Extending a Recent Result on Hyper m-ary Partition Sequences

Timothy B. Flowers
Department of Mathematics
Indiana University of Pennsylvania
Indiana, PA 15705
USA
flowers@iup.edu
Shannon R. Lockard
Department of Mathematics
Bridgewater State University
Bridgewater, MA 02324
USA
Shannon.Lockard@bridgew.edu

Abstract

A hyper m-ary partition of an integer n is defined to be a partition of n where each part is a power of m and each distinct power of m occurs at most m times. Let $h_{m}(n)$ denote the number of hyper m-ary partitions of n and consider the resulting sequence. We show that the hyper m_{1}-ary partition sequence is a subsequence of the hyper m_{2}-ary partition sequence, for $2 \leq m_{1}<m_{2}$.

1 Introduction

In 2004, Courtright and Sellers [2] defined a hyper m-ary partition of an integer n to be a partition of n for which each part is a power of m and each power of m occurs at most m
times. They denote the number of hyper m-ary partitions of n as $h_{m}(n)$ and showed that they satisfy the following recurrence relation:

$$
\begin{align*}
h_{m}(m q) & =h_{m}(q)+h_{m}(q-1), \tag{1}\\
h_{m}(m q+s) & =h_{m}(q), \text { for } 1 \leq s \leq m-1 . \tag{2}
\end{align*}
$$

Several of these hyper m-ary partition sequences can be found in the On-line Encyclopedia of Integer Sequences [7]. In particular, h_{2} is $\underline{\text { A002487, }} h_{3}$ is A054390, h_{4} is A277872, and h_{5} is A277873.

The sequence h_{2} A002487, the hyperbinary partition sequence, is well known. It is commonly known as the Stern sequence based on Stern's work [8]. Northshield [5] gives an extensive summary of the many uses and applications of A002487. Calkin and Wilf [1] also studied h_{2}, outlining a connection between this sequence and a sequence of fractions they defined and used to give an enumeration of the rationals. Since then, several authors have studied similar restricted binary and m-ary partition functions; see $[3,4,6]$ for additional examples.

In this paper, we will be analyzing hyper m-ary partitions of n while also considering the base m representation of n. Thus, it will be convenient to have clear and distinct notation. In particular, for $m \geq 2$, let $\left(n_{r}, n_{r-1}, \ldots, n_{1}, n_{0}\right)_{m}$ be the base m representation of positive integer n where $0 \leq n_{i}<m, n_{r} \neq 0$, and $n=\sum_{i=0}^{r} n_{i} m^{i}$. Also, for $2 \leq m_{1}<m_{2}$ and $n=\left(n_{r}, n_{r-1}, \ldots, n_{1}, n_{0}\right)_{m_{1}}$, we define a change of base function, $F_{m_{1}, m_{2}}(n)=\left(n_{r}, n_{r-1}, \ldots, n_{1}, n_{0}\right)_{m_{2}}$.

Next, we write a hyper m-ary partition of n as $\left[x_{r}, x_{r-1}, \ldots, x_{1}, x_{0}\right]_{m}$ where $0 \leq x_{i} \leq m$ and $n=\sum_{i=0}^{r} x_{i} m^{i}$. Here, we may allow any of the x_{i} to be 0 so that each hyper m-ary partition of n is the same length r as the base m representation of n. Furthermore, let $H_{m}(n)$ be the set of all distinct hyper m-ary partitions of n. Observe that $h_{m}(n)$ is the cardinality of this set.

Recently, the authors gave an identity relating h_{2} to h_{3} and then generalized this identity to show that h_{2} is a subsequence of h_{m} for any m [4]. This result involved giving a bijection between $H_{2}(\ell)$ and $H_{m}(k)$, where $k=F_{2, m}(\ell)$. In this note, the authors will follow a similar process to show that $h_{m_{1}}$ is a subsequence of $h_{m_{2}}$, for $2 \leq m_{1}<m_{2}$.

