Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.3

Width- k Generalizations of Classical Permutation Statistics

Robert Davis
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
USA
davisr@math.msu.edu

Abstract

We introduce new natural generalizations of the classical descent and inversion statistics for permutations, called width-k descents and width-k inversions. These variations induce generalizations of the excedance and major statistics, providing a framework in which well-known equidistributivity results for classical statistics are paralleled. We explore additional relationships among the statistics providing specific formulas in certain special cases. Moreover, we explore the behavior of these width- k statistics in the context of pattern avoidance.

1 Introduction

Let \mathfrak{S}_{n} denote the set of permutations $\sigma=a_{1} \cdots a_{n}$ of $[n]=\{1, \ldots, n\}$, and let $\mathfrak{S}=\mathfrak{S}_{1} \cup \mathfrak{S}_{2} \cup$ \cdots. A function st: $\mathfrak{S}_{n} \rightarrow \mathbb{N}$ is called a statistic, and the systematic study of permutation statistics is generally accepted to have begun with MacMahon [6]. In particular, four of the most well-known statistics are the descent, inversion, major, and excedance statistics, defined respectively by

$$
\begin{aligned}
\operatorname{des} \sigma & =\left|\left\{i \in[n-1] \mid a_{i}>a_{i+1}\right\}\right| \\
\operatorname{inv} \sigma & =\mid\left\{(i, j) \in[n]^{2} \mid i<j \text { and } a_{i}>a_{j}\right\} \mid \\
\operatorname{maj} \sigma & =\sum_{i \in \operatorname{Des} \sigma} i \\
\operatorname{exc} \sigma & =\left|\left\{i \in[n] \mid a_{i}>i\right\}\right|
\end{aligned}
$$

where $\operatorname{Des} \sigma=\left\{i \in[n-1] \mid a_{i}>a_{i+1}\right\}$.
Given any statistic st, one may form the generating function

$$
F_{n}^{\mathrm{st}}(q)=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\mathrm{st} \sigma}
$$

A famous result due to MacMahon [6] states that $F_{n}^{\text {des }}(q)=F_{n}^{\text {exc }}(q)$, and that both are equal to the Eulerian polynomial $A_{n}(q)$. The Eulerian polynomials themselves may be defined via the identity

$$
\sum_{j \geq 0}(1+j)^{n} q^{j}=\frac{A_{n}(q)}{(1-q)^{n+1}}
$$

Another well-known result, due to MacMahon [5] and Rodrigues [7], states that $F_{n}^{\text {inv }}(q)=$ $F_{n}^{\operatorname{maj}}(q)=[n]_{q}$!. Foata famously provided combinatorial proofs of the equidistributivity of each; Lothaire [4] gives a treatment of these. Thus any statistic st for which $F_{n}^{\text {st }}(q)=A_{n}(q)$ is called Eulerian, and if $F_{n}^{\text {st }}(q)=[n]_{q}$! then st is called Mahonian. These four statistics have many generalizations; in this article, we discuss new variations, induced from a simple generalization of des.

For each of the following definitions, we assume $n \in \mathbb{Z}_{>0}, k \in[n-1], \emptyset \neq K \subseteq[n-1]$, and $\sigma=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$. We define a width- k descent of σ to be an index $i \subseteq[n-k]$ for which $a_{i}>a_{i+k}$. Thus the width-1 descents are the usual descents of a permutation. Let

$$
\operatorname{Des}_{k}(\sigma)=\left\{i \in[n-k] \mid a_{i}>a_{i+k}\right\}
$$

denote the set of all width- k descents of σ, and set

$$
\operatorname{des}_{k}(\sigma)=\left|\operatorname{Des}_{k}(\sigma)\right|
$$

If one is interested in descents of σ of various widths, first let $K \subseteq[n-1]$ denote the set of widths under consideration. Then, define $\operatorname{Des}_{K}(\sigma)$ to be the multiset $\bigcup_{k \in K} \operatorname{Des}_{k}(\sigma)$, and $\operatorname{des}_{K}(\sigma)=\left|\operatorname{Des}_{K}(\sigma)\right|$.

