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Abstract

For an arithmetic function f0, we consider the number cm(n, k) of weighted com-
positions of n into k parts, where the weights are the values of the (m − 1)th invert
transform of f0. We connect cm(n, k) with c1(n, k) via Pascal matrices. We then relate
cm(n, k) to the number of certain restricted words over a finite alphabet. In addition,
we develop a method which transfers some properties of restricted words over a finite
alphabet to words over a larger alphabet.

Several examples illustrate our findings. Some examples concern binomial coeffi-
cients and Fibonacci numbers. Some examples also extend the classical results about
weighted compositions of Hoggatt and Lind. In each example, we derive an explicit
formula for cm(n, k).

1 Introduction

For a given initial arithmetic function f0, Janjić [5] examined some properties of the function
fm, which is the mth invert transform of f0. In that paper, as well as in Birmajer et al. [2],
some cases in which fm counts the number of restricted words over a finite alphabet were
considered. In the present paper, we consider the function cm(n, k), which is the number of
weighted compositions of n into k parts, where the weights are {fm−1(1), fm−1(2), . . .}. Note
that, in Janjić [6], properties of c1(n, k) were investigated.
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As mentioned by Birmajer at al. in a recent preprint [3], a formula for the number c1(n, k)
was firstly given by Hoggatt and Lind [4], based on results by Moser and Whitney [7]. For
a sequence of weights {fm−1(1), fm−1(2), . . .}, the number of fm−1-weighted compositions of
n into k parts is

cm(n, k) =
∑

πk(n)

k!

k1! · · · kn!
fm−1(1)

k1 · · · fm−1(1)
kn ,

where the sum runs over all solutions of

k1 + 2k2 + · · ·+ nkn = n such that k1 + · · ·+ kn = k and kj ∈ N0 for all j.

In other words,

cm(n, k) =
k!

n!
Bn,k(1!fm−1(1), 2!fm−1(2), . . .), (1)

where Bn,k(x1, x2, . . .) is the Bell partial polynomial. Moreover, as discussed in Hoggatt and
Lind [4], this formula is equivalent to

cm(n, k) =
∑

γk(n)

fm−1(a1) · · · fm−1(ak), (2)

where γk(n) indicates summations over k-part compositions a1 + a2 + · · · + ak of n. As an
immediate consequence, we obtain the following two results:

Corollary 1. The function cm(n, k) satisfies the recurrence

cm(0, 0) = 1, cm(n, 0) = 0, (n > 1),

and

cm(n, k) =
n−k+1
∑

i=1

fm−1(i)cm(n− i, k − 1), (1 ≤ k ≤ n). (3)

Corollary 2. The following formula holds:

fm(n) =
n
∑

k=1

cm(n, k). (4)

Note that, throughout the paper, letters m,n, k will have the meaning as in the definition
of cm(n, k). Using Birmajer et al. [1, Corollary 10], we derive a formula connecting cm(n, k)
with cm−1(n, k). The formula may be written in terms of the lower triangular Pascal matrices.
We then extend this result to obtain a relation between cm(n, k) and c1(n, k).

For the particular case f0(1) = 1, we develop a method which allows us to derive an
interpretation of cm(n, k) in terms of restricted words, when we know the number of re-
stricted words counted by fm−1. We finish the paper with a number of examples illustrating
our results. Some examples extend the classical results on weighted compositions given by
Hoggatt and Lind [4].

It is important to note that quantities fm(n) and cm(n, k) depend only on the initial
arithmetic function f0.

2



2 A connection of cm(n, k) and cm−1(n, k)

Let Cm(n) be the lower triangular matrix of order n, whose (i, j) entry is cm(i, j), (i =
1, 2, . . . , n; 1 ≤ j ≤ i). We let Ln denote the lower triangular Pascal matrix of order n.
Hence, the (i, j) entry of Ln is

(

i−1
j−1

)

, (1 ≤ j ≤ i). First, we prove the following:

Proposition 3. For each m > 1, we have

Cm(n) = Cm−1(n) · Ln.

Proof. It is easy to see that the statement is equivalent to the equation

cm(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

cm−1(n, i). (5)

In our terminology, Birmajer et al. [1, Corollary 10] may be written in the form

∑

j1+j2+···+jk=n

fm−1(j1) · · · fm−1(jk) =
n
∑

i=1

(

i+ k − 1

i

)

cm−1(n, i),

where the sum is taken over nonnegative j1, . . . , jk. Since at most k − 1 of jt may be equal
0, (2) yields

k−1
∑

j=0

(

k

j

)

cm(n, k − j) =
n
∑

i=1

(

i+ k − 1

i

)

cm−1(n, i).

