

Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.3

Width-k Generalizations of Classical Permutation Statistics

Robert Davis Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA davisr@math.msu.edu

Abstract

We introduce new natural generalizations of the classical descent and inversion statistics for permutations, called *width-k descents* and *width-k inversions*. These variations induce generalizations of the excedance and major statistics, providing a framework in which well-known equidistributivity results for classical statistics are paralleled. We explore additional relationships among the statistics providing specific formulas in certain special cases. Moreover, we explore the behavior of these width-k statistics in the context of pattern avoidance.

1 Introduction

Let \mathfrak{S}_n denote the set of permutations $\sigma = a_1 \cdots a_n$ of $[n] = \{1, \ldots, n\}$, and let $\mathfrak{S} = \mathfrak{S}_1 \cup \mathfrak{S}_2 \cup \cdots$. A function st : $\mathfrak{S}_n \to \mathbb{N}$ is called a *statistic*, and the systematic study of permutation statistics is generally accepted to have begun with MacMahon [6]. In particular, four of the most well-known statistics are the *descent*, *inversion*, *major*, and *excedance* statistics, defined respectively by

$$des \sigma = |\{i \in [n-1] \mid a_i > a_{i+1}\}|$$

$$inv \sigma = |\{(i,j) \in [n]^2 \mid i < j \text{ and } a_i > a_j\}$$

$$maj \sigma = \sum_{i \in \text{Des } \sigma} i$$

$$exc \sigma = |\{i \in [n] \mid a_i > i\}|,$$

where $\text{Des } \sigma = \{ i \in [n-1] \mid a_i > a_{i+1} \}.$

Given any statistic st, one may form the generating function

$$F_n^{\rm st}(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{st}\sigma}$$

A famous result due to MacMahon [6] states that $F_n^{\text{des}}(q) = F_n^{\text{exc}}(q)$, and that both are equal to the *Eulerian polynomial* $A_n(q)$. The Eulerian polynomials themselves may be defined via the identity

$$\sum_{j\geq 0} (1+j)^n q^j = \frac{A_n(q)}{(1-q)^{n+1}}$$

Another well-known result, due to MacMahon [5] and Rodrigues [7], states that $F_n^{\text{inv}}(q) = F_n^{\text{maj}}(q) = [n]_q!$. Foata famously provided combinatorial proofs of the equidistributivity of each; Lothaire [4] gives a treatment of these. Thus any statistic st for which $F_n^{\text{st}}(q) = A_n(q)$ is called *Eulerian*, and if $F_n^{\text{st}}(q) = [n]_q!$ then st is called *Mahonian*. These four statistics have many generalizations; in this article, we discuss new variations, induced from a simple generalization of des.

For each of the following definitions, we assume $n \in \mathbb{Z}_{>0}$, $k \in [n-1]$, $\emptyset \neq K \subseteq [n-1]$, and $\sigma = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$. We define a *width-k descent* of σ to be an index $i \subseteq [n-k]$ for which $a_i > a_{i+k}$. Thus the width-1 descents are the usual descents of a permutation. Let

$$\operatorname{Des}_k(\sigma) = \{i \in [n-k] \mid a_i > a_{i+k}\}$$

denote the set of all width-k descents of σ , and set

$$\operatorname{des}_k(\sigma) = |\operatorname{Des}_k(\sigma)|.$$

If one is interested in descents of σ of various widths, first let $K \subseteq [n-1]$ denote the set of widths under consideration. Then, define $\text{Des}_K(\sigma)$ to be the multiset $\bigcup_{k \in K} \text{Des}_k(\sigma)$, and $\text{des}_K(\sigma) = |\text{Des}_K(\sigma)|$.

Now, define a width-k inversion of σ to be a pair (i, j) for which $a_i > a_j$ and j - i = mk for some positive integer m. Let

$$\operatorname{Inv}_k(\sigma) = \{(i,j) \in [n]^2 \mid a_i > a_j \text{ and } j - k = mk, k \in \mathbb{Z}\}$$

denote the set of width-k inversions of σ , and set

$$\operatorname{inv}_k(\sigma) = |\operatorname{Inv}_k(\sigma)|.$$

Again, one may be interested in width-k inversions for multiple values of k, so for $K \subseteq [n-1]$ define $\operatorname{Inv}_K(\sigma) = \bigcup_{k \in K} \operatorname{Inv}_k(\sigma)$. Additionally, let $\operatorname{inv}_K(\sigma) = |\operatorname{Inv}_K(\sigma)|$.

Example 1. If $\sigma = 4136572$, then

$$Des_{\{2,3\}}(\sigma) = \{1, 4, 5\} \text{ and } Inv_{\{2,3\}}(\sigma) = \{(1, 3), (1, 7), (3, 7), (4, 7), (5, 7)\}$$

Thus, $des_{\{2,3\}}(\sigma) = 3$, $inv_{\{2,3\}}(\sigma) = 5$.

As we will see in the next section, the above definitions motivate us to generalize exc and maj in such a way that well-known known relationships among des, inv, maj, exc are paralleled. However, it is not very convenient to work with exc_K and maj_K directly. So, this paper will focus much more on des_K and inv_K .

The main focus of this paper is to explore these new statistics and their relationships among each other. While they are well-behaved for special cases of $K \subseteq [n-1]$, formulas for more general cases have been more elusive. Section 3 continues this exploration by considering the same statistics for classes of permutations avoiding a variety of patterns.