2 A preliminary example

Consider the integer $37=(1,1,0,1)_{3}$ and use the change of base function to find the integer with the same digits in base 4 . In particular, $F_{3,4}(37)=(1,1,0,1)_{4}=81$. Now consider the hyper 3 -ary partitions of 37 and the hyper 4 -ary partitions of 81 .

$$
\begin{aligned}
37 & =1 \cdot 3^{3}+1 \cdot 3^{2}+1 \cdot 3^{0} \\
& =1 \cdot 3^{3}+3 \cdot 3^{1}+1 \cdot 3^{0} \\
& =3 \cdot 3^{2}+3 \cdot 3^{1}+1 \cdot 3^{0}
\end{aligned}
$$

$$
81=1 \cdot 4^{3}+1 \cdot 4^{2}+1 \cdot 4^{0}
$$

$$
=1 \cdot 4^{3}+4 \cdot 4^{1}+1 \cdot 4^{0}
$$

$$
=4 \cdot 4^{2}+4 \cdot 4^{1}+1 \cdot 4^{0}
$$

Adopting the notation for hyper m-ary partitions and the sets of these partitions, rewrite these partitions in the following way:

$$
\begin{aligned}
H_{3}(37) & =\left\{[1,1,0,1]_{3},[1,0,3,1]_{3},[0,3,3,1]_{3}\right\} \\
H_{4}(81) & =\left\{[1,1,0,1]_{4},[1,0,4,1]_{4},[0,4,4,1]_{4}\right\}
\end{aligned}
$$

Note that the number of hyper 3-ary partitions of 37 is the same as the number of hyper 4 -ary partitions of 81 . In other words,

$$
h_{3}(37)=h_{4}\left(F_{3,4}(37)\right)=h_{4}(81) .
$$

We also observe that the coefficients of the partitions are similar, indicating that there is a relationship between the partitions in each set. This relationship will be further explored in the next section.

3 Bijections between hyper m-ary partitions and hyper ($m+1$)-ary partitions

We now verify the result suggested by the example in the prior section by considering hyper m-ary partitions of an integer ℓ and the hyper $(m+1)$-ary partitions of $k=F_{m, m+1}(\ell)$.

Lemma 1. For a positive integer ℓ, let $k=F_{m, m+1}(\ell)$. Define $g_{m}: H_{m+1}(k) \rightarrow H_{m}(\ell)$ by mapping

$$
\left[c_{r}, c_{r-1}, \ldots, c_{2}, c_{1}, c_{0}\right]_{m+1} \mapsto\left[b_{r}, b_{r-1}, \cdots, b_{2}, b_{1}, b_{0}\right]_{m}
$$

according to the following rules:

$$
\begin{aligned}
& c_{i}=0 \longrightarrow b_{i}=0 \\
& c_{i}=1 \longrightarrow b_{i}=1 \\
& \vdots \\
& c_{i}=m-2 \longrightarrow b_{i}=m-2 \\
& c_{i}=m-1 \longrightarrow b_{i}=m-1 \\
& c_{i}=m \longrightarrow b_{i}=m-1 \\
& c_{i}=m+1 \longrightarrow b_{i}=m .
\end{aligned}
$$

Then g_{m} is a bijection.
Proof. It is clear from the definition that g_{m} is a function. So we first show that g_{m} is one-to-one. Suppose $x=\left[x_{r}, x_{r-1}, \ldots x_{2}, x_{1}, x_{0}\right]_{m+1}$ and $y=\left[y_{r}, y_{r-1}, \ldots y_{2}, y_{1}, y_{0}\right]_{m+1}$ are two hyper $(m+1)$-ary partitions of k such that $x \neq y$. Then there must be at least one digit that doesn't match. Let $J=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ be the set of indices such that $x_{j} \neq y_{j}$. Then we have two cases.

First suppose without loss of generality that there is an index j such that $x_{j} \notin\{m-1, m\}$. Then the $j^{\text {th }}$ digit of $g_{m}(x)$ will be different than the $j^{\text {th }}$ digit of $g_{m}(y)$. Thus $g_{m}(x) \neq g_{m}(y)$.

