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Abstract

In this paper we consider the equation σ(n) = n + φ(n), for which n = 2 is the
only known solution. We provide necessary conditions for the existence of any larger
solutions.

1 Introduction

Let σ(n) denote the sum of the (positive) divisors of n, and let φ(n) denote Euler’s phi
function (the number of positive integers ≤ n and relatively prime to it). We remark that n =
2 is a solution to the equation

σ(n) = n+ φ(n) (1)

over natural numbers n. By Hardy and Wright [3, Thm. 324], the average value of σ(n) is
1
6
π2n. By [3, Thm. 330], the average value of n+φ(n) is (π2+6)n/π2. Since 1

6
π2 ≈ 1.645 and

(π2+6)/π2 ≈ 1.608, it is quite natural to ask if (1) has any solutions n > 2. None are known,
and the literature seems devoid of any mention to this specific problem. Other, similar
problems have been discussed in publications such as Guy [2]; e.g., §B-38, φ(m) = σ(n), and
§B-42, φ(σ(n)) = σ(φ(n)), φ(σ(n)) = n, φ(σ(n)) = φ(n). Some such problems have been
solved and are popular topics of discussion on many internet forums; e.g., σ(n) + φ(n) = 2n
if and only if n is a prime or n = 1. There are three sequences in OEIS (Sloane [5]) related
to (1); e.g., A070159 (all n such that σ(n) − n divides φ(n)). In fact, all solutions n > 2
to (1), if they exist, would belong to sequence A055940, which gives composite n such that
σ(n) − n divides φ(n). For, when p is prime then φ(p)/(σ(p) − p) = p − 1, hence 2 is the
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only prime solution to (1). Thus we seek those members n of A055940 where the ratio
φ(n)/(σ(n) − n)) = 1; none are known. A similar comment applies to A066679, giving n
such that σ(n) − n is divisible by φ(n): all members less than 1011 are given, the only one
of which giving the ratio (σ(n)− n)/φ(n) = 1 being n = 2. Are there any more?

We conjecture that n = 2 is the only solution to (1), and in this paper we obtain necessary
conditions for a solution n > 2 to exist.

2 Preliminaries

Dividing both sides of (1) by n yields

σ(n)

n
= 1 +

φ(n)

n
. (2)

The function σ(n)/n is multiplicative. For all primes p and natural numbers a,

σ(pa)

pa
= 1 +

1

p
+

1

p2
+ · · ·+ 1

pa
(3)

is monotonically increasing with a; hence taking the limit of the right hand side of (3) as
a → ∞ yields

σ(pa)

pa
<

p

p− 1
. (4)

If p < q are primes then q/(q − 1) ≤ (p+ 1)/p, thus by (3) and (4),

σ(qb)

qb
<

σ(pa)

pa
(5)

for all natural numbers a, b. As well,

qb

φ(qb)
=

q

q − 1
<

p

p− 1
=

pa

φ(pa)
(6)

for all natural numbers a, b. By (4) we have

σ(n)

n
<

∏

p|n

p

p− 1
=

n

φ(n)
. (7)

As usual we let α = 1
2
(1+

√
5), the golden ratio. Immediately we obtain the following results.

Theorem 1. If n is a solution to (1) then

σ(n)

n
< α <

n

φ(n)
.
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Proof. Setting x = n/φ(n), by (2) and (7) we obtain the quadratic inequality

x2 − x− 1 > 0,

which has the positive solution x > α. Thus the right hand inequality is proved. Otherwise
by (2)

σ(n)

n
= 1 +

1

x
< 1 +

1

α
= α,

thus proving the left hand inequality.

Theorem 2. If n > 2 is a solution to (1) then n is an odd square.

Proof. If a and b are natural numbers, then σ(a)/a ≤ σ(b)/b whenever a | b. Thus if 4 | n,

σ(n)

n
≥ 7

4
> α,

whence n is not a solution to (1) by Theorem 1. Thus any even solution greater than 2 has
the form n = 2r, where r > 1 is odd. Thus by (1), since φ(r) < r,

3σ(r) = 2r + φ(r) < 2r + r = 3r,

a contradiction. Hence n is odd. Since φ(n) is even, the right hand side of (1) is odd.
Hence σ(n) is odd. For odd natural numbers n, σ(n) is odd if and only if n is square.