Now, define a width-k inversion of σ to be a pair (i, j) for which $a_{i}>a_{j}$ and $j-i=m k$ for some positive integer m. Let

$$
\operatorname{Inv}_{k}(\sigma)=\left\{(i, j) \in[n]^{2} \mid a_{i}>a_{j} \text { and } j-k=m k, k \in \mathbb{Z}\right\}
$$

denote the set of width- k inversions of σ, and set

$$
\operatorname{inv}_{k}(\sigma)=\left|\operatorname{Inv}_{k}(\sigma)\right|
$$

Again, one may be interested in width- k inversions for multiple values of k, so for $K \subseteq[n-1]$ define $\operatorname{Inv}_{K}(\sigma)=\bigcup_{k \in K} \operatorname{Inv}_{k}(\sigma)$. Additionally, let $\operatorname{inv}_{K}(\sigma)=\left|\operatorname{Inv}_{K}(\sigma)\right|$.
Example 1. If $\sigma=4136572$, then

$$
\operatorname{Des}_{\{2,3\}}(\sigma)=\{1,4,5\} \text { and } \operatorname{Inv}_{\{2,3\}}(\sigma)=\{(1,3),(1,7),(3,7),(4,7),(5,7)\}
$$

Thus, $\operatorname{des}_{\{2,3\}}(\sigma)=3, \operatorname{inv}_{\{2,3\}}(\sigma)=5$.

As we will see in the next section, the above definitions motivate us to generalize exc and maj in such a way that well-known known relationships among des, inv, maj, exc are paralleled. However, it is not very convenient to work with exc_{K} and majj_{K} directly. So, this paper will focus much more on des_{K} and inv_{K}.

The main focus of this paper is to explore these new statistics and their relationships among each other. While they are well-behaved for special cases of $K \subseteq[n-1]$, formulas for more general cases have been more elusive. Section 3 continues this exploration by considering the same statistics for classes of permutations avoiding a variety of patterns.

2 Main results

We begin with simple expressions for $\operatorname{des}_{K}(\sigma)$ and $\operatorname{inv}_{K}(\sigma)$ for a fixed $\sigma \in \mathfrak{S}_{n}$. First, we point out that if $K \subseteq[n-1], j \in K$ and $i j \in K$ for some positive integer i, then for any $\sigma \in \mathfrak{S}_{n}, \operatorname{inv}_{K}(\sigma)=\operatorname{inv}_{K \backslash\{i j\}}(\sigma)$. This occurs because for any $k \in[n-1], \operatorname{inv}_{k}(\sigma)$ counts all descents whose widths are multiples of k. Thus $i j$ is already accounted for in $\operatorname{inv}_{K \backslash\{i j\}}(\sigma)$. This follows quickly from the definitions of inv_{k} and des_{k}.

Proposition 2. For any nonempty $K \subseteq[n-1]$,

$$
\operatorname{inv}_{K}(\sigma)=\sum_{\emptyset \subseteq K^{\prime} \subseteq K}(-1)^{\left|K^{\prime}\right|+1} \operatorname{inv}_{\operatorname{lcm}\left(K^{\prime}\right)}(\sigma)
$$

where we set $\operatorname{inv}_{\operatorname{lcm}\left(K^{\prime}\right)}(\sigma)=0$ if $\operatorname{lcm}\left(K^{\prime}\right) \geq n$.
Proof. We first consider the case where $K=\{k\}$. The elements of $\operatorname{Inv}_{k}(\sigma)$ are pairs of the form $(i, i+j k)$ for some positive integer j. Such an element exists if and only if there is a width- $(j k)$ descent of σ at i. Thus, $\operatorname{inv}_{k}(\sigma)$ simply counts the number of width- $j k$ descents of σ for all possible j. This leads to the equality

$$
\operatorname{inv}_{k}(\sigma)=\sum_{j \geq 1} \operatorname{des}_{j k}(\sigma)
$$

The formula for general K then follows from inclusion-exclusion: by adding the number of all width- k inversions for all $k \in K$, we are twice counting any instances of a width-lcm $\left(k_{1}, k_{2}\right)$ inversion since such an inversion is also of widths k_{1} and k_{2}. If K contains three distinct elements k_{1}, k_{2}, k_{3}, then $\operatorname{lcm}\left(k_{1}, k_{2}, k_{3}\right)$ would have been added three times (once for each $\left.\operatorname{inv}_{k_{i}}(\sigma)\right)$ and subtracted three times (once for each $\operatorname{inv}_{\left\{k_{i}, k_{j}\right\}}(\sigma), i<j$), so it must be added again for the sum. Extending this argument to range over larger subsets of K results in the claimed formula.