2 Main results

We begin with simple expressions for $\operatorname{des}_K(\sigma)$ and $\operatorname{inv}_K(\sigma)$ for a fixed $\sigma \in \mathfrak{S}_n$. First, we point out that if $K \subseteq [n-1]$, $j \in K$ and $ij \in K$ for some positive integer i, then for any $\sigma \in \mathfrak{S}_n$, $\operatorname{inv}_K(\sigma) = \operatorname{inv}_{K \setminus \{ij\}}(\sigma)$. This occurs because for any $k \in [n-1]$, $\operatorname{inv}_k(\sigma)$ counts all descents whose widths are multiples of k. Thus ij is already accounted for in $\operatorname{inv}_{K \setminus \{ij\}}(\sigma)$. This follows quickly from the definitions of inv_k and des_k .

Proposition 2. For any nonempty $K \subseteq [n-1]$,

$$\operatorname{inv}_{K}(\sigma) = \sum_{\emptyset \subsetneq K' \subseteq K} (-1)^{|K'|+1} \operatorname{inv}_{\operatorname{lcm}(K')}(\sigma),$$

where we set $\operatorname{inv}_{\operatorname{lcm}(K')}(\sigma) = 0$ if $\operatorname{lcm}(K') \ge n$.

Proof. We first consider the case where $K = \{k\}$. The elements of $\text{Inv}_k(\sigma)$ are pairs of the form (i, i + jk) for some positive integer j. Such an element exists if and only if there is a width-(jk) descent of σ at i. Thus, $\text{inv}_k(\sigma)$ simply counts the number of width-jk descents of σ for all possible j. This leads to the equality

$$\operatorname{inv}_k(\sigma) = \sum_{j \ge 1} \operatorname{des}_{jk}(\sigma).$$

The formula for general K then follows from inclusion-exclusion: by adding the number of all width-k inversions for all $k \in K$, we are twice counting any instances of a width-lcm (k_1, k_2) inversion since such an inversion is also of widths k_1 and k_2 . If K contains three distinct elements k_1, k_2, k_3 , then lcm (k_1, k_2, k_3) would have been added three times (once for each $\operatorname{inv}_{k_i}(\sigma)$) and subtracted three times (once for each $\operatorname{inv}_{\{k_i,k_j\}}(\sigma), i < j$), so it must be added again for the sum. Extending this argument to range over larger subsets of K results in the claimed formula.

Example 3. Let us return to $\sigma = 4136572$. We saw from Example 1 that $inv_{\{2,3\}}(\sigma) = 5$, where four inversions have width 2 and two have width 3. But since the inversion (1,7) has width both 2 and 3, it must also have width lcm(2,3) = 6. So, it contributes two summands of 1 and one summand of -1.

We come now to a function which helps demonstrate the interactions among the width-k statistics. Let n and k be positive integers for which n = dk + r for some $d, r \in \mathbb{Z}$ with $0 \le r < k$. To each $\sigma = a_1 \cdots a_n \in \mathfrak{S}_n$ we may then associate the set of disjoint substrings $\beta_{n,k}(\sigma) = \{\beta_{n,k}^1(\sigma), \ldots, \beta_{n,k}^k(\sigma)\}$ where

$$\beta_{n,k}^{i}(\sigma) = \begin{cases} a_{i}a_{i+k}a_{i+2k}\cdots a_{i+dk}, & \text{if } i \leq r; \\ a_{i}a_{i+k}a_{i+2k}\cdots a_{i+(d-1)k}, & \text{if } r < i < k. \end{cases}$$

Now, define

$$\phi:\mathfrak{S}_n\to\mathfrak{S}_{d+1}^r\times\mathfrak{S}_d^{k-r}$$

by setting $\phi(\sigma) = (\operatorname{std} \beta_{n,k}^1(\sigma), \ldots, \operatorname{std} \beta_{n,k}^k(\sigma))$, where std is the *standardization* map, that is, the permutation obtained by replacing the smallest element of σ with 1, the second-smallest element with 2, etc. Note in particular that each std $\beta_{n,k}^i(\sigma)$ is a permutation of [d+1] or [d].

Example 4. Suppose that $\sigma = 829317645$, suppose k = 4. We then have

$$\beta_{9,4}(\sigma) = (\operatorname{std} \beta_{9,4}^1(\sigma), \operatorname{std} \beta_{9,4}^2(\sigma), \operatorname{std} \beta_{9,4}^3(\sigma), \operatorname{std} \beta_{9,4}^4(\sigma)) = (\operatorname{std} 815, \operatorname{std} 27, \operatorname{std} 96, \operatorname{std} 34) = (312, 12, 21, 12).$$

The first of the identities in the following proposition was originally established by Sack and Úlfarsson [8], though with slightly different notation. We provide an alternate proof and extend their result to width-k inversions.