Now suppose that $x_{j} \in\{m-1, m\}$ and $y_{j} \in\{m-1, m\}$ for all $j \in J$. Let $J_{1}=\{j \in J$: $\left.x_{j}=m-1\right\}$ and $J_{2}=\left\{j \in J: x_{j}=m\right\}$. Note that $y_{j}=m$ for all $j \in J_{1}$ and $y_{j}=m-1$ for all $j \in J_{2}$. Also observe that

$$
\begin{aligned}
x & =\sum_{j \notin J} x_{j} m^{j}+\sum_{j \in J_{1}}(m-1) m^{j}+\sum_{j \in J_{2}} m \cdot m^{j} \\
y & =\sum_{j \notin J} y_{j} m^{j}+\sum_{j \in J_{1}} m \cdot m^{j}+\sum_{j \in J_{2}}(m-1) m^{j} .
\end{aligned}
$$

Since $x_{j}=y_{j}$ for all $j \notin J$,

$$
\begin{aligned}
x-y & =\sum_{j \in J_{1}}(m-1-m) m^{j}+\sum_{j \in J_{2}}(m-m+1) m^{j} \\
& =\sum_{j \in J_{2}} m^{j}-\sum_{j \in J_{1}} m^{j} .
\end{aligned}
$$

Observe that $x-y=0$ since x and y are two different hyper ($m+1$)-ary partitions of the same number k, implying

$$
\sum_{j \in J_{2}} m^{j}-\sum_{j \in J_{1}} m^{j}=0
$$

However, since J_{1} and J_{2} are disjoint, this is impossible. Thus it must be the case that when $x \neq y$, one of x_{j} or y_{j} must be outside of $\{m-1, m\}$ so that $g_{m}(x) \neq g_{m}(y)$ as seen above. Thus g_{m} is one-to-one.

To show that g_{m} is onto, consider $b=\left[b_{r}, b_{r-1}, \cdots, b_{2}, b_{1}, b_{0}\right]_{m} \in H_{m}(\ell)$. We then define $c=\left[c_{r}, c_{r-1}, \cdots, c_{2}, c_{1}, c_{0}\right]_{m+1}$ in the following way. If $b_{i} \in\{0,1,2, \ldots, m-3, m-2\}$, then set $c_{i}=b_{i}$ and if $b_{i}=m$, set $c_{i}=m+1$. Now suppose $b_{i}=m-1$. Let v be the minimal index with $v<i$ such that $b_{v} \neq m-1$. If v does not exist, then set $c_{i}=m-1$. If v does exist with $b_{v}=m$, then set $c_{i}=m$. If v exists with $b_{v} \in\{0,1,2, \ldots, m-2\}$, then set $c_{i}=m-1$. Notice that we may verify that $c \in H_{m+1}(k)$ by converting c into the base $m+1$ representation of k. Therefore b is the image of c under g_{m} and thus g_{m} is onto.

This bijection implies that the number of m-ary partitions of any integer ℓ is the same as the number of $(m+1)$-ary partitions of $F_{m, m+1}(\ell)$.

4 Hyper m_{1}-ary partitions and hyper m_{2}-ary partitions

In this section, we use the result of Lemma 1 to define a more general bijection between $H_{m_{1}}(n)$ and $H_{m_{2}}\left(F_{m_{1}, m_{2}}(n)\right)$ for $m_{2}>m_{1}+1$. To do this, we need the following lemma about hyper m_{2}-ary partitions of an integer n.

In the following proof, observe that multiplying a partition $\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}\right]_{m}$ by m corresponds to shifting the coefficients to the left one place and adding an additional 0 as the last coefficient.

Lemma 2. Let $m_{2}>m_{1}+1$. If the base m_{2} representation of an integer n contains only digits from the set $\left\{0,1,2, \ldots, m_{1}-1\right\}$, then there are no hyper m_{2}-ary partitions of n which use any of the coefficients $m_{1}, m_{1}+1, \ldots, m_{2}-2$.

Proof. We will prove this by induction on n. Assume that for all $q<n$, when the base m_{2} representation of q contains only digits from the set $\left\{0,1,2, \ldots, m_{1}-1\right\}$, then there are no hyper m_{2}-ary partitions of n which use any of the coefficients $m_{1}, m_{1}+1, \ldots, m_{2}-2$.

First, consider when $n=m_{2} q$ and suppose that in base m_{2} the digits of n come from the set $\left\{0,1,2, \ldots, m_{1}-1\right\}$. This means the digits in the base m_{2} representation of q also come only from this set. Now, apply the recurrence (1) to write $h_{m_{2}}\left(m_{2} q\right)=h_{m_{2}}(q)+h_{m_{2}}(q-1)$. This implies that every hyper m_{2}-ary partition of n is obtained from either a hyper m_{2}-ary partition of q or a hyper m_{2}-ary partition of $q-1$.