Example 3. Let us return to $\sigma=4136572$. We saw from Example 1 that $\operatorname{inv}_{\{2,3\}}(\sigma)=5$, where four inversions have width 2 and two have width 3 . But since the inversion $(1,7)$ has width both 2 and 3 , it must also have width $\operatorname{lcm}(2,3)=6$. So, it contributes two summands of 1 and one summand of -1 .

We come now to a function which helps demonstrate the interactions among the width- k statistics. Let n and k be positive integers for which $n=d k+r$ for some $d, r \in \mathbb{Z}$ with $0 \leq r<k$. To each $\sigma=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ we may then associate the set of disjoint substrings $\beta_{n, k}(\sigma)=\left\{\beta_{n, k}^{1}(\sigma), \ldots, \beta_{n, k}^{k}(\sigma)\right\}$ where

$$
\beta_{n, k}^{i}(\sigma)= \begin{cases}a_{i} a_{i+k} a_{i+2 k} \cdots a_{i+d k}, & \text { if } i \leq r \\ a_{i} a_{i+k} a_{i+2 k} \cdots a_{i+(d-1) k}, & \text { if } r<i<k\end{cases}
$$

Now, define

$$
\phi: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{d+1}^{r} \times \mathfrak{S}_{d}^{k-r}
$$

by setting $\phi(\sigma)=\left(\operatorname{std} \beta_{n, k}^{1}(\sigma), \ldots, \operatorname{std} \beta_{n, k}^{k}(\sigma)\right)$, where std is the standardization map, that is, the permutation obtained by replacing the smallest element of σ with 1 , the second-smallest element with 2, etc. Note in particular that each $\operatorname{std} \beta_{n, k}^{i}(\sigma)$ is a permutation of $[d+1]$ or [d].

Example 4. Suppose that $\sigma=829317645$, suppose $k=4$. We then have

$$
\begin{aligned}
\beta_{9,4}(\sigma) & =\left(\operatorname{std} \beta_{9,4}^{1}(\sigma), \operatorname{std} \beta_{9,4}^{2}(\sigma), \operatorname{std} \beta_{9,4}^{3}(\sigma), \operatorname{std} \beta_{9,4}^{4}(\sigma)\right) \\
& =(\operatorname{std} 815, \operatorname{std} 27, \operatorname{std} 96, \operatorname{std} 34) \\
& =(312,12,21,12)
\end{aligned}
$$

The first of the identities in the following proposition was originally established by Sack and Úlfarsson [8], though with slightly different notation. We provide an alternate proof and extend their result to width- k inversions.

Theorem 5. Let n and k be positive integers such that $n=d k+r$, where $0 \leq r<k$, and let $A_{i}(q)$ denote the $i^{\text {th }}$ Eulerian polynomial. Also let $M_{n, k}$ denote the multinomial coefficient

$$
M_{n, k}=\binom{n}{(d+1)^{* r}, d^{*(k-r)}}
$$

where $i^{* j}$ indicates i repeated j times. We then have the identities

$$
\begin{aligned}
F_{n}^{\operatorname{des}_{k}}(q) & =M_{n, k} A_{d+1}^{r}(q) A_{d}^{k-r}(q) \\
F_{n}^{\text {inv }_{k}}(q) & =M_{n, k}[d+1]_{q}^{r}![d]_{q}^{k-r}!
\end{aligned}
$$

Proof. Let $k \in[n-1]$ and consider ϕ defined above. Note that ϕ is an $M_{n, k}$-to-one function since, given $\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathfrak{S}_{d+1}^{r} \times \mathfrak{S}_{d}^{k-r}$, there are $M_{n, k}$ ways to partition $[n]$ into the subsequences $\beta_{n, k}^{i}(\sigma)$ such that $\operatorname{std} \beta_{n, k}^{i}(\sigma)=\sigma_{i}$ for all i. Also note that

$$
\operatorname{des}_{k}(\sigma)=\sum_{i=1}^{k} \operatorname{des}\left(\operatorname{std} \beta_{n, k}^{i}(\sigma)\right)
$$

Thus,

$$
\begin{aligned}
F_{n}^{\operatorname{des}_{k}}(q) & =\sum_{\sigma \in \mathfrak{G}_{n}} q^{\operatorname{des}_{k} \sigma} \\
& =M_{n, k}\left(\sum_{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathfrak{S}_{d+1}^{r} \times \mathfrak{G}_{d}^{k-r}} q^{\operatorname{des} \sigma_{1}} \cdots q^{\operatorname{des} \sigma_{k}}\right) \\
& =M_{n, k} A_{d+1}^{r}(q) A_{d}^{k-r}(q)
\end{aligned}
$$

This proves the first identity.
The second identity follows completely analogously, with the main modification being that an element of $\operatorname{Inv}_{k}(\sigma)$ corresponds to a usual inversion in some unique std $\beta_{n, k}^{j}(\sigma)$.