Theorem 5. Let n and k be positive integers such that n = dk + r, where $0 \le r < k$, and let $A_i(q)$ denote the ith Eulerian polynomial. Also let $M_{n,k}$ denote the multinomial coefficient

$$M_{n,k} = \binom{n}{(d+1)^{*r}, d^{*(k-r)}}$$

where i^{*j} indicates i repeated j times. We then have the identities

$$F_n^{\text{des}_k}(q) = M_{n,k} A_{d+1}^r(q) A_d^{k-r}(q)$$

$$F_n^{\text{inv}_k}(q) = M_{n,k} [d+1]_q^r ! [d]_q^{k-r} !$$

Proof. Let $k \in [n-1]$ and consider ϕ defined above. Note that ϕ is an $M_{n,k}$ -to-one function since, given $(\sigma_1, \ldots, \sigma_k) \in \mathfrak{S}_{d+1}^r \times \mathfrak{S}_d^{k-r}$, there are $M_{n,k}$ ways to partition [n] into the subsequences $\beta_{n,k}^i(\sigma)$ such that std $\beta_{n,k}^i(\sigma) = \sigma_i$ for all i. Also note that

$$\operatorname{des}_k(\sigma) = \sum_{i=1}^k \operatorname{des}(\operatorname{std} \beta_{n,k}^i(\sigma)).$$

Thus,

$$F_n^{\operatorname{des}_k}(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{des}_k \sigma}$$
$$= M_{n,k} \left(\sum_{\substack{(\sigma_1, \dots, \sigma_k) \in \mathfrak{S}_{d+1}^r \times \mathfrak{S}_d^{k-r}}} q^{\operatorname{des} \sigma_1} \cdots q^{\operatorname{des} \sigma_k} \right)$$
$$= M_{n,k} A_{d+1}^r(q) A_d^{k-r}(q).$$

This proves the first identity.

The second identity follows completely analogously, with the main modification being that an element of $\operatorname{Inv}_k(\sigma)$ corresponds to a usual inversion in some unique std $\beta_{n,k}^j(\sigma)$. \Box

We note that the sequences of coefficients of $F_n^{\text{des}_2}(q)$ appear as OEIS sequence <u>A180887</u>. No other nontrivial choice of k appears to have been studied before, for either des_k for inv_k.

Given des_K and inv_K , one must wonder what the corresponding generalizations of exc and maj are whose relationships with des_K and inv_K parallel that of the classical statistics. To do this, we define the multiset

$$\operatorname{Exc}_{K}(\sigma) = \bigcup_{k \in K} \biguplus_{i=1}^{\kappa} \{\{\lceil j/k \rceil \in [n-1] \mid \lceil j/k \rceil \in \operatorname{Exc}(\operatorname{std} \beta_{n,k}^{i}(\sigma))\}\}$$

and set $exc_K(\sigma) = |Exc_K(\sigma)|$, and also set

$$\operatorname{maj}_{K}(\sigma) = \sum_{k \in K} \sum_{i \in \operatorname{Des}_{k}(\sigma)} \left\lceil \frac{i}{k} \right\rceil.$$

We could equivalently state that

$$\operatorname{maj}_{K}(\sigma) = \sum_{k \in K} \sum_{i=1}^{k} \operatorname{maj}(\operatorname{std} \beta_{n,k}^{i}(\sigma)) \text{ and } \operatorname{exc}_{K}(\sigma) = \sum_{k \in K} \sum_{i=1}^{k} \operatorname{exc}(\operatorname{std} \beta_{n,k}^{i}(\sigma)).$$

These are exactly the definitions needed in order to obtain identities that parallel $F_n^{\text{des}}(q) = F_n^{\text{max}}(q)$ and $F_n^{\text{inv}}(q) = F_n^{\text{max}}(q)$, as we will soon see.

One important distinction to make between exc and exc_K is the following. If $\sigma = a_1 a_2 \cdots a_n$ and $\tau = b_1 b_2 \cdots b_n$, then even if $a_i = b_i$ for some *i*, one cannot say $i \in \operatorname{Exc}_K(\sigma)$ if and only if $i \in \operatorname{Exc}_K(\tau)$. For example, if $\sigma = 4136572$, then $1 \in \operatorname{Exc}_2(\sigma)$, but if $\tau = 4153627$ then $1 \notin \operatorname{Exc}_2(\tau)$.

Example 6. Again let $\sigma = 4136572$. We then have

$$\exp_{\{2,3\}}(\sigma) = |\{\{1,3,1,2\}\}| = 4$$

and

$$\operatorname{maj}_{\{2,3\}}(\sigma) = \left\lceil \frac{1}{2} \right\rceil + \left\lceil \frac{5}{2} \right\rceil + \left\lceil \frac{4}{3} \right\rceil = 6.$$

k	$G_{6,k}(q)$	$G_{8,k}(q)$	$G_{9,k}(q)$
1	$6A_5(q)$	$8A_7(q)$	$9A_9(q)$
2	$180A_2(q)^2$	$1120A_{3}(q)^{2}$	$9q^{-1}A_9(q)$
3	6!	$8q^{-2}A_7(q)$	$45360A_2(q)^3$
4	$180q^{-2}A_2(q)^2$	8!	$9q^{-3}A_9(q)$
5	$6q^{-4}A_5(q)$	$8q^{-4}A_7(q)$	$9q^{-4}A_9(q)$
6		$1120q^{-4}A_3(q)^2$	$45360q^{-3}A_2(q)^3$
7		$8q^{-6}A_7(q)$	$9q^{-6}A_9(q)$
8			$9q^{-7}A_9(q)$

Table 1: The polynomials $G_{n,k}(q)$ for n = 6, 8, 9 and $1 \le k \le n$.