By Theorem 2, n = m2, where m > 1 is odd, for all solutions n > 2 to (1). Since
φ(m2) = mφ(m), it follows that by (1) that

σ(m2) = m(m+ φ(m)). (8)

Thus we seek necessary conditions for an odd natural number m > 1 to satisfy (8).
The cyclotomic polynomials Φn(x) may be defined recursively by Φ1(x) = x− 1 and

xn − 1 =
∏

d|n

Φd(x)

for all n > 1. Thus

σ(pa) =
∏

d|a+1
d>1

Φd(p) (9)

for primes p and natural numbers a. Nagell [4, Thm. 94], has shown

Lemma 3. Let p and q be distinct odd primes and let h = eq(p), where eq(p) denotes the

exponent to which p belongs modulo q. Then q | Φn(p) if and only if n = hpγ for some γ ≥ 0.
If γ > 0 then q‖Φhpγ (p).
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For prime p and natural number n we denote the p-valuation of n by vp(n). Thus
vp(n) = k if and only if pk‖n. By (9) and Lemma 3,

vq(σ(p
a)) =











0, if h ∤ a+ 1;

vq(a+ 1), if h = 1;

vq(p
h − 1) + vq(a+ 1), if h > 1, h | a+ 1.

(10)

3 Lower Bounds on ω(m)

The arithmetic function ω counts the number of prime power components of a natural
number n; i.e., if n has the unique prime factorization n = pα1

1 pα2

2 · · · pαk

k , then ω(n) = k.

Theorem 4. If m is a solution to (8) then ω(m) > 2.

Proof. That ω(m) > 1 follows from (6) and Theorem 1, since otherwise

m

φ(m)
≤ 3

2
< α,

contradicting Theorem 1.
Similarly if ω(m) = 2 then 3 | m, otherwise

m

φ(m)
≤ 5

4
· 7
6
< α.

Thus m = 3apb for some odd prime p > 3 and natural numbers a and b. Then p ≥ 11 (by (5)
and Theorem 1), otherwise

σ(m2)

m2
≥ σ(32)

32
· σ(7

2)

72
=

13

9
· 57
49

> α.

Then p ≤ 13 (by (6) and Theorem 1), otherwise

m

φ(m)
≤ 3

2
· 17
16

< α.

Suppose p = 11. Thus m = 3a11b. Thus by (8),

σ(m2) = σ(32a112b) = 32a−1112b−1(3 · 11 + φ(3 · 11)).

Since 33+φ(33) = 53, we have 53 | σ(32a)σ(112b). By (10), this is impossible since e53(3) = 52
and e53(11) = 26.

Likewise p = 13 implies 63 | σ(32a)σ(112b) for some natural numbers a and b; thus
3 | σ(112b), which is impossible since e3(11) = 2.
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Theorem 5. If m is a solution to (8) then ω(m) > 3.

Proof. By Theorem 4 it suffices to show that the assumption ω(m) = 3 is untenable. By (5),
we have 3 | m, since otherwise

m

φ(m)
≤ 5

4
· 7
6
· 11
10

< α,

contradicting Theorem 1.
Thus m = 3apbqc for odd primes 3 < p < q and natural numbers a, b, and c. Similarly,

5 ∤ m and 7 ∤ m since otherwise

σ(m2)

m2
≥ 13

9
· 57
49

> α.

Furthermore p ≤ 23 since otherwise

m

φ(m)
≤ 3

2
· 29
28

· 31
30

< α.

Thus p ∈ {11, 13, 17, 19, 23}. We shall prove that all the five cases are impossible. Note
that by (8),

σ(32a)σ(p2b)σ(q2c) = 32a−1p2b−1q2c−1(3pq + 2(p− 1)(q − 1)). (11)

Suppose p = 23. Then q ≤ 31 since otherwise

m

φ(m)
≤ 3

2
· 23
22

· 37
36

< α.