We note that the sequences of coefficients of $F_{n}^{\operatorname{des}_{2}}(q)$ appear as OEIS sequence A180887. No other nontrivial choice of k appears to have been studied before, for either des_{k} for inv_{k}.

Given des_{K} and inv_{K}, one must wonder what the corresponding generalizations of exc and maj are whose relationships with des_{K} and inv_{K} parallel that of the classical statistics. To do this, we define the multiset

$$
\operatorname{Exc}_{K}(\sigma)=\bigcup_{k \in K} \biguplus_{i=1}^{k}\left\{\left\{\lceil j / k\rceil \in[n-1] \mid\lceil j / k\rceil \in \operatorname{Exc}\left(\operatorname{std} \beta_{n, k}^{i}(\sigma)\right)\right\}\right\}
$$

and set $\operatorname{exc}_{K}(\sigma)=\left|\operatorname{Exc}_{K}(\sigma)\right|$, and also set

$$
\operatorname{maj}_{K}(\sigma)=\sum_{k \in K} \sum_{i \in \operatorname{Des}_{k}(\sigma)}\left\lceil\frac{i}{k}\right\rceil
$$

We could equivalently state that

$$
\operatorname{maj}_{K}(\sigma)=\sum_{k \in K} \sum_{i=1}^{k} \operatorname{maj}\left(\operatorname{std} \beta_{n, k}^{i}(\sigma)\right) \text { and } \operatorname{exc}_{K}(\sigma)=\sum_{k \in K} \sum_{i=1}^{k} \operatorname{exc}\left(\operatorname{std} \beta_{n, k}^{i}(\sigma)\right)
$$

These are exactly the definitions needed in order to obtain identities that parallel $F_{n}^{\text {des }}(q)=$ $F_{n}^{\operatorname{exc}}(q)$ and $F_{n}^{\text {inv }}(q)=F_{n}^{\text {maj }}(q)$, as we will soon see.

One important distinction to make between exc and exc_{K} is the following. If $\sigma=$ $a_{1} a_{2} \cdots a_{n}$ and $\tau=b_{1} b_{2} \cdots b_{n}$, then even if $a_{i}=b_{i}$ for some i, one cannot say $i \in \operatorname{Exc}_{K}(\sigma)$ if and only if $i \in \operatorname{Exc}_{K}(\tau)$. For example, if $\sigma=4136572$, then $1 \in \operatorname{Exc}_{2}(\sigma)$, but if $\tau=4153627$ then $1 \notin \operatorname{Exc}_{2}(\tau)$.

Example 6. Again let $\sigma=4136572$. We then have

$$
\operatorname{exc}_{\{2,3\}}(\sigma)=|\{\{1,3,1,2\}\}|=4
$$

and

$$
\operatorname{maj}_{\{2,3\}}(\sigma)=\left\lceil\frac{1}{2}\right\rceil+\left\lceil\frac{5}{2}\right\rceil+\left\lceil\frac{4}{3}\right\rceil=6 .
$$

k	$G_{6, k}(q)$	$G_{8, k}(q)$	$G_{9, k}(q)$
1	$6 A_{5}(q)$	$8 A_{7}(q)$	$9 A_{9}(q)$
2	$180 A_{2}(q)^{2}$	$1120 A_{3}(q)^{2}$	$9 q^{-1} A_{9}(q)$
3	$6!$	$8 q^{-2} A_{7}(q)$	$45360 A_{2}(q)^{3}$
4	$180 q^{-2} A_{2}(q)^{2}$	$8!$	$9 q^{-3} A_{9}(q)$
5	$6 q^{-4} A_{5}(q)$	$8 q^{-4} A_{7}(q)$	$9 q^{-4} A_{9}(q)$
6		$1120 q^{-4} A_{3}(q)^{2}$	$45360 q^{-3} A_{2}(q)^{3}$
7		$8 q^{-6} A_{7}(q)$	$9 q^{-6} A_{9}(q)$
8			$9 q^{-7} A_{9}(q)$

Table 1: The polynomials $G_{n, k}(q)$ for $n=6,8,9$ and $1 \leq k \leq n$.