By constructing a nearly identical argument as in the proof Theorem 5, and using the facts that $F_n^{\text{des}}(q) = F_n^{\text{exc}}(q)$ and $F_n^{\text{inv}}(q) = F_n^{\text{maj}}(q)$, we have the following corollary.

Corollary 7. The identities $F_n^{\text{des}_k}(q) = F_n^{\text{exc}_k}(q)$ and $F_n^{\text{inv}_k}(q) = F_n^{\text{maj}_k}(q)$ hold.

Now that we have established the analogous parallels between the four classical statistics and their width-k counterparts, we wish to explore what other structure is present. A simple proposition relates des_k and inv_k when k is large.

Corollary 8. For all $k \ge n/2$, $F_n^{\text{des}_k}(q) = F_n^{\text{inv}_k}(q)$.

Proof. Since $k \ge n/2$, the sets $\beta_{n,k}^i(\sigma)$ contain at most two elements. So, width-k descents and width-k inversions of σ are identical.

We now show that interesting behavior occurs when considering the function

$$G_{n,k}(q) = \sum_{\sigma \in \mathfrak{S}_n} q^{\operatorname{des}_k(\sigma) - \operatorname{des}_{n-k}(\sigma)}$$

According to computational data, the following conjecture holds for all $n \leq 9$ and $1 \leq k < n$ for which gcd(k, n) = 1.

Conjecture 9. If gcd(k, n) = 1, then $G_{n,k}(q) = nq^{1-k}A_{n-1}(q)$.

Several illustrative polynomials are given in Table 2. This does not hold more generally, and it would be interesting to determine if a general formula exists.

Question 10. For which values of n, k does there exist a closed formula for $G_{n,k}(q)$, and what is the formula?

3 Pattern avoidance

We say that a permutation $\sigma \in \mathfrak{S}_n$ contains the pattern $\pi \in \mathfrak{S}_m$ if there exists a subsequence σ' of σ such that $\operatorname{std}(\sigma') = \pi$. If no such subsequence exists, then we say that σ avoids the pattern π . If $\Pi \subseteq \mathfrak{S}$, then we say σ avoids Π if σ avoids every element of Π . Let $\operatorname{Av}_n(\Pi)$ denote the set of all permutations of \mathfrak{S}_n avoiding Π . In a mild abuse of notation, if $\Pi = \{\pi\}$, we will write $\operatorname{Av}_n(\pi)$.

In this section, we consider the functions

$$F_n^{\mathrm{st}}(\Pi;q) = \sum_{\sigma \in \operatorname{Av}_n(\Pi)} q^{\operatorname{st}\sigma},$$

which specializes to $F_n^{\text{st}}(q)$ if $\Pi = \emptyset$. In most instances, $F_n^{\text{des}_k}$ will be the main focus, but $F_n^{\text{des}_K}$ and $F_n^{\text{inv}_k}$ will also make appearances.

An important concept within pattern avoidance is that of Wilf equivalence. Two sets $\Pi, \Pi' \subset \mathfrak{S}$ are said to be *Wilf equivalent* if $|\operatorname{Av}_n(\Pi)| = |\operatorname{Av}_n(\Pi')|$ for all n. In this case, we write $\Pi \equiv \Pi'$ to denote this Wilf equivalence, which is indeed an equivalence relation. For example, independent work of MacMahon and Knuth [3, 6] show that that whenever $\pi, \pi' \in \mathfrak{S}_3$, then $|\operatorname{Av}_n(\pi)| = |\operatorname{Av}_n(\pi')| = C_n$, where

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

is the n^{th} Catalan number.

Proving whether $\Pi \equiv \Pi'$ is often quite difficult, and their Wilf equivalence does not imply that $F_n^{\text{st}}(\Pi; q) = F_n^{\text{st}}(\Pi'; q)$. However, in some instances, the problems of establishing these identities have straightforward solutions by applying basic transformations on the elements of the avoidance classes. Given $\pi = a_1 \cdots a_n \in \mathfrak{S}_m$, let π^r denote its *reversal* and π^c denote its *complement*, respectively defined by

$$\pi^r = a_m a_{m-1} \cdots a_1$$
 and $\pi^c = (m+1-a_1)(m+1-a_2) \cdots (m+1-a_m).$

Similarly, given $\Pi \subseteq \mathfrak{S}$, we let

$$\Pi^r = \{\pi^c \mid \pi \in \Pi\} \text{ and } \Pi^c = \{\pi^r \mid \pi \in \Pi\}$$

be the *reversal* and *complement* of Π , respectively.

Our results of this section begin with a multivariate generalization of $F_n^{\text{st}}(\Pi; q)$, and with showing how its specializations describe relationships among Π, Π^r , and Π^c .

Definition 11. Fix $\Pi \subseteq \mathfrak{S}$. Define

$$T_n(\Pi; t_1, \dots, t_{n-1}) = \sum_{\sigma \in \operatorname{Av}_n(\Pi)} \prod_{k=1}^{n-1} t_k^{\operatorname{des}_k(\sigma)}.$$

The function T_n specializes to $F_n^{\text{des}_K}(\Pi; q)$ by setting $t_i = q$ for $i \in K$ and $t_i = 1$ for all $i \notin K$. We can also recover $F_n^{\text{inv}_K}(\Pi; q)$ from T_n by setting $t_i = q$ whenever $i \in [n-1] \cap k\mathbb{Z}$ for some $k \in K$, and setting $t_i = 1$ otherwise. Additionally, when $\Pi = \{\pi\}$, a nice duality appears, providing a mild generalization of [1, Lemma 2.1].