Observe that a hyper m_{2}-ary partition of n obtained from a hyper m_{2}-ary partition of q is found by multiplying the latter partition by m_{2}, thereby shifting the coefficients of q and appending a 0 at the end. This results in hyper m_{2}-ary partitions of n whose coefficients are the same as the coefficients of hyper m_{2}-ary partitions of q, along with an additional 0 . Similarly, a hyper m_{2}-ary partition of n that is obtained from a hyper m_{2}-ary partition of $q-1$ is found by shifting the digits of the latter partition and appending an m_{2} to the end. This means we may write

$$
\begin{aligned}
H_{m_{2}}(n)= & \left\{\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}, 0\right]_{m_{2}}:\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}\right]_{m_{2}} \in H_{m_{2}}(q)\right\} \\
& \cup\left\{\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}, m_{2}\right]_{m_{2}}:\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}\right]_{m_{2}} \in H_{m_{2}}(q-1)\right\} .
\end{aligned}
$$

Since $q-1$ and q are less than n, by the induction hypothesis we know the coefficients of all hyper m_{2}-ary partitions of $q-1$ and q are from the set $\left\{0,1,2, \ldots, m_{1}-1, m_{2}-1, m_{2}\right\}$. Thus, the coefficients of any hyper m_{2}-ary partition of n are also from this set.

Now assume that $n=m_{2} q+s$, where $1 \leq s \leq m_{2}-1$. Observe that since the base m_{2} representation of n contains only digits from the set $\left\{0,1,2, \ldots, m_{1}-1\right\}$, then we must have $1 \leq s \leq m_{1}-1$. Furthermore, when $n=m_{2} q+s$, apply the recurrence (2) to conclude that a hyper m_{2}-ary partition of n is obtained from a hyper m_{2}-ary partition of q by multiplying the latter partition by m_{2} and appending s to the end, where $1 \leq s \leq m_{1}-1$. So,

$$
H_{m_{2}}(n)=\left\{\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}, s\right]_{m_{2}}:\left[x_{r}, x_{r-1}, \cdots, x_{2}, x_{1}, x_{0}\right]_{m_{2}} \in H_{m_{2}}(q)\right\} .
$$

Since $q<n$, the coefficients of all hyper m_{2}-ary partitions of q are in the set $\left\{0,1,2, \ldots, m_{1}-\right.$ $\left.1, m_{2}-1, m_{2}\right\}$. Since s is an element of this set, we conclude that the coefficients of hyper m_{2}-ary partitions of n come from the same set.

Therefore, in all cases, the hyper m_{2}-ary partitions of n never contain any of the coefficients $m_{1}, m_{1}+1, \ldots, m_{2}-2$.

Now we are ready to prove there is a bijection between hyper m_{1}-ary partitions of an integer ℓ and hyper m_{2}-ary partitions of $k=F_{m_{1}, m_{2}}(\ell)$.

Lemma 3. Let ℓ be a positive integer and set $k=F_{m_{1}, m_{2}}(\ell)$. Define $\phi: H_{m_{2}}(k) \rightarrow H_{m_{1}}(\ell)$ by mapping

$$
\left[c_{r}, c_{r-1}, \ldots, c_{2}, c_{1}, c_{0}\right]_{m_{2}} \mapsto\left[b_{r}, b_{r-1}, \cdots, b_{2}, b_{1}, b_{0}\right]_{m_{1}}
$$

according to the following rules:

$$
\begin{gathered}
c_{i}=0 \longrightarrow b_{i}=0 \\
c_{i}=1 \longrightarrow b_{i}=1 \\
\vdots \\
c_{i}=m_{1}-1 \longrightarrow b_{i}=m_{1}-1 \\
c_{i}=m_{2}-1 \longrightarrow b_{i}=m_{1}-1 \\
c_{i}=m_{2} \longrightarrow b_{i}=m_{1} .
\end{gathered}
$$

Then, ϕ is a bijection.
Proof. If $m_{2}=m_{1}+1$, then the result follows immediately from Lemma 1. So, we assume that $m_{2}>m_{1}+1$. From the definition of k, we know the base m_{2} representation of k includes only digits less than or equal to $m_{1}-1$. So, we apply Lemma 2 to conclude that none of the hyper m_{2}-ary partitions in $H_{m_{2}}(k)$ have any coefficients between m_{1} and $m_{2}-2$, inclusive. Thus, ϕ need only specify how to map coefficients from the set $\left\{0,1, \ldots, m_{1}-1, m_{2}-1, m_{2}\right\}$.