By constructing a nearly identical argument as in the proof Theorem 5, and using the facts that $F_{n}^{\text {des }}(q)=F_{n}^{\text {exc }}(q)$ and $F_{n}^{\text {inv }}(q)=F_{n}^{\text {maj }}(q)$, we have the following corollary.

Corollary 7. The identities $F_{n}^{\operatorname{des}_{k}}(q)=F_{n}^{\operatorname{exc}_{k}}(q)$ and $F_{n}^{\operatorname{inv}_{k}}(q)=F_{n}^{\operatorname{maj}_{k}}(q)$ hold.
Now that we have established the analogous parallels between the four classical statistics and their width- k counterparts, we wish to explore what other structure is present. A simple proposition relates des_{k} and inv_{k} when k is large.

Corollary 8. For all $k \geq n / 2, F_{n}^{\operatorname{des}_{k}}(q)=F_{n}^{\operatorname{inv}_{k}}(q)$.
Proof. Since $k \geq n / 2$, the sets $\beta_{n, k}^{i}(\sigma)$ contain at most two elements. So, width- k descents and width- k inversions of σ are identical.

We now show that interesting behavior occurs when considering the function

$$
G_{n, k}(q)=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{des}_{k}(\sigma)-\operatorname{des}_{n-k}(\sigma)}
$$

According to computational data, the following conjecture holds for all $n \leq 9$ and $1 \leq k<n$ for which $\operatorname{gcd}(k, n)=1$.

Conjecture 9. If $\operatorname{gcd}(k, n)=1$, then $G_{n, k}(q)=n q^{1-k} A_{n-1}(q)$.
Several illustrative polynomials are given in Table 2. This does not hold more generally, and it would be interesting to determine if a general formula exists.

Question 10. For which values of n, k does there exist a closed formula for $G_{n, k}(q)$, and what is the formula?

3 Pattern avoidance

We say that a permutation $\sigma \in \mathfrak{S}_{n}$ contains the pattern $\pi \in \mathfrak{S}_{m}$ if there exists a subsequence σ^{\prime} of σ such that $\operatorname{std}\left(\sigma^{\prime}\right)=\pi$. If no such subsequence exists, then we say that σ avoids the pattern π. If $\Pi \subseteq \mathfrak{S}$, then we say σ avoids Π if σ avoids every element of Π. Let $\operatorname{Av}_{n}(\Pi)$ denote the set of all permutations of \mathfrak{S}_{n} avoiding Π. In a mild abuse of notation, if $\Pi=\{\pi\}$, we will write $\operatorname{Av}_{n}(\pi)$.

In this section, we consider the functions

$$
F_{n}^{\mathrm{st}}(\Pi ; q)=\sum_{\sigma \in \operatorname{Av}_{n}(\Pi)} q^{\mathrm{st} \sigma}
$$

which specializes to $F_{n}^{\text {st }}(q)$ if $\Pi=\emptyset$. In most instances, $F_{n}^{\text {des }_{k}}$ will be the main focus, but $F_{n}^{\operatorname{des}_{K}}$ and $F_{n}^{\operatorname{inv}_{k}}$ will also make appearances.

An important concept within pattern avoidance is that of Wilf equivalence. Two sets $\Pi, \Pi^{\prime} \subset \mathfrak{S}$ are said to be Wilf equivalent if $\left|\operatorname{Av}_{n}(\Pi)\right|=\left|A v_{n}\left(\Pi^{\prime}\right)\right|$ for all n. In this case, we write $\Pi \equiv \Pi^{\prime}$ to denote this Wilf equivalence, which is indeed an equivalence relation. For example, independent work of MacMahon and Knuth [3, 6] show that that whenever $\pi, \pi^{\prime} \in \mathfrak{S}_{3}$, then $\left|\operatorname{Av}_{n}(\pi)\right|=\left|\operatorname{Av}_{n}\left(\pi^{\prime}\right)\right|=C_{n}$, where