Note that 3 | σ(232b)σ(q2c) by (11), thus by (10) we have q ≡ 1 (mod 3), hence q = 31.
Furthermore 3 | 2c + 1, hence Φ3(31) | 32a · 232b−1 · 312c−1 · 1153 by (11). But this is
impossible since 331 | Φ3(31). Thus p 6= 23.

Suppose p = 19. Then q ≤ 43 since otherwise

m

φ(m)
≤ 3

2
· 19
18

· 47
46

< α.

Thus q ∈ S, where S = {23, 29, 31, 37, 41, 43}. By (11) we have

σ(32a)σ(192b)σ(q2c) = 32a192b−1q2c−1(31q − 12).

We remark that 3 ∤ σ(192b), since otherwise by (9) and (10) we have 127 | 31q − 12 (as
Φ3(19) = 3 · 127), but this is false for all q ∈ S. Hence 3 | σ(q2c), thus by (9) and (10),
q ∈ {31, 37, 43} and Φ3(q) | 32a192b−1(31q − 12); this is false. Thus p 6= 19.

Suppose p = 17. Thus by (11)

σ(32a)σ(172b)σ(q2c) = 32a−1172b−1q2c−1(83q − 32).
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By (9) and (10) we have 17 | σ(q2c), thus q ≡ 1 (mod 17), hence q ≥ 103. Then

m

φ(m)
≤ 3

2
· 17
16

· 103
102

< α,

contradicting Theorem 1. Thus p 6= 17.
Suppose p = 13. Then q ≥ 37 since otherwise

σ(m2)

m2
≥ 13

9
· 183
169

· 993
961

> α.

Furthermore v3(m) ≤ 2 since otherwise

σ(m2)

m2
≥ 1093

729
· 183
169

> α.

Hence we consider the two cases, v3(m) = 2 and v3(m) = 1.
In the former case we have v13(m) ≤ 2 since otherwise

σ(m2)

m2
≥ 121

81
· 5229043
4826809

> α,

leaving two subcases, v13(m) = 2 or v13(m) = 1. The first subcase yields by (11),

112 · 30941σ(q2c) = 34 · 133q2c−1(21q − 8),

implying both that q = 30941 and 11 | 21q−8, a contradiction. Similarly, the second subcase
yields

112 · 61σ(q2c) = 33 · 133q2c−1(21q − 8),

implying both that q = 61 and 11 | 21q − 8, a contradiction.
In the latter case, viz., v3(m) = 1, we have by (11)

σ(132b)σ(q2c) = 32 · 132b−2q2c−1(21q − 8). (12)

Note that

b > 1, (13)

otherwise (12) yields 61σ(q2c) = 3q2c−1(21q − 8) whence q = 61. Thus σ(612c) = 3 · 612c−2 ·
19 · 67, thus c = 1, thus the contradiction 13 · 97 = 19 · 67. Since b > 1, it follows from (12)
that 13 | σ(q2c).

We show here q 6≡ 1 (mod 13). Otherwise by (12) and (10) 2b − 2 = v13(σ(q
2c)) =

v13(2c+1), hence 2c+1 ≥ 132b−2, hence 2c−1 > 10b. Thus (since (12) implies q2c−1 | σ(132b))
we have σ(132b) ≥ q2c−1 > q10

b

> 1310
b

> 132b+1 > σ(132b), a contradiction. Hence q 6≡ 1
(mod 13); therefore by (10),

c ≡ 1 (mod 3); (14)
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furthermore

2b− 2 = v13(σ(q
2c) = v13(q

2 + q + 1) + v13(2c+ 1). (15)

Let t = v13(2c+ 1). Suppose t > 0. Since v13(q + 2 + q + 1) < 3 log13 q, from (15) it follows
that

2b− 2 < 3 log13 q + t. (16)