Replacing k − j by t, and denoting
∑n

i=1

(

i+k−1
i

)

cm−1(n, i) = ak, implies

k
∑

t=1

(

k

t

)

cm(n, t) = ak, (k = 1, 2, . . . , n).

Denoting X = (cm(n, 1), cm(n, 2), . . . , cm(n, n))
T , and A = (a1, a2, . . . , an)

T , this system
may be written in the matrix form

Q ·X = A,

where Q is obtained from the Pascal matrix Ln+1 by omitting the first row and the first

column. It follows that X = Q−1 ·A, where Q−1 =
(

(−1)i+j
(

i

j

)

)

n×n
. For k = 1, 2, . . . , n, we

obtain

cm(n, k) =
n
∑

i=1

(

n
∑

j=1

(−1)j+k

(

k

j

)(

i+ j − 1

i

)

)

cm−1(n, i). (6)

Equation (6) holds for each m > 1, as well as for any arbitrary arithmetic function f0.
In particular, taking f0(1) = 1, f0(i) = 0, (i > 1), we obviously have c1(n, n) = 1, and
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c1(n, k) = 0 for k < n. Also, f1(n) = 1 for all n. In this case, c2(n, k) is the number of
compositions of n into k parts, that is, c2(n, k) =

(

n−1
k−1

)

. Therefore, (6) becomes

(

n− 1

k − 1

)

=
n
∑

j=1

(−1)j+k

(

k

j

)(

n+ j − 1

n

)

. (7)

Hence the expression in the square brackets in (6) equals
(

i−1
k−1

)

, which proves (5).

Remark 4. As a byproduct, we proved the binomial identity (7).

Remark 5. Replacing i− k by t in (5), we obtain

cm(n, k) =
n−k
∑

t=0

(

k + t− 1

t

)

cm−1(n, k + t). (8)

From the equation Cm(n) = Cm−1(n) · Ln follows

Cm(n) = Cm−1(n) · Ln = Cm−2(n) · L
2
n = · · · = C1(n) · L

m−1
n .

We thus obtain,

Proposition 6. The following matrix equation holds:

Cm(n) = C1(n)L
m−1
n .

Or, explicitly,

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)

c1(n, i), (1 ≤ k ≤ n). (9)

Proof. The assertion is true since (i, k) entry of Lm−1
n is (m− 1)i−k

(

i−1
k−1

)

.

Now, we derive a formula in which fm(n) is expressed in terms of c1(n, k).

Proposition 7. The following formula holds:

fm(n) =
n
∑

i=1

mi−1c1(n, i). (10)

Proof. Equation (4) yields

fm(n) =
n
∑

k=1

n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)

c1(n, i).

Changing the order of summation gives

fm(n) =
n
∑

i=1

(

i
∑

k=1

(m− 1)i−k

(

i− 1

k − 1

)

)

c1(n, i).

Using the binomial theorem, we obtain (10).
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Note 8. Equation (10) appears in Birmajer et al. [2] with a combinatorial proof based on
the enumeration of certain restricted words.

As an immediate consequence of (1) and (9), we obtain the following identity for the
partial Bell polynomials:

Identity 9. If the sequence y1, y2, . . . is the invert transform of the sequence x1, x2, . . ., then

k!Bn,k(y1, 2! · y2, 3! · y3, . . .) =
n
∑

i=k

(

i− 1

k − 1

)

i!Bn,i(x1, 2! · x2, 3! · x3, . . .).

We next prove the following result.

Proposition 10. Assume that f0(1) = 1 and m > 1. Assume next that, for n ≥ 1, fm−1(n)
is the number of some words of length n− 1 over a finite alphabet α. Let x be a letter which

is not in α. Then cm(n, k) is the number of words of length n− 1 over the alphabet α∪ {x},
in which exactly k − 1 letters equal x.

Proof. Since f0(1) = 1, it follows from Janjić [5, Corollary 2] that fm−1(1) = 1. We use
induction on k. For k = 1, (2) yields cm(n, 1) = fm−1(n). Since fm−1(n) is the number of
words of length n − 1 over α not containing x, we conclude that the statement is true for
k = 1. Assume that the claim is true for k−1. Consider the first term fm−1(1)cm(n−1, k−1)
in (3). By the induction hypothesis, cm(n− 1, k− 1) is the number of words of length n− 2
having k − 2 letters equal to x. Adding x at the beginning of each such word, we obtain all
the words of length n − 1 over α ∪ {x}, having k − 1 letters equal to x, and all beginning
with x.