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

is the $n^{\text {th }}$ Catalan number.
Proving whether $\Pi \equiv \Pi^{\prime}$ is often quite difficult, and their Wilf equivalence does not imply that $F_{n}^{\text {st }}(\Pi ; q)=F_{n}^{\text {st }}\left(\Pi^{\prime} ; q\right)$. However, in some instances, the problems of establishing these identities have straightforward solutions by applying basic transformations on the elements of the avoidance classes. Given $\pi=a_{1} \cdots a_{n} \in \mathfrak{S}_{m}$, let π^{r} denote its reversal and π^{c} denote its complement, respectively defined by

$$
\pi^{r}=a_{m} a_{m-1} \cdots a_{1} \text { and } \pi^{c}=\left(m+1-a_{1}\right)\left(m+1-a_{2}\right) \cdots\left(m+1-a_{m}\right) .
$$

Similarly, given $\Pi \subseteq \mathfrak{S}$, we let

$$
\Pi^{r}=\left\{\pi^{c} \mid \pi \in \Pi\right\} \text { and } \Pi^{c}=\left\{\pi^{r} \mid \pi \in \Pi\right\}
$$

be the reversal and complement of Π, respectively.
Our results of this section begin with a multivariate generalization of $F_{n}^{\text {st }}(\Pi ; q)$, and with showing how its specializations describe relationships among Π, Π^{r}, and Π^{c}.

Definition 11. Fix $\Pi \subseteq \mathfrak{S}$. Define

$$
T_{n}\left(\Pi ; t_{1}, \ldots, t_{n-1}\right)=\sum_{\sigma \in \operatorname{Av}_{n}(\Pi)} \prod_{k=1}^{n-1} t_{k}^{\operatorname{des}_{k}(\sigma)}
$$

The function T_{n} specializes to $F_{n}^{\operatorname{des}_{K}}(\Pi ; q)$ by setting $t_{i}=q$ for $i \in K$ and $t_{i}=1$ for all $i \notin K$. We can also recover $F_{n}^{\operatorname{inv}_{K}}(\Pi ; q)$ from T_{n} by setting $t_{i}=q$ whenever $i \in[n-1] \cap k \mathbb{Z}$ for some $k \in K$, and setting $t_{i}=1$ otherwise. Additionally, when $\Pi=\{\pi\}$, a nice duality appears, providing a mild generalization of [1, Lemma 2.1].

Proposition 12. For any $\Pi \subseteq \mathfrak{S}$, let Π^{\prime} denote either Π^{r} or Π^{c}. We then have

$$
T_{n}\left(\Pi^{\prime} ; t_{1}, \ldots, t_{n-1}\right)=t_{1}^{n-1} t_{2}^{n-2} \cdots t_{n-1} T_{n}\left(\Pi ; t_{1}^{-1}, \ldots, t_{n-1}^{-1}\right)
$$

Consequently,

$$
T_{n}\left(\left(\Pi^{r}\right)^{c} ; t_{1}, \ldots, t_{n-1}\right)=T_{n}\left(\Pi ; t_{1}, \ldots, t_{n-1}\right) .
$$

Proof. It is enough to prove the claim when the set of patterns being avoided is $\{\pi\}$ for some $\pi \in \mathfrak{S}_{m}$, since the full result follows by applying the argument to all elements of Π simultaneously.

First consider when $\pi^{\prime}=\pi^{c}$ and $\sigma \in \operatorname{Av}_{n}(\pi)$. Because $\sigma \in \operatorname{Av}_{n}(\pi)$ if and only if $\sigma^{c} \in \operatorname{Av}_{n}\left(\pi^{c}\right)$, we have that for each $k, i \in \operatorname{Des}_{k}(\sigma)$ if and only if $i \notin \operatorname{Des}_{k}\left(\sigma^{c}\right)$. This implies $\operatorname{Des}_{k}\left(\sigma^{c}\right)=[n-k] \backslash \operatorname{Des}_{k}(\sigma)$, hence $\operatorname{des}_{k}\left(\sigma^{c}\right)=n-k-\operatorname{des}_{k}(\sigma)$. So,

$$
\begin{aligned}
T_{n}\left(\pi^{c} ; t_{1}, \ldots, t_{n-1}\right) & =\sum_{\sigma \in \operatorname{Av}_{n}\left(\pi^{c}\right)} \prod_{k=1}^{n-1} t_{k}^{\operatorname{des}_{k}(\sigma)} \\
& =\sum_{\sigma \in \operatorname{Av}_{n}(\pi)} \prod_{k=1}^{n-1} t_{k}^{\operatorname{des}_{k}\left(\sigma^{c}\right)} \\
& =\sum_{\sigma \in \operatorname{Av}_{n}(\pi)} \prod_{k=1}^{n-1} t_{k}^{n-k-\operatorname{des}_{k}(\sigma)} \\
& =t_{1}^{n-1} t_{2}^{n-2} \cdots t_{n-1} T_{n}\left(\pi ; t_{1}^{-1}, \ldots, t_{n-1}^{-1}\right) .
\end{aligned}
$$

Proving that the result holds for $\pi^{\prime}=\pi^{r}$ follows similarly.
The second identity in the proposition statement holds by applying the first identity twice: first for Π^{r} and then for Π^{c}.

