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Abstract

We study sums where the multiplicities of the primes in the prime factorization of

n! appear, and obtain a strong connection between these sums and the Riemann zeta

function.

1 Introduction

Consider the prime factorization of a positive integer a,

a = ps11 ps22 · · · pskk ,

where p1, p2, . . . , pk are the distinct prime factors of a and s1, s2, . . . , sk are their multiplicities.
We let Ω(a) denote the total number of prime factors [3], that is,

Ω(a) = s1 + s2 + · · ·+ sk.

Consider the prime factorization of n!. We let E(p) denote the multiplicity of a prime p
appearing in this factorization. Consequently, we can write the prime factorization of n! as
follows:

n! =
∏

2≤p≤n

pE(p).
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The following asymptotic formula is well-known: (e.g., [3, 5])

Ω(n!) =
∑

2≤p≤n

E(p) = n log log n+ An+ o

(

n

log n

)

, (1)

where the constant A is

A = M +
∑

p

1

p(p− 1)
≈ 1.034653,

and M is Mertens’s constant.
Let k ≥ 1 an arbitrary but fixed positive integer. We study the sequences

∑

2≤p≤n

1

E(p)k
,

and prove a strong connection between these sequences and the Riemann zeta function ζ(s).
We also study the sequences

∑

2≤p≤n

E(p)k (k ≥ 2).

2 Main Results

Theorem 1. Let k ≥ 1 be an arbitrary but fixed positive integer. For any sufficiently large

integer n we have

∑

2≤p≤n

1

E(p)k
= Ck

n

log n
+Ok

(

n

log2 n

)

, (2)

where

Ck = (−1)k +
k+1
∑

j=2

(−1)k+j−1ζ(j). (3)

Proof. By the prime number theorem, we have

π(x) =
∑

2≤p≤x

1 =
x

log x
+O

(

x

log2 x

)

. (4)

Consider the prime factorization of n!. The multiplicity E(p) of the prime p is, by Legendre’s
theorem, equal to

E(p) =
∞
∑

j=1

⌊

n

pj

⌋

.
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If p satisfies the inequality

n

j + 1
< p ≤ n

j
,

where j is a fixed positive integer, and the inequality

p >
√
n,

then we obtain

E(p) =
∞
∑

j=1

⌊

n

pj

⌋

=

⌊

n

p

⌋

= j.

Now we have

∑

p≤n

1

E(p)k
=
∑

p≤√
n

1

E(p)k
+

∑

√
n<p≤n

1

E(p)k
, (5)

where

∑

p≤√
n

1

E(p)k
= O

(

π
(√

n
))

= O

( √
n

log n

)

= O

(

n

log2 n

)

. (6)

Let J = ⌊√n⌋. If p >
√
n then E(p) =

⌊

n
p

⌋

. Hence, we have

∑

√
n<p≤n

1

E(p)k
=

J−1
∑

j=1

1

jk

∑

n
j+1

<p≤n
j

1 =
J−1
∑

j=1

1

jk

(

π

(

n

j

)

− π

(

n

j + 1

))

. (7)

Note that, by Eq. (4), we have

π

(

n

j

)

=
n

j log n
j

+O

(

n

j log2 n
j

)

=
n

j log n
+O

(

log j

j

n

log2 n

)

+O

(

n

j log2 n
j

)

, (8)

where we use the formula

1

1− f(n)
= 1 +

(

1

1− f(n)

)

f(n).

In the same way, we find that

π

(

n

j + 1

)

=
n

(j + 1) log n
+O

(

log(j + 1)

(j + 1)

n

log2 n

)

+O

(

n

(j + 1) log2 n
(j+1)

)

(9)
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Eqs. (8) and (9) give

1

jk

(

π

(

n

j

)

−
(

π

(

n

j + 1

)))

=
1

jk

(

1

j
− 1

j + 1

)

n

log n
+O

(

log j

jk+1

n

log2 n

)

− O

(

log(j + 1)

jk(j + 1)

n

log2 n

)

+O

(

n

jk+1 log2 n
j

)

−O

(

n

jk(j + 1) log2 n
j+1

)

. (10)

Note that

J−1
∑

j=1

1

jk

(

1

j
− 1

j + 1

)

n

log n
= Ck

n

log n
+O

(

n

log2 n

)

, (11)

where

Ck =
∞
∑

j=1

1

jk

(

1

j
− 1

j + 1

)

. (12)

On the other hand, we have

J−1
∑

j=1

O

(

log j

jk+1

n

log2 n

)

= O

(

n

log2 n

J−1
∑

j=1

log j

jk+1

)

= O

(

n

log2 n

)

, (13)

Analogously, we find that

J−1
∑

j=1

O

(

log(j + 1)

jk(j + 1)

n

log2 n

)

= O

(

n

log2 n

)

. (14)

Besides, we have

J−1
∑

j=1

O

(

n

jk+1 log2 n
j

)

= O

(

J−1
∑

j=1

n

jk+1 log2 n
j

)

= O

(

n

log2 n

)

, (15)

since

J−1
∑

j=1

n

jk+1 log2 n
j

= O

(

J−1
∑

j=1

n

jk+1 log2 n
J

)

= O

(

n

log2 n

)

.