Proposition 12. For any $\Pi \subseteq \mathfrak{S}$, let Π' denote either Π^r or Π^c . We then have

$$T_n(\Pi'; t_1, \dots, t_{n-1}) = t_1^{n-1} t_2^{n-2} \cdots t_{n-1} T_n(\Pi; t_1^{-1}, \dots, t_{n-1}^{-1}).$$

Consequently,

$$T_n((\Pi^r)^c; t_1, \dots, t_{n-1}) = T_n(\Pi; t_1, \dots, t_{n-1}).$$

Proof. It is enough to prove the claim when the set of patterns being avoided is $\{\pi\}$ for some $\pi \in \mathfrak{S}_m$, since the full result follows by applying the argument to all elements of Π simultaneously.

First consider when $\pi' = \pi^c$ and $\sigma \in \operatorname{Av}_n(\pi)$. Because $\sigma \in \operatorname{Av}_n(\pi)$ if and only if $\sigma^c \in \operatorname{Av}_n(\pi^c)$, we have that for each $k, i \in \operatorname{Des}_k(\sigma)$ if and only if $i \notin \operatorname{Des}_k(\sigma^c)$. This implies $\operatorname{Des}_k(\sigma^c) = [n-k] \setminus \operatorname{Des}_k(\sigma)$, hence $\operatorname{des}_k(\sigma^c) = n-k - \operatorname{des}_k(\sigma)$. So,

$$T_{n}(\pi^{c}; t_{1}, \dots, t_{n-1}) = \sum_{\sigma \in \operatorname{Av}_{n}(\pi^{c})} \prod_{k=1}^{n-1} t_{k}^{\operatorname{des}_{k}(\sigma)}$$

$$= \sum_{\sigma \in \operatorname{Av}_{n}(\pi)} \prod_{k=1}^{n-1} t_{k}^{\operatorname{des}_{k}(\sigma^{c})}$$

$$= \sum_{\sigma \in \operatorname{Av}_{n}(\pi)} \prod_{k=1}^{n-1} t_{k}^{n-k-\operatorname{des}_{k}(\sigma)}$$

$$= t_{1}^{n-1} t_{2}^{n-2} \cdots t_{n-1} T_{n}(\pi; t_{1}^{-1}, \dots, t_{n-1}^{-1}).$$

Proving that the result holds for $\pi' = \pi^r$ follows similarly.

The second identity in the proposition statement holds by applying the first identity twice: first for Π^r and then for Π^c .

The above identities significantly reduce the amount of work needed to study $F_n^{\operatorname{des}_K}(\Pi; q)$ for all $\Pi \subseteq \mathfrak{S}_n$. For the remainder of this paper, we systematically approach Π for $|\Pi| \leq 2$.

3.1 Avoiding singletons

By Proposition 12, we immediately get

$$F_n^{\operatorname{des}_k}(123;q) = q^{n-k} F_n^{\operatorname{des}_k}(321;q^{-1})$$

and

$$F_n^{\operatorname{des}_k}(132;q) = F_n^{\operatorname{des}_k}(213;q) = q^{n-k} F_n^{\operatorname{des}_k}(231;q^{-1}) = q^{n-k} F_n^{\operatorname{des}_k}(312;q^{-1}).$$

So, studying $F_n^{\text{des}_k}(\pi;q)$ for $\pi \in \mathfrak{S}_3$ reduces to studying the function for a choice of one pattern from $\{123, 321\}$ and one from the remaining patterns. For some choices of Π , the permutations in $\operatorname{Av}_n(\Pi)$ are especially highly structured, which leads to similar arguments throughout the rest of this paper.

We begin with $\pi = 312$. Notice that if $a_1 \cdots a_n \in \operatorname{Av}_n(312)$ and $a_i = 1$, then we know $\operatorname{std}(a_1 \cdots a_{i-1}) \in \operatorname{Av}_{i-1}(312)$, $\operatorname{std}(a_{i+1} \cdots a_n) \in \operatorname{Av}_{n-i}(312)$, and

$$\max\{a_1,\ldots,a_{i-1}\} < \min\{a_{i+1},\ldots,a_n\}.$$

Proposition 13. For all n,

$$F_n^{\operatorname{des}_k}(312;q) = \sum_{i=1}^k C_{i-1} F_{n-i}^{\operatorname{des}_k}(312;q) + \sum_{i=k+1}^n q F_{i-1}^{\operatorname{des}_k}(312;q) F_{n-i}^{\operatorname{des}_k}(312;q)$$

where C_i is the i^{th} Catalan number.

Proof. First consider when $\sigma = a_1 \cdots a_n \in \operatorname{Av}_n(312)$ and $a_i = 1$ for some $i \leq k$. By the discussion preceding this proposition, $j \notin \operatorname{Des}_k(\sigma)$ for any $j \leq i$. So, none of the C_{i-1} possible permutations that make up $\operatorname{std}(a_1 \cdots a_{i-1})$ contribute to $\operatorname{des}_k(\sigma)$. The only contributions to $\operatorname{des}_k(\sigma)$ come from $\operatorname{std}(a_{i+1} \cdots a_n) \in \operatorname{Av}_{n-i}(312; q)$. The overall contribution to $F_n^{\operatorname{des}_k}(312; q)$ is the second summand of the identity.