The above identities significantly reduce the amount of work needed to study $F_{n}^{\operatorname{des}_{K}}(\Pi ; q)$ for all $\Pi \subseteq \mathfrak{S}_{n}$. For the remainder of this paper, we systematically approach Π for $|\Pi| \leq 2$.

3.1 Avoiding singletons

By Proposition 12, we immediately get

$$
F_{n}^{\operatorname{des}_{k}}(123 ; q)=q^{n-k} F_{n}^{\operatorname{des}_{k}}\left(321 ; q^{-1}\right)
$$

and

$$
F_{n}^{\operatorname{des}_{k}}(132 ; q)=F_{n}^{\operatorname{des}_{k}}(213 ; q)=q^{n-k} F_{n}^{\operatorname{des}_{k}}\left(231 ; q^{-1}\right)=q^{n-k} F_{n}^{\operatorname{des}_{k}}\left(312 ; q^{-1}\right) .
$$

So, studying $F_{n}^{\operatorname{des}_{k}}(\pi ; q)$ for $\pi \in \mathfrak{S}_{3}$ reduces to studying the function for a choice of one pattern from $\{123,321\}$ and one from the remaining patterns. For some choices of Π, the permutations in $\operatorname{Av}_{n}(\Pi)$ are especially highly structured, which leads to similar arguments throughout the rest of this paper.

We begin with $\pi=312$. Notice that if $a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(312)$ and $a_{i}=1$, then we know $\operatorname{std}\left(a_{1} \cdots a_{i-1}\right) \in \operatorname{Av}_{i-1}(312), \operatorname{std}\left(a_{i+1} \cdots a_{n}\right) \in \operatorname{Av}_{n-i}(312)$, and

$$
\max \left\{a_{1}, \ldots, a_{i-1}\right\}<\min \left\{a_{i+1}, \ldots, a_{n}\right\} .
$$

Proposition 13. For all n,

$$
F_{n}^{\operatorname{des}_{k}}(312 ; q)=\sum_{i=1}^{k} C_{i-1} F_{n-i}^{\operatorname{des}_{k}}(312 ; q)+\sum_{i=k+1}^{n} q F_{i-1}^{\operatorname{des}_{k}}(312 ; q) F_{n-i}^{\operatorname{des}_{k}}(312 ; q)
$$

where C_{i} is the $i^{\text {th }}$ Catalan number.
Proof. First consider when $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(312)$ and $a_{i}=1$ for some $i \leq k$. By the discussion preceding this proposition, $j \notin \operatorname{Des}_{k}(\sigma)$ for any $j \leq i$. So, none of the C_{i-1} possible permutations that make up $\operatorname{std}\left(a_{1} \cdots a_{i-1}\right)$ contribute to $\operatorname{des}_{k}(\sigma)$. The only contributions to $\operatorname{des}_{k}(\sigma)$ come from $\operatorname{std}\left(a_{i+1} \cdots a_{n}\right) \in \operatorname{Av}_{n-i}(312 ; q)$. The overall contribution to $F_{n}^{\operatorname{des}_{k}}(312 ; q)$ is the second summand of the identity.

Now suppose $a_{i}=1$ for some $i>k$. Each choice of $a_{1} \cdots a_{i}$, contributes to $\operatorname{des}_{k}(\sigma)$ as usual, but there will be an additional width- k descent produced at $i-k$. The elements $a_{i+1} \cdots a_{n}$ contribute to $\operatorname{des}_{k}(\sigma)$ as before. The overall contribution to $F_{n}^{\operatorname{des}_{k}}(312 ; q)$ is the first summand of the identity. Since we have considered all possible indices i for which we could have $a_{i}=1$, we add the two cases together and are done.

Note that when we set $q=1$, the above recursion specializes to the well-known recursion for Catalan numbers $C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$. For more about the Catalan numbers see A000108. Also, when $k=1$, the coefficients of $F_{n}^{\operatorