On Sums of Powers of the p-adic Valuation of n !

Rafael Jakimczuk
División Matemática
Universidad Nacional de Luján
Buenos Aires
Argentina
jakimczu@mail.unlu.edu.ar

Abstract

We study sums where the multiplicities of the primes in the prime factorization of n ! appear, and obtain a strong connection between these sums and the Riemann zeta function.

1 Introduction

Consider the prime factorization of a positive integer a,

$$
a=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}},
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are the distinct prime factors of a and $s_{1}, s_{2}, \ldots, s_{k}$ are their multiplicities. We let $\Omega(a)$ denote the total number of prime factors [3], that is,

$$
\Omega(a)=s_{1}+s_{2}+\cdots+s_{k} .
$$

Consider the prime factorization of $n!$. We let $E(p)$ denote the multiplicity of a prime p appearing in this factorization. Consequently, we can write the prime factorization of n ! as follows:

$$
n!=\prod_{2 \leq p \leq n} p^{E(p)}
$$

The following asymptotic formula is well-known: (e.g., $[3,5]$)

$$
\begin{equation*}
\Omega(n!)=\sum_{2 \leq p \leq n} E(p)=n \log \log n+A n+o\left(\frac{n}{\log n}\right) \tag{1}
\end{equation*}
$$

where the constant A is

$$
A=M+\sum_{p} \frac{1}{p(p-1)} \approx 1.034653
$$

and M is Mertens's constant.
Let $k \geq 1$ an arbitrary but fixed positive integer. We study the sequences

$$
\sum_{2 \leq p \leq n} \frac{1}{E(p)^{k}}
$$

and prove a strong connection between these sequences and the Riemann zeta function $\zeta(s)$. We also study the sequences

$$
\sum_{2 \leq p \leq n} E(p)^{k} \quad(k \geq 2)
$$

2 Main Results

Theorem 1. Let $k \geq 1$ be an arbitrary but fixed positive integer. For any sufficiently large integer n we have

$$
\begin{equation*}
\sum_{2 \leq p \leq n} \frac{1}{E(p)^{k}}=C_{k} \frac{n}{\log n}+O_{k}\left(\frac{n}{\log ^{2} n}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}=(-1)^{k}+\sum_{j=2}^{k+1}(-1)^{k+j-1} \zeta(j) \tag{3}
\end{equation*}
$$

Proof. By the prime number theorem, we have

$$
\begin{equation*}
\pi(x)=\sum_{2 \leq p \leq x} 1=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{4}
\end{equation*}
$$

Consider the prime factorization of $n!$. The multiplicity $E(p)$ of the prime p is, by Legendre's theorem, equal to

$$
E(p)=\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor
$$

If p satisfies the inequality

$$
\frac{n}{j+1}<p \leq \frac{n}{j}
$$

where j is a fixed positive integer, and the inequality

$$
p>\sqrt{n}
$$

then we obtain

$$
E(p)=\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor=\left\lfloor\frac{n}{p}\right\rfloor=j
$$

Now we have

$$
\begin{equation*}
\sum_{p \leq n} \frac{1}{E(p)^{k}}=\sum_{p \leq \sqrt{n}} \frac{1}{E(p)^{k}}+\sum_{\sqrt{n}<p \leq n} \frac{1}{E(p)^{k}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{p \leq \sqrt{n}} \frac{1}{E(p)^{k}}=O(\pi(\sqrt{n}))=O\left(\frac{\sqrt{n}}{\log n}\right)=O\left(\frac{n}{\log ^{2} n}\right) \tag{6}
\end{equation*}
$$

Let $J=\lfloor\sqrt{n}\rfloor$. If $p>\sqrt{n}$ then $E(p)=\left\lfloor\frac{n}{p}\right\rfloor$. Hence, we have

$$
\begin{equation*}
\sum_{\sqrt{n}<p \leq n} \frac{1}{E(p)^{k}}=\sum_{j=1}^{J-1} \frac{1}{j^{k}} \sum_{\frac{n}{j+1}<p \leq \frac{n}{j}} 1=\sum_{j=1}^{J-1} \frac{1}{j^{k}}\left(\pi\left(\frac{n}{j}\right)-\pi\left(\frac{n}{j+1}\right)\right) \tag{7}
\end{equation*}
$$

Note that, by Eq. (4), we have

$$
\begin{equation*}
\pi\left(\frac{n}{j}\right)=\frac{n}{j \log \frac{n}{j}}+O\left(\frac{n}{j \log ^{2} \frac{n}{j}}\right)=\frac{n}{j \log n}+O\left(\frac{\log j}{j} \frac{n}{\log ^{2} n}\right)+O\left(\frac{n}{j \log ^{2} \frac{n}{j}}\right) \tag{8}
\end{equation*}
$$

where we use the formula

$$
\frac{1}{1-f(n)}=1+\left(\frac{1}{1-f(n)}\right) f(n)
$$

In the same way, we find that

$$
\begin{equation*}
\pi\left(\frac{n}{j+1}\right)=\frac{n}{(j+1) \log n}+O\left(\frac{\log (j+1)}{(j+1)} \frac{n}{\log ^{2} n}\right)+O\left(\frac{n}{(j+1) \log ^{2} \frac{n}{(j+1)}}\right) \tag{9}
\end{equation*}
$$