Consider now the term fm−1(i)·cm(n−i, k−1), (i > 1) in (3). By the induction hypothesis,
cm(n− i, k− 1) is the number of words of length n− i− 1 with k− 2 letters equal to x. We
first insert x at the beginning of each such word. In front of x, we insert an arbitrary word
of length i−1 over α, which are fm−1(i) in number. We thus obtain all words of length n−1
over α ∪ {x}, such that the first appearance of x is at the ith position. It follows that the
right-hand side of (3) counts all the desired words.

Remark 11. We stress the fact that the preceding method may be applied only when we
know the number of (n − 1)-length words counted by fm−1(n). This is always true when
f0(1), f0(2), . . . is a binary sequence. Namely, there is a bijection between the compositions
counted by c1(n, k) and the binary words of length n− 1 with k − 1 ones. This bijection is
given by the correspondence

1 → 1, 2 → 10, 3 → 100, . . . . (11)

In this way, the compositions of n into k parts designate binary words of length n and
having k ones, all of which begin with 1. The converse is also true. Omitting the leading
1, we obtain the desired correspondence. Equation (4) implies that f1 and c1(n, k) both
count some binary words of length n − 1. We thus may apply Proposition 10 to obtain a
combinatorial interpretation of cm(n, k) as well as fm(n). Note that this method may be
applied in non-binary cases also.
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Remark 12.

1. Janjić [5, 6] derive several formulas concerning correspondence (11).

2. Also, Birmajer at al. [2, Theorem 3, Corollary 5] developed a method to obtain the
words counted by fm−1 starting with the initial function f0.

We now illustrate our method by a simple example.

Example 13. Assume that f0(i) = 1 for i = 1, 2, . . .. Then, we have fm−1(n) = mn−1. It
yields that fm−1(n) is the number of all words of length n − 1 over α = {0, 1, . . . ,m − 1}.
Then, c1(n, k) =

(

n−1
k−1

)

. This means that C1(n) = Ln. It follows that Cm(n) = Lm
n . From the

well-known formula for the terms of Lm
n , we obtain

cm(n, k) = mn−k

(

n− 1

k − 1

)

. (12)

Equation (12) is in accordance with Proposition 10. Namely, according to Proposition 10,
cm(n, k) is the number of words of length n− 1 over {0, 1, . . . ,m} with k− 1 letters equal to
m. These k−1 letters may be chosen in

(

n−1
k−1

)

ways. The remaining letters may be arbitrary

letters from {0, 1, . . . ,m− 1}, which are mn−k in number.
As a byproduct, using (9), we obtain the following binomial identity:

Identity 14. For m > 1, we have

mn−k

(

n− 1

k − 1

)

=
n−k
∑

j=0

(m− 1)j
(

n− 1

k + j − 1

)(

k + j − 1

j

)

. (13)

This simple case is related to the coefficients of the Tchebychev polynomials Un(x) of the
second kind.

Corollary 15. The number |[xn−k](Un+k−2(x))| is the number of words of length n− 1 over

the alphabet {0, 1, 2} having k − 1 twos.

Proof. It is a well known that (−1)k2n−k
(

n−1
k−1

)

is the coefficient of Un+k−2(x) by xn−k. We
thus obtain

[xn−k](Un+k−2(x)) = (−1)n−k

n−k
∑

j=0

(

n− 1

k + j − 1

)(

k + j − 1

j

)

.

This is the case when m = 2 in (13).
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3 More examples

Firstly, we revise the result from Janjić [6, Corollary 9].

Example 16. We define f0(1) = f0(2) = 1, and f0(n) = 0 otherwise. According to Janjić [5,
Corollary 33], fm−1(n) is the number of words of length n−1 over the alphabet {0, 1, . . . ,m−
1} having all zeros isolated.

Corollary 17. The number cm(n, k) is the number of words of length n−1 over the alphabet

{0, 1, . . . ,m}, which have k − 1 letters equal to m and all zeros isolated. Also,

c1(n, k) =

(

k

n− k

)

,

and

cm(n, k) =
n−k
∑

j=⌈n

2
⌉−k

(m− 1)j
(

j + k − 1

k − 1

)(

j + k

n− j − k

)

,
(

m > 1,
⌈n

2

⌉

≥ k
)

.