Since 13t | 2c+ 1, we have 2c− 1 ≥ 13t − 2, hence by (12)

132b+1 > σ(132b) ≥ q2c−1 ≥ q13
t−2,

hence

2b− 2 > (13t − 2) log13 q − 3. (17)

By (16) and (17) it follows (since log13(q) > 1) that

t > (13t − 5) log13 q − 3 > 13t − 8,

a contradiction if t ≥ 1. Therefore t = 0. Thus by (10), (12),

2b− 2 = v13(σ(q
2c)) = v13(q

2 + q + 1). (18)

Since q2 + q + 1 < q3, from (12) and (18) it follows that

132b−1 > σ(132b) ≥ q2c−1 = (q3)
2c−1

3 > (q2 + q + 1)
2c−1

3 ≥ (132b−2)
2c−1

3

= 13
2

3
(b−1)(c−2).

Thus 2b− 1 > 2
3
(b− 1)(2c− 1); equivalently, (b− 1)(c− 2) < 9

4
. Therefore (b− 1)(c− 2) ≤ 2.

By (13) it follows that

c ≤ 2b

b− 1
. (19)

By (14) we have c = 1 if b ≥ 3. Suppose b = 2. By (14), (19), c = 4 or c = 1. But c = 4
implies, by (12),

σ(134)σ(q8) = 32 · 132q7(21q − 8),

hence by (9) q7 | Φ5(13) = 30941, a contradiction. Therefore c = 1 by (13). Hence by (12),

σ(132b)(q2 + q + 1) = 32 · 132b−2q(21q − 8). (20)

By (13), (20), we have 132 | q2 + q + 1, hence q ≥ 191.
We remark here that (20) is equivalent to

q =
132b+1 − 1

132b−2(71q − 3061) + (q + 1)
.
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Therefore

q <
132b+1

132b−2(71q − 3061)
=

2197

71q − 3061
,

a contradiction since q ≥ 191. Therefore p 6= 13.
Finally, suppose p = 11. By (3) and (5), we have 3‖m, otherwise

σ(m2)

m2
≥ 121

81
· 133
121

> α,

contradicting Theorem 1. Thus by (11),

13σ(112b)σ(q2c) = 3 · 112b−1q2c−1(53q − 20). (21)

We show here q 6≡ 1 (mod 11). Otherwise by (10), (21), 2b−1 = v11(σ(q
2c)) = v11(2c+1),

hence 2c+ 1 ≥ 112b−1. Thus by (21),

112b+1 > σ(112b) ≥ q2c−1 ≥ q11
2b−1−2,

thus 2b+ 1 > (112b−1 − 2) log11 q > 112b−1 − 2, a contradiction.
Therefore q 6≡ 1 (mod 11). By (10), e11(q) = 5 (whence q > 13) and thus

5 | 2c+ 1; (22)

furthermore by (21)

2b− 1 = v11(σ(q
2c)) = v11 (Φ5(q)) + v11(2c+ 1). (23)

Let t = v11(2c+ 1). Suppose t > 0. Since Φ5(q) < q5, we have by (23)

2b− 1 < 5 log11 q + t. (24)

On the other hand, since 2c+ 1 ≥ 11t, (21) yields 112b+1 > σ(112b) ≥ q2c−1 ≥ q11
t−2, hence

2b+ 1 > (11t − 2) log11 q. (25)

Then (24), (25), together imply

t > (11t − 7) log11 q − 2 > 11t − 9,

which is impossible for t ≥ 1. Therefore t = 0. Hence by (23)

2b− 1 = v11 (Φ5(q)) . (26)

Since Φ5(q) < q5, we have by (21), (26),

112b+1 > σ(112b) ≥ q2c−1 = (q5)
2c−1

5 > (Φ5(q))
2c−1

5 ≥ (112b−1)
2c−1

5 .

