$$
\left\{c+k_{a}+1, c+k_{a}+2, \ldots, c+k_{a}+a\right\}
$$

It remains to prove that each $c+n_{j} a+k_{j}$ is in $P(U)$. Let $\Sigma(S)$ denote the sum of every element of S. Since $|S|=2^{n^{2}}$, and

$$
s_{j} \leq f\left(\left(2^{n^{2}-n}-1\right) a+2^{n}\right)=\left(r-a+2^{n}\right)^{n}<r^{n}-\left(a-2^{n}\right)^{n}<r^{n}-n!
$$

for each $s_{j} \in S$, we have

$$
\Sigma(S)<2^{n^{2}}\left(r^{n}-n!\right)=2^{n^{2}} r^{n}-a
$$

Therefore, for each $1 \leq j \leq a$ we have

$$
1 \leq n_{j}<\frac{k_{a}}{a}+1 \leq \frac{1}{a} \Sigma(S)+1<\frac{1}{a} 2^{n^{2}} r^{n}=2^{n^{3}} a^{n-1}=b
$$

and thus all of $c+n_{j} a$ belong to $P(T)$. Since all of k_{j} belong to $P(S)$, all of $c+n_{j} a+k_{j}$ belong to $P(U)$. Therefore, U is $\left(c+k_{a}, a\right)$-representable. Let

$$
d=c+k_{a}
$$

Since $k_{a}<\Sigma(S)<2^{n^{2}} r^{n}-a=a b-a$,

$$
d=c+k_{a}<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b
$$

Now we have everything we need to prove the theorem.

3 Proof of the theorem

Recall that U and W are disjoint subsequences of $S(f)$. By Corollary 12, W is a $\Sigma(a)$ sequence and by Lemma $16, U$ is (d, a)-representable with

$$
d<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b .
$$

Therefore by Lemma $9, S\left(x^{n}\right)=S(f)$ is complete and

$$
\theta_{S\left(x^{n}\right)} \leq d<(b-1) 2^{n-1}\left(r+\frac{2}{3}(b-1)\left(2^{2 n}-1\right)+2(b-2)\right)^{n}-2 a+a b
$$

4 Acknowledgments

The author would like to thank Dr. Luke Oeding of Auburn University for his advice. His suggestions were valuable and helped the author to obtain a better upper bound. Also, the author would like to thank Dr. Peter Johnson of Auburn University and the anonymous referees for their helpful comments.

References

[1] C. Fuller and R. H. Nichols, Generalized Anti-Waring numbers, J. Integer Seq. 18 (2015), Article 15.10.5.
[2] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275-285.
[3] S. Lin, Computer experiments on sequences which form integral bases, in J. Leech, ed., Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp. 365-370.
[4] C. Patterson, The Derivation of a High Speed Sieve Device, Ph.D. thesis, University of Calgary, 1992.
[5] K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Q. J. Math. 5 (1954), 241-259.
[6] R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51 (1948), 466-468.
[7] R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51 (1948), 289-290.

2010 Mathematics Subject Classification: Primary 11P05; Secondary 05A17.
Keywords: complete sequence, threshold of completeness, sum of powers.
(Concerned with sequence A001661.)

Received October 29 2016; revised versions received November 2 2016; July 1 2017. Published in Journal of Integer Sequences, July 22017.

Return to Journal of Integer Sequences home page.