Now suppose $a_i = 1$ for some i > k. Each choice of $a_1 \cdots a_i$, contributes to $\operatorname{des}_k(\sigma)$ as usual, but there will be an additional width-k descent produced at i - k. The elements $a_{i+1} \cdots a_n$ contribute to $\operatorname{des}_k(\sigma)$ as before. The overall contribution to $F_n^{\operatorname{des}_k}(312;q)$ is the first summand of the identity. Since we have considered all possible indices i for which we could have $a_i = 1$, we add the two cases together and are done.

Note that when we set q = 1, the above recursion specializes to the well-known recursion for Catalan numbers $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$. For more about the Catalan numbers see <u>A000108</u>. Also, when k = 1, the coefficients of $F_n^{\text{des}_k}(312;q)$ are the Narayana numbers, appearing in the OEIS as sequence <u>A001263</u>. The sequence of coefficients of the polynomials $F_n^{\text{des}_{n-1}}(312;q)$ appear as <u>A026008</u>, where the coefficients are listed with the degree-1 summand first and then the constant term second.

We can use the previous proposition in conjunction with Proposition 12 to produce formulae for $F_n^{\text{des}_k}(\Pi; q)$ and $F_n^{\text{inv}_k}(\Pi; q)$ whenever Π is a single element of \mathfrak{S}_3 other than 123 or 321. The only nontrivial work required, then, is to compute the degrees of the two polynomials.

Corollary 14. For all n,

deg
$$F_n^{\text{des}_k}(312;q) = n - k \text{ and } \text{deg } F_n^{\text{inv}_k}(312;q) = \sum_{i=1}^{n-k} \left\lfloor \frac{n-i}{k} \right\rfloor.$$

Proof. The degrees of the above polynomials are given by identifying a permutation in $\operatorname{Av}_n(312)$ with the most possible descents. This is satisfied by $n(n-1)\cdots 21 \in \operatorname{Av}_n(312)$ which has n-k descents of width k. Determining the number of width-k inversions in this permutation is done similarly.

Although 321 is Wilf equivalent to 312, it is not so obvious how to construct a recurrence relation for $F_n^{\text{des}_k}(321;q)$ in general. In the special case of k = 1, the coefficients are given by sequence A166073, but the coefficients for other k are not easily identifiable. To help describe the elements of $\operatorname{Av}_n(321)$, first let $\sigma = a_1 \cdots a_n \in \mathfrak{S}$ and call a_i a left-right maximum if $a_i > a_j$ for all j < i. Thus $\sigma \in \operatorname{Av}_n(321)$ if and only if its set of non-left-right maxima form an increasing subsequence of σ . Indeed, if the non-left-right maxima did contain a descent, then there would be some left-right maximum preceding both elements, which violates the condition that σ avoid 321. Despite such a description, using it to reveal $F_n^{\operatorname{des}_k}(321;q)$ has thus far been unsuccessful. So, we leave the following as an open question.

Question 15. Is there a closed formula or simple recursion for $F_n^{\text{des}_k}(321;q)$ (equivalently, for $F_n^{\text{des}_k}(123;q)$)?

3.2 Avoiding doubletons

At this point, we begin studying the functions $F_n^{\text{des}_k}(\Pi; q)$ when avoiding doubletons from \mathfrak{S}_3 . Recall that, by the Erdős-Szekeres theorem [2], there are no permutations in \mathfrak{S}_n for $n \geq 5$ that avoid both 123 and 321. Thus, we will not consider this pair. Additionally, the functions $F_n^{\text{inv}_k}(\Pi; q)$ are quite unwieldy, so we will not consider these either.

For our first nontrivial example, we begin with $\{123, 132\}$. Permutations $a_1 \cdots a_n \in$ Av_n(123, 132) have the following structure: for any $i = 1, \ldots, n$, if $a_i = n$, then the substring $a_1a_2 \cdots a_{i-1}$ is decreasing and consists of the elements from the interval [n - i + 1, n - 1]. Additionally, the substring $a_{i+1} \cdots a_n$ is an element of Av_{n-i}(123, 132). This structure makes it easy to show that there are 2^{n-1} elements of Av_n(123, 132) [9].

Proposition 16. For all n and $1 \le k \le n-1$,

$$F_n^{\text{des}_k}(123, 132; q) = \sum_{i=1}^k q^{\min(i, n-k)} F_{n-i}^{\text{des}_k}(123, 132; q) + \sum_{i=k+1}^{n-k} q^{\min(i-1, n-k-1)} F_{n-i}^{\text{des}_k}(123, 132; q) + 2^{n-\max(k+1, n-k+1)} q^{n-k-1}.$$

Proof. Let $\sigma = a_1 \cdots a_n \in Av_n(123, 132; q)$. If $a_i = n$ for $i \leq k$, then it is clear from the preceding description of the elements in $Av_n(123, 132)$ that all of $1, \ldots, \min(i, n - k)$ are elements of $\text{Des}_k(\sigma)$. If j > n - k for some j, then $j \notin \text{Des}_k(\sigma)$ since a_{j+k} does not exist.