Eqs. (8) and (9) give

$$
\begin{align*}
& \frac{1}{j^{k}}\left(\pi\left(\frac{n}{j}\right)-\left(\pi\left(\frac{n}{j+1}\right)\right)\right)=\frac{1}{j^{k}}\left(\frac{1}{j}-\frac{1}{j+1}\right) \frac{n}{\log n}+O\left(\frac{\log j}{j^{k+1}} \frac{n}{\log ^{2} n}\right) \\
- & O\left(\frac{\log (j+1)}{j^{k}(j+1)} \frac{n}{\log ^{2} n}\right)+O\left(\frac{n}{j^{k+1} \log ^{2} \frac{n}{j}}\right)-O\left(\frac{n}{j^{k}(j+1) \log ^{2} \frac{n}{j+1}}\right) . \tag{10}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sum_{j=1}^{J-1} \frac{1}{j^{k}}\left(\frac{1}{j}-\frac{1}{j+1}\right) \frac{n}{\log n}=C_{k} \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}=\sum_{j=1}^{\infty} \frac{1}{j^{k}}\left(\frac{1}{j}-\frac{1}{j+1}\right) \tag{12}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{j=1}^{J-1} O\left(\frac{\log j}{j^{k+1}} \frac{n}{\log ^{2} n}\right)=O\left(\frac{n}{\log ^{2} n} \sum_{j=1}^{J-1} \frac{\log j}{j^{k+1}}\right)=O\left(\frac{n}{\log ^{2} n}\right) \tag{13}
\end{equation*}
$$

Analogously, we find that

$$
\begin{equation*}
\sum_{j=1}^{J-1} O\left(\frac{\log (j+1)}{j^{k}(j+1)} \frac{n}{\log ^{2} n}\right)=O\left(\frac{n}{\log ^{2} n}\right) \tag{14}
\end{equation*}
$$

Besides, we have

$$
\begin{equation*}
\sum_{j=1}^{J-1} O\left(\frac{n}{j^{k+1} \log ^{2} \frac{n}{j}}\right)=O\left(\sum_{j=1}^{J-1} \frac{n}{j^{k+1} \log ^{2} \frac{n}{j}}\right)=O\left(\frac{n}{\log ^{2} n}\right) \tag{15}
\end{equation*}
$$

since

$$
\sum_{j=1}^{J-1} \frac{n}{j^{k+1} \log ^{2} \frac{n}{j}}=O\left(\sum_{j=1}^{J-1} \frac{n}{j^{k+1} \log ^{2} \frac{n}{J}}\right)=O\left(\frac{n}{\log ^{2} n}\right)
$$

In the same manner, we obtain

$$
\begin{equation*}
\sum_{j=1}^{J-1} O\left(\frac{n}{j^{k}(j+1) \log ^{2} \frac{n}{j+1}}\right)=O\left(\frac{n}{\log ^{2} n}\right) . \tag{16}
\end{equation*}
$$

Substituting equations (11), (13), (14), (15) and (16) into (10) (see (7)) we find that

$$
\begin{equation*}
\sum_{\sqrt{n}<p \leq n} \frac{1}{E(p)^{k}}=C_{k} \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right) . \tag{17}
\end{equation*}
$$

Equations (5), (6), and (17) give (2).
We have the equation

$$
\frac{1}{j^{k}}\left(\frac{1}{j}-\frac{1}{(j+1)}\right)=\frac{1}{j^{k+1}}-\left(\frac{1}{j^{k-1}}\left(\frac{1}{j}-\frac{1}{j+1}\right)\right) .
$$

Therefore, by (12)

$$
\begin{equation*}
C_{k}=\zeta(k+1)-C_{k-1} . \tag{18}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
C_{1}=\sum_{j=1}^{\infty}\left(\frac{1}{j^{2}}-\frac{1}{j(j+1)}\right)=\zeta(2)-1, \tag{19}
\end{equation*}
$$

since

$$
\sum_{j=1}^{\infty} \frac{1}{j(j+1)}=\sum_{j=1}^{\infty}\left(\frac{1}{j}-\frac{1}{j+1}\right)=1
$$

Equations (18) and (19) give (3).
Example 2. If $k=1$ then Theorem 1 is

$$
\sum_{2 \leq p \leq n} \frac{1}{E(p)}=\left(\frac{\pi^{2}}{6}-1\right) \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right)
$$

Theorem 3. The sequence of positive numbers C_{k} is strictly decreasing and

$$
C_{k}=\frac{1}{2}+O\left(2^{-k}\right) .
$$

Besides, we have the following limit

$$
\lim _{k \rightarrow \infty} C_{k}=\frac{1}{2} .
$$

Proof. Clearly the sequence of positive numbers C_{k} is strictly decreasing (see Eq. (12)). Therefore the limit of this sequence exists and is either positive or zero. Eq. (18) then implies that the limit is $1 / 2$, since $\lim _{k \rightarrow \infty} \zeta(k)=1$.