Now, using the bijection g_{m} given in Lemma 1, define a new function $G: H_{m_{2}}(k) \rightarrow$ $H_{m_{1}}(\ell)$ as follows:

$$
G=g_{m_{1}} \circ g_{m_{1}+1} \circ g_{m_{1}+2} \circ \cdots \circ g_{m_{2}-2} \circ g_{m_{2}-1}
$$

It is clear from Lemma 1 that when we apply G to any m_{2}-ary partition coefficient which is less than or equal to $m_{1}-1$, the coefficient maps to itself. When we apply G to a partition coefficient of $m_{2}-1$, we see that

$$
m_{2}-1 \stackrel{g_{m_{2}-1}}{\longmapsto} m_{2}-2 \stackrel{g_{m_{2}-2}}{\longmapsto} m_{2}-3 \stackrel{g_{m_{2}-3}}{\stackrel{ }{2}} \cdots \stackrel{g_{m_{1}}}{\longmapsto} m_{1}-1 .
$$

Finally, when we apply G to a partition coefficient of m_{2}, we see that

$$
m_{2} \stackrel{g_{m_{2}-1}}{\longrightarrow} m_{2}-1 \stackrel{g_{m_{2}-2}}{\longmapsto} m_{2}-2 \stackrel{g_{m_{2}-3}}{\longmapsto} \cdots \stackrel{g_{m_{1}}}{\longmapsto} m_{1} .
$$

Thus, $G=\phi$.
We have ϕ equal to a finite composition of bijective functions. Therefore, ϕ is a bijection.

Lemma 3 leads to the following identity between values of $h_{m_{1}}$ and $h_{m_{2}}$.

Theorem 4. Let $2 \leq m_{1}<m_{2}$. For positive integer ℓ, set $k=F_{m_{1}, m_{2}}(\ell)$. Then

$$
h_{m_{2}}(k)=h_{m_{1}}(\ell) .
$$

Proof. The values ℓ and k given here match Lemma 3 and we know that $h_{m_{1}}(\ell)=\left|H_{m_{1}}(\ell)\right|$ and $h_{m_{2}}(k)=\left|H_{m_{2}}(k)\right|$. Lemma 3 gives a bijection between these finite sets. Therefore, we conclude that the sets must have the same cardinality.

As an immediate corollary, we now state a final result regarding the relationships between hyper m-ary partition sequences for different values of m.

Corollary 5. Let $2 \leq m_{1} \leq m_{2}$. Then $h_{m_{1}}$ is a subsequence of $h_{m_{2}}$.
These theorems extend the results in [4], ultimately showing that the subsequence identity holds for any hyper m_{1}-ary and hyper m_{2}-ary partition sequences.

5 Acknowledgments

The authors wish to thank the referee for insightful comments and suggestions. This feedback helped us clarify the notation and improved the overall quality of the paper.

References

[1] N. Calkin and H. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360-363.
[2] K. Courtright and J. Sellers, Arithmetic properties for hyper m-ary partition functions, Integers 4 (2004), A6.
[3] J. Eom, G. Jeong, and J. Sohn, Three different ways to obtain the values of hyper m-ary partition functions, Bull. Korean Math. Soc. 53 (2016), 1857-1868.
[4] T. B. Flowers and S. R. Lockard, Identifying an m-ary partition identity through an m-ary tree, Integers 16 (2016), A10.
[5] S. Northshield, Stern's diatomic sequence $0,1,1,2,1,3,2,3,1,4, \ldots$, Amer. Math. Monthly 117 (2010), 581-598.
[6] B. Reznick, Some binary partition functions, in B. Berndt, ed., Analytic Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, pp. 451477.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2017.
[8] M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math. 55 (1858), 193-220.

2010 Mathematics Subject Classification: Primary 05A17.
Keywords: integer partition, hyper m-ary partition.
(Concerned with sequences A002487, A054390, A277872, and A277873.)

Received June 30 2016; revised versions received February 9 2017; June 13 2017; June 23 2017. Published in Journal of Integer Sequences, July 12017.

Return to Journal of Integer Sequences home page.