8



Thus 2b+ 1 > 1
5
(2b− 1)(2c+ 1); equivalently,

c <
6b+ 2

2b− 1
. (27)

By (10), 3 ∤ σ(112b) since e3(11) = 2. Thus by (21), we have 3 | σ(q2c), hence by (10)
3 | 2c+ 1. Thus by (22), 15 | 2c+ 1, hence c ≥ 7. Thus by (27) we have b = 1, c = 7. Thus
by (21)

7 · 13 · 19σ(q14) = 3 · 11q13(53q − 20),

implying q13 | 1729, which is impossible. Therefore p 6= 11, thus completing the proof.

4 Results on the shape of m

By the shape of a natural number, we mean the nature of the exponents of the prime factors
in the unique prime factorization of that number. We have already seen in Theorem 2 that a
solution n > 2 to (1) must be an odd square, n = m2, as in (8). We seek necessary conditions
on the shape of m.

Theorem 6. If m is a solution to (8) then m is neither squarefree nor the square of a

squarefree natural number.

Proof. First suppose that m is squarefree. By (9), σ(m2) is the product of cyclotomic
polynomials Φ3(p) evaluated at the prime divisors p of m. Thus by Lemma 3, if q is a prime
dividing σ(m2), then either q = 3 or q ≡ 1 (mod 3). Thus by (8), since m | σ(m2),

m = 3ǫp1p2 · · · pk,

where ǫ ∈ {0, 1} and p1 < p2 < · · · < pk are primes such that pj ≡ 1 (mod 3), 1 ≤ j ≤ k.
By Lemma 3 we have 3‖Φ3(pj), 1 ≤ j ≤ k, hence v3(σ(m

2)) = k. Since k ≥ 3 by Theorem 5,
we have 32 | φ(m), hence 3ǫ‖m+ φ(m), hence

v3(m(m+ φ(m)) = 2ǫ.

Thus by (8), k = 2ǫ, a contradiction since k ≥ 3 and ǫ ≤ 1. Hence m cannot be squarefree.
Now suppose that m is the square of a squarefree natural number. As above, σ(m2) is

the product of cyclotomic polynomials Φ5(p) evaluated at the prime divisors p of m, hence
if q is a prime dividing σ(m2), then either q = 5 or q ≡ 1 (mod 5); consequently

m = 5ǫp21p
2
2 · · · p2k,

where ǫ ∈ {0, 2} and p1 < p2 < · · · < pk are primes such that pj ≡ 1 (mod 5), 1 ≤ j ≤ k.
Again, as above, v5(σ(m

2)) = k. Since k ≥ 3 by Theorem 5, we have 53 | φ(m), hence
5ǫ‖m+ φ(m), hence

v5(m(m+ φ(m)) = 2ǫ.
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Thus k = 2ǫ, hence k = 4. Thus by (6)

m

φ(m)
≤ 5

4
· 11
10

· 31
30

· 41
40

· 61
60

< α,

contradicting Theorem 1. Hence m is not the square of a squarefree natural number.

5 Concluding Remarks

A natural number n is said to be perfect if σ(n) = 2n. No odd perfect numbers are known,
and the question regarding their existence remains what is widely believed to be the oldest
unsolved problem in all of mathematics. It seems the question of whether (1) has any
solutions n > 2 parallels that regarding the existence of odd perfect numbers. For example,
the only even solution to (1) is 2, while the even solutions to σ(n) = 2n are in one-to-one
correspondence with the set of Mersenne primes, and are thus characterized completely. On
the other hand, no odd solutions to (1), or to σ(n) = 2n, are known. In either case, the only
results known are those stating necessary conditions for such solutions to exist. Considering
the difficulty involved in proving Theorem 5, it is clear that the problem regarding solutions
n > 2 to (1) is no less difficult than that of the existence of odd perfect numbers.

All calculations for this paper were done by hand. This was in fact quite easy, since
the bulk of the work comprised comparing rational numbers to the golden ratio, α. This
entailed computing the first few convergents of the rational number in question until a partial
quotient exceeded 1, a task easily done by hand. Otherwise, some of the factorizations of
cyclotomic polynomials given were found in Brillhart et al. [1].
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