To obtain a more precise result we need the following formula [4]:

$$
\sum_{j=2}^{\infty}(-1)^{j}(\zeta(j)-1)=\frac{1}{2}
$$

Therefore, we have, for $k \geq 1$, that

$$
\begin{aligned}
& C_{k}=(-1)^{k}\left(1-\sum_{j=2}^{k+1}(-1)^{j} \zeta(j)\right)=(-1)^{k}\left(1-\sum_{j=2}^{k+1}(-1)^{j}-\sum_{j=2}^{k+1}(-1)^{j}(\zeta(j)-1)\right) \\
= & (-1)^{k}\left(1-\frac{1}{2}\left(1-(-1)^{k}\right)-\sum_{j=2}^{\infty}(-1)^{j}(\zeta(j)-1)+\sum_{j>k+1}(-1)^{j}(\zeta(j)-1)\right) \\
= & (-1)^{k}\left(\frac{1}{2}-\frac{1}{2}\left(1-(-1)^{k}\right)+\sum_{j>k+1}(-1)^{j}(\zeta(j)-1)\right)=\frac{1}{2}+O\left(2^{-k}\right)
\end{aligned}
$$

Theorem 4. Let $k \geq 2$ a fixed but arbitrary positive integer. For every sufficiently large integer we have

$$
\sum_{p \leq n} E(p)^{k}=n^{k} \sum_{p} \frac{1}{(p-1)^{k}}+O_{k}\left(n^{k-1} \log n\right)
$$

Proof. The following equation is well-known [1]. If $p \leq n$ then

$$
E(p)=\frac{n}{p-1}+O\left(\frac{\log n}{\log p}\right) .
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{p \leq n} E(p)^{k}=\sum_{p \leq n}\left(\frac{n}{p-1}+O\left(\frac{\log n}{\log p}\right)\right)^{k}=n^{k} \sum_{p \leq n} \frac{1}{(p-1)^{k}}\left(1+O\left(\frac{p \log n}{n \log p}\right)\right)^{k} \\
= & n^{k} \sum_{p} \frac{1}{(p-1)^{k}}+O\left(n^{k} \sum_{p>n} \frac{1}{p^{k}}\right)+O\left(n^{k-1} \log n \sum_{p \leq n} \frac{1}{p^{k-1} \log p}\right)
\end{aligned}
$$

To complete the proof we need the bounds

$$
\sum_{p>n} \frac{1}{p^{k}}<_{k} \frac{1}{n^{k-1} \log n}
$$

and

$$
\sum_{p \leq n} \frac{1}{p^{k-1} \log p} \ll_{k} 1
$$

since $k \geq 2$.

Remark 5.

1. Theorem 4 is a natural generalization of Eq. (1), since we have the well-known formula

$$
\sum_{p \leq n} \frac{1}{p-1}=\log \log n+A+O\left(\frac{1}{\log n}\right) \quad(n \geq 2)
$$

2. In the case $k=2$, the constant in Theorem 4 is closely related to the constant A in Eq. (1), since

$$
\begin{aligned}
& \sum_{p} \frac{1}{(p-1)^{2}}=\sum_{n=2}^{\infty} \frac{J_{2}(n)-\varphi(n)}{n} \log \zeta(n) \\
= & \sum_{n=2}^{\infty} \frac{J_{2}(n)}{n} \log \zeta(n)+\gamma-A \approx 1,375064994748635 \ldots
\end{aligned}
$$

where $J_{2}(n)=n^{2} \prod_{p \mid n}\left(1-p^{-2}\right)$ is the second Jordan arithmetic function [2].

3 Acknowledgments

The author would like to thank the anonymous referee for his/her valuable comments and suggestions for improving the original version of this article. The better error terms in Theorem 1 and Theorem 3 are due to the referee. Theorem 4, together with Remark 5, are also results of the referee. The author is also very grateful to Universidad Nacional de Luján.

References

[1] O. Bordellès, Arithmetic Tales, Springer, 2012.
[2] J. W. L. Glaisher, On the sums of the inverse powers of the prime numbers, Quart. J. Pure Appl. Math. 25 (1891), 347-362.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.
[4] H. M. Srivastava, Sums of certain series of the Riemann zeta function, J. Math. Anal. Appl. 134 (1988), 129-140.
[5] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Belin, 2008.

2000 Mathematics Subject Classification: Primary 11A99; Secondary 11B99.
Keywords: factorial, prime factorization, Riemann zeta function.
(Concerned with sequence A0xxxxx.)

Received February 10 2017; revised version received April 9 2017. Published in Journal of Integer Sequences, May 12017.

Return to Journal of Integer Sequences home page.