The remaining elements of $\text{Des}_k(\sigma)$ arise as a width-k descent of $a_{i+1} \cdots a_n$, which accounts for the factor of $F_{n-i}^{\text{des}_k}(123, 132; q)$ in the first summand.

Now, if $k + 1 \le n - k$ and $a_i = n$ for $i = k + 1, \ldots, n - k$, then every element of $1, \ldots, i$ except i-k is an element of $\text{Des}_k(\sigma)$. If k+1 > n-k, then the second summand is empty and nothing is lost by continuing to the case of $a_i = n$ for $i \ge \max(k+1, n-k+1)$. Again, the remaining elements of $\text{Des}_k(\sigma)$ are the width-k descents of $a_{i+1} \cdots a_n$, hence the additional factor of $F_{n-i}^{\text{des}_k}(123, 132; q)$. This accounts for the second summand.

Finally, let $m = \max(k+1, n-k+1)$. If $a_i = n$ for $i \ge m$, then all of $1, \ldots, n-k$ are descents except i-k, and these are the only possible width-k descents. In particular, none of $i+1, i+2, \ldots, n$ can be the index for a width-k descent. This leads to the sum

$$\sum_{i=m}^{n} q^{n-k-1} |\operatorname{Av}_{n-i}(123, 132)| = \left(1 + \sum_{i=m}^{n-1} 2^{n-i-1}\right) q^{n-k-1} = 2^{n-m} q^{n-k-1},$$

which accounts for the third summand.

Again, the sequence of coefficients for k = 1 has appeared already, this time as sequence A109446, but the sequences for nontrivial k > 1 appear to be entirely unstudied.

Next, we consider $\{123, 312\}$. We proceed similarly as before but with some minor differences, reflecting the new structure we encounter. If $\sigma = a_1 \cdots a_n \in Av_n(123, 312)$ and $a_i = 1$ for some i < n, then σ is of the form

$$\sigma = i(i-1)\cdots 21n(n-1)\cdots (i+2)(i+1),$$

since neither subsequence $a_1 \cdots a_{i-1}$ and $a_{i+1} \cdots a_n$ may contain an ascent. If $a_n = 1$, though, then $\operatorname{std}(a_1 \cdots a_{n-1}) \in \operatorname{Av}_{n-1}(123, 312)$.

Proposition 17. For all n and $1 \le k < n$,

$$F_n^{\text{des}_k}(123, 312; q) = \sum_{i=1}^k q^{\max(0, n-k-i)} + \sum_{i=k+1}^{n-1} q^{\max(n-2k, i-k)} + qF_{n-1}^{\text{des}_k}(123, 312; q)$$

Proof. Suppose $a_i = 1$ for some $i \leq k$. Using the description of elements in $\operatorname{Av}_n(123, 312)$, we know there are n - k - i width-k descents. Since there is only one such permutation for each i, we simply add all of the q^{n-k-i} , so long as $n - k - i \geq 0$. If this inequality does not hold, then there are no width-k descents in this range. This accounts for the first summand.

The second summand is computed very similarly to that of the second summand in Proposition 16. The final summand is a direct result of noting that when $a_n = 1$, then $(a_1 - 1) \cdots (a_{n-1} - 1)$ may be any element of $\operatorname{Av}_{n-1}(123, 312; q)$, which accounts for the factor $F_{n-1}^{\operatorname{des}_k}(123, 312; q)$. For each of these choices, we know $n - k \in \operatorname{Des}_k(\sigma)$, hence the factor of q. Adding the sums results in the identity claimed. \Box Now we consider $\{132, 231\}$. Note that if $a_1 \cdots a_n \in \operatorname{Av}_n(132, 231)$, then $a_i \neq n$ for any 1 < i < n. If $a_1 = n$, then $\operatorname{std}(a_2 \cdots a_n) \in \operatorname{Av}_{n-1}(132, 231)$, and similarly if $a_n = n$. Once again, this allows us to quickly compute that $|\operatorname{Av}_n(132, 231)| = 2^{n-1}$.

Proposition 18. Let $K = \{k_1, \ldots, k_l\}$ be a nonempty subset of [n-1] whose elements are listed in increasing order. We then have

$$F_n^{\operatorname{des}_K}(132,231;q) = \prod_{i=1}^{l+1} (1+q^{i-1})^{k_i-k_{i-1}}$$

where $k_0 = 1$ and $k_{l+1} = n$.

Proof. It follows from the description of elements in $\operatorname{Av}_n(132, 231)$ that there are two summands in a recurrence for $F_n^{\operatorname{des}_K}(132, 231; q)$: one corresponding to $a_1 = n$ and one corresponding to $a_n = n$. When $a_1 = n$, then there are |K| = l copies of $1 \in \operatorname{Des}_K(\sigma)$; if $a_n = n$, then a_n makes no contribution to $\operatorname{Des}_K(\sigma)$. Thus, by deleting n from σ , we get the recurrence

$$F_n^{\text{des}_K}(132,231;q) = (1+q^l)F_{n-1}^{\text{des}_K}(132,231;q).$$

Repeating this, a factor of $1 + q^l$ appears until we get to

$$F_n^{\operatorname{des}_K}(132,231;q) = (1+q^l)^{n-k_l} F_{k_l}^{\operatorname{des}_K}(132,231;q).$$

At this point, note that

$$F_{k_l}^{\mathrm{des}_K}(132,231;q) = F_{k_l}^{\mathrm{des}_{K\setminus\{k_l\}}}(132,231;q)$$

Repeating the previous argument ends up with the identity claimed.