In the same manner, we obtain

J−1
∑

j=1

O

(

n

jk(j + 1) log2 n
j+1

)

= O

(

n

log2 n

)

. (16)
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Substituting equations (11), (13), (14), (15) and (16) into (10) (see (7)) we find that

∑

√
n<p≤n

1

E(p)k
= Ck

n

log n
+O

(

n

log2 n

)

. (17)

Equations (5), (6), and (17) give (2).
We have the equation

1

jk

(

1

j
− 1

(j + 1)

)

=
1

jk+1
−
(

1

jk−1

(

1

j
− 1

j + 1

))

.

Therefore, by (12)

Ck = ζ(k + 1)− Ck−1. (18)

On the other hand, we have

C1 =
∞
∑

j=1

(

1

j2
− 1

j(j + 1)

)

= ζ(2)− 1, (19)

since ∞
∑

j=1

1

j(j + 1)
=

∞
∑

j=1

(

1

j
− 1

j + 1

)

= 1.

Equations (18) and (19) give (3).

Example 2. If k = 1 then Theorem 1 is

∑

2≤p≤n

1

E(p)
=

(

π2

6
− 1

)

n

log n
+O

(

n

log2 n

)

.

Theorem 3. The sequence of positive numbers Ck is strictly decreasing and

Ck =
1

2
+O

(

2−k
)

.

Besides, we have the following limit

lim
k→∞

Ck =
1

2
.

Proof. Clearly the sequence of positive numbers Ck is strictly decreasing (see Eq. (12)).
Therefore the limit of this sequence exists and is either positive or zero. Eq. (18) then
implies that the limit is 1/2, since limk→∞ ζ(k) = 1.
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To obtain a more precise result we need the following formula [4]:

∞
∑

j=2

(−1)j (ζ(j)− 1) =
1

2
.

Therefore, we have, for k ≥ 1, that

Ck = (−1)k

(

1−
k+1
∑

j=2

(−1)jζ(j)

)

= (−1)k

(

1−
k+1
∑

j=2

(−1)j −
k+1
∑

j=2

(−1)j (ζ(j)− 1)

)

= (−1)k

(

1− 1

2

(

1− (−1)k
)

−
∞
∑

j=2

(−1)j (ζ(j)− 1) +
∑

j>k+1

(−1)j (ζ(j)− 1)

)

= (−1)k

(

1

2
− 1

2

(

1− (−1)k
)

+
∑

j>k+1

(−1)j (ζ(j)− 1)

)

=
1

2
+O

(

2−k
)

Theorem 4. Let k ≥ 2 a fixed but arbitrary positive integer. For every sufficiently large

integer we have

∑

p≤n

E(p)k = nk
∑

p

1

(p− 1)k
+Ok

(

nk−1 log n
)

.

Proof. The following equation is well-known [1]. If p ≤ n then

E(p) =
n

p− 1
+O

(

log n

log p

)

.

Therefore, we have

∑

p≤n

E(p)k =
∑

p≤n

(

n

p− 1
+O

(

log n

log p

))k

= nk
∑

p≤n

1

(p− 1)k

(

1 +O

(

p log n

n log p

))k

= nk
∑

p

1

(p− 1)k
+O

(

nk
∑

p>n

1

pk

)

+O

(

nk−1 log n
∑

p≤n

1

pk−1 log p

)

To complete the proof we need the bounds

∑

p>n

1

pk
≪k

1

nk−1 log n

and
∑

p≤n

1

pk−1 log p
≪k 1,

since k ≥ 2.
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Remark 5.

1. Theorem 4 is a natural generalization of Eq. (1), since we have the well-known formula

∑

p≤n

1

p− 1
= log log n+ A+O

(

1

log n

)

(n ≥ 2).

2. In the case k = 2, the constant in Theorem 4 is closely related to the constant A in
Eq. (1), since

∑

p

1

(p− 1)2
=

∞
∑

n=2

J2(n)− ϕ(n)

n
log ζ(n)

=
∞
∑

n=2

J2(n)

n
log ζ(n) + γ − A ≈ 1, 375064994748635 . . .

where J2(n) = n2
∏

p|n(1− p−2) is the second Jordan arithmetic function [2].
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