Proof. The first formula is Hoggatt and Lind [4, Case (ii)]. Since c1(n, k+ j) =
(

k+j

n−k−j

)

, (j =

0, . . . , n− k), we have k + j ≥ n− k − j, which yields 2j ≥ n− 2k and n ≥ 2k. The second
formula is true according to (9).

The arrays A030528 and A154929 in Sloane [8] are related to Example 16.

Next, we reexamine the result in Janjić [5, Corollary 28].

Example 18. We define f0(n) = 1 when n is odd, and f0(n) = 0 otherwise. According to
Janjić [5, Corollary 28], fm−1(n) is the number of words of length n − 1 over the alphabet
{0, 1, . . . ,m − 1}, avoiding runs of zeros of odd lengths. From Janjić [6, Proposition 24], it
follows that

c1(n, k) =

{

(n−k

2
+k−1

k−1

)

, if n− k is even;

0, if n is odd.

The number c1(n, k) is the number of binary words of length n− 1 with k − 1 ones, and
avoiding runs of zeros of odd lengths. This follows from bijection (11). We add a short
combinatorial proof.

Proposition 19. The number c1(n, k) is the number of binary words of length n − 1 with

k − 1 ones, avoiding runs of zeros of odd lengths.

Proof. Assume that n and k are of different parities. Since a word of length n− 1 with k− 1
ones must have n− k zeros, and since n− k is odd, we conclude that such a word must have
an odd run of zeros. It follows that c1(n, k) = 0. If n and k are of the same parity, then
n − k is even. This means that there are n−k

2
pairs of zeros. Of these n−k

2
pairs and k − 1

ones, we may form
(n−k

2
+k−1

k−1

)

words of length n− 1 having k − 1 ones and avoiding runs of
zeros of odd lengths.
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Remark 20. The formula for c1(n, k) appears in Hoggatt and Lind [4, Case (iv)].

Using induction and Proposition 10, we obtain

Corollary 21. The number cm(n, k) is the number of words of length n−1 over {0, 1, . . . ,m}
with k − 1 letters equal to m, avoiding runs of zeros of odd lengths.

From (9), we obtain an explicit formula for cm(n, k).
The arrays A037027 and A054456 in Sloane [8] are related to Example 18.

Example 22. We define f0(i) = i, (i = 1, 2, . . .). According to Janjić [5, Corollary 37],
fm−1(n) is the number of 01-avoiding words of length n− 1 over the alphabet {0, 1, . . . ,m}.

Applying Proposition 10 several times, we obtain

Corollary 23. The number cm(n, k) is the number of words of length n−1 over {0, 1, . . . ,m+
1} having k − 1 letters equal to m+ 1 and avoiding 01.

Corollary 24. The following formula holds:

c1(n, k) =

(

n+ k − 1

2k − 1

)

. (14)

Also,

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)(

n+ i− 1

2i− 1

)

.

Proof. Formula (14) may be found in Hoggatt and Lind [4, Case (iii)].

Since
(

n+k−1
2k−1

)

is obviously the number of binary words of length n + k − 1 with 2k − 1
zeros, we obtain the following Euler-type identity:

Identity 25. The number of binary words of length n + k − 1 with 2k − 1 zeros equals the

number of ternary words of length n− 1, having k − 1 letters equal to 2 and avoiding 01.

The arrays A125662, A207823, and A207824 in Sloane [8] are related to Example 22.

The last two examples concern the case f0(1) = 0. Note that in these examples, Propo-
sition 10 can not be used. The first example is an extension of the result from Janjić [6,
Proposition 13].

Example 26. We define f0(1) = 0, and f0(n) = 1 otherwise. It follows from Janjić [5,
Corollary 24] that, for n > 3, fm(n) is the number of words of length n−3 over {0, 1, . . . ,m},
where no two consecutive letters are nonzero. From Janjić [6, Proposition 13], we obtain
c1(n, k) =

(

n−k−1
k−1

)

for
(

1 ≤ k ≤
⌊

n
2

⌋)

, and c1(n, k) = 0 otherwise. Equation (5) implies that

cm(n, k) = 0 when k >
⌊

n
2

⌋

.

Remark 27. Note that the formula for c1(n, k) also appears in Hoggatt and Lind [4, Case
(iii)].
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Corollary 28. For n > 3 and 1 ≤ k ≤
⌊

n
2

⌋

, the number cm(n, k) is the number of words

of length n − 3 over {0, 1, . . . ,m} with k − 1 ones, and all nonzero letters are isolated. An

explicit formula for cm(n, k) is

cm(n, k) =

⌊n

2
⌋−k
∑

j=0

(m− 1)j
(

j + k − 1

k − 1

)(

n− k − j − 1

k + j − 1

)

,
(

1 ≤ k ≤
⌊n

2

⌋)

,

and cm(n, k) = 0 when k > ⌊n
2
⌋.

Proof. We know that c1(n, k) is the number of compositions of n into k parts, each of which
is greater than 1. Using the bijection (11), we conclude that, for n > 3, c1(n, k) is the
number of binary words of length n beginning with 10, ending with 0 and all ones are
isolated. Omitting 10 at the beginning, and 0 at the end of each word, we conclude that
c1(n, k), (n > 3) is the number of binary words of length n− 3 with k − 1 ones, all of which
are isolated. Hence, the statement is true for m = 1. Assume that the statement is true for
m− 1. In (8), by the induction hypothesis, cm−1(n, k + t) is the number of words of length
n − 3 with k + t − 1 ones, in which all nonzero letters are isolated. Replacing t ones with
m, we obtain the desired words. The number t may be chosen in

(

k+t−1
t

)

ways. Hence, the
right-hand side of (8) counts all the desired words. The formula follows from (9) and the
fact that n− k − j − 1 ≥ k + j − 1.

The arrays A037027, A249139, and A006130 in Sloane [8] are related to Example 26.

Example 29. Define f0 in the following way: f0(2) = f0(3) = 1, and f0(n) = 0 otherwise.
Janjić [6, Proposition 5] proved that c1(n, k) =

(

k

n−2k

)

,
(⌈

n
3

⌉

≤ k ≤
⌊

n
2

⌋)

and c1(n, k) = 0
otherwise.

We know that c1(n, k) is the number of compositions of n into k parts equal to either 2
or 3. In other words, for n ≥ 3 and 1 ≤ k ≤

⌊

n
2

⌋

, c1(n, k) is the number of binary words of
length n− 1 with k− 1 ones. These words begin with 0 and end with 0. Also, zero avoids a
run of length greater than 2, and all ones are isolated.

Corollary 30. For n > 3, the number cm(n, k) is the number of words of length n− 1 over

the alphabet {0, 1, . . . ,m} with k− 1 ones, which begin and end with 0. Also, 0 avoids a run

of length greater than 2 and all nonzero letters are isolated.

Proof. The statement holds form = 1. Assume that the statement is true form−1. Consider
the term

(

k+t−1
t

)

cm−1(n, k+ t) in (8). The number cm−1(n, k+ t) is the number of the desired
words of length n − 1 over {0, 1, . . . ,m − 1} with k + t − 1 ones. We replace t of k + t − 1
ones with m and then sum over t to obtain cm(n, k).

From (5) follows that cm(n, k) = 0 if k > ⌊n
2
⌋. Otherwise, from (9), we obtain

cm(n, k) =

⌊n

2
⌋

∑

j=0

(m− 1)j
(

j + k − 1

k − 1

)(

k + j

n− 2k − 2j

)

,
(

1 ≤ k ≤
⌊n

2

⌋)

.
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[6] M. Janjić, Binomial coefficients and enumeration of restricted words, J. Integer Seq. 19

(2016), Article 16.7.3.

[7] L. Moser and E. L. Whitney, Weighted compositions, Canad. Math. Bull. 4 (1961), 39–43.

[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 11B39.
Keywords: binary word, integer composition, restricted word, Pascal matrix.

(Concerned with sequences A000027, A006130, A030528, A037027, A054456, A125662, A154929,
A207823, A207824, and A249139.)

Received October 3 2016; revised versions received March 26 2017; June 1 2017. Published
in Journal of Integer Sequences, June 25 2017.

Return to Journal of Integer Sequences home page.

10

https://cs.uwaterloo.ca/journals/JIS/VOL18/Gil/gil3.html
https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html
http//arxiv.org/abs/1601.01595
https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html
https//cs.uwaterlo.ca.journals/JIS/VOL19/Janjic/janjic73.html
https://oeis.org
http://oeis.org/A000027
http://oeis.org/A006130
http://oeis.org/A030528
http://oeis.org/A037027
http://oeis.org/A054456
http://oeis.org/A125662
http://oeis.org/A154929
http://oeis.org/A207823
http://oeis.org/A207824
http://oeis.org/A249139
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	A connection of cm(n,k) and cm-1(n,k)
	More examples
	Acknowledgment