Next, consider $\{132, 213\}$. If $\sigma = a_1 \cdots a_n \in Av_n(132, 213)$, then if $a_i = n$ for any *i*, then $a_1 \cdots a_{i-1}$ must be increasing in order to avoid 213. Moreover,

$$\max(a_{i+1}, \cdots, a_n) < a_1$$

in order to avoid 132, and $\operatorname{std}(a_{i+1} \cdots a_n) \in \operatorname{Av}_{n-i}(132, 213)$.

Proposition 19. For all n and $1 \le k < n$,

$$F_n^{\text{des}_k}(132, 213; q) = \sum_{i=1}^k q^{\min(i, n-k)} F_{n-i}^{\text{des}_k}(132, 213; q) + \sum_{i=k+1}^{n-k} q^{\min(k, n-i)} F_{n-i}^{\text{des}_k}(132, 213; q) + \sum_{i=\max(k+1, n-k+1)}^n q^{n-i} F_{n-i}^{\text{des}_k}(132, 213; q).$$

Proof. The proof of this is entirely analogous to the proof of Proposition 16.

In this case, when k = 2, the sequence of coefficients as n grows is the sequence <u>A208343</u>. No other nontrivial choice of k appears to have been previously studied. Additionally, for all remaining choices of Π we consider, the instances of previously-studied sequences appear to be only when k = 1.

Next, we consider $\{132, 312\}$. For each i = 1, ..., n-1, either $a_{i+1} = \max\{a_1, ..., a_i\} + 1$ or $a_{i+1} = \min\{a_1, ..., a_i\} - 1$. This doubleton often results in especially pleasant formulas, and our results are no exception.

Proposition 20. Let $K = \{k_1, \ldots, k_l\}$ be a nonempty subset of [n-1] whose elements are listed in increasing order. We then have

$$F_n^{\operatorname{des}_K}(132, 312; q) = \prod_{i=1}^{l+1} (1+q^{i-1})^{k_i-k_{i-1}}$$

where $k_0 = 1$ and $k_{l+1} = n$.

Proof. From the description of elements $\sigma = a_1 \cdots a_n \in Av_n(132, 312)$, we know that either $a_n = 1$ or $a_n = n$. In the former case, $n - k \in Des_K(\sigma)$ for each $k \in K$, and in the latter case, $n - k \notin Des_K(\sigma)$ for each $k \in K$. This leads to the recurrence

$$F_n^{\operatorname{des}_K}(132, 312; q) = (1+q^l) F_{n-1}^{\operatorname{des}_K}(132, 312; q).$$

Following an analogous argument as in the proof of Proposition 18 obtains the result. \Box

From the general formula given above, we are able to quickly determine $F_n^{\text{inv}_k}(132, 312; q)$.

Corollary 21. For fixed n, k, write n = dk + r for unique nonnegative integers d, r such that $0 \le r < k$. We then have

$$F_n^{\text{inv}_k}(132, 312; q) = F_n^{\text{inv}_k}(132, 231; q) = 2^{k-1}(1+q^d)^r \prod_{i=1}^{d-1} (1+q^i)^k.$$

Proof. This is a direct consequence of the general formulas from Propositions 18 and 20, and recalling that

$$F_n^{\operatorname{inv}_k}(\Pi;q) = F_n^{\operatorname{des}_{[n-1]\cap k\mathbb{Z}}}(\Pi;q).$$

4 Acknowledgments

The author thanks Bruce Sagan and the anonymous referee for their many helpful comments.

References

- Theodore Dokos, Tim Dwyer, Bryan P. Johnson, Bruce E. Sagan, and Kimberly Selsor, Permutation patterns and statistics, *Discrete Math.* **312** (2012), 2760–2775.
- [2] Paul Erdős and George Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470.
- [3] Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd printing, Addison-Wesley, 1969.
- [4] M. Lothaire, Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.
- [5] Percy A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, *Amer. J. Math.* **35** (1913), 281–322.
- [6] Percy A. MacMahon, *Combinatory Analysis*, Chelsea Publishing Co., 1960.
- [7] Olinde Rodrigues, Note sur les inversions, ou derangements produits dans les permutations, *Journal de Mathématiques* 4 (1839), 236–240.
- [8] Joshua Sack and Henning Ulfarsson, Refined inversion statistics on permutations, *Electron. J. Combin.* 19 (1) (2012), Paper #P29.
- [9] Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin. 6 (1985), 383–406.

2010 Mathematics Subject Classification: Primary 05A05; Secondary 05A15. Keywords: permutation statistics, pattern avoidance, generating function.

(Concerned with sequences <u>A000108</u>, <u>A001263</u>, <u>A026008</u>, <u>A109446</u>, <u>A166073</u>, <u>A180887</u>, and <u>A208343</u>.)

Received January 19 2017; revised version received May 31 2017. Published in *Journal of Integer Sequences*, June 25 2017.

Return to Journal of Integer Sequences home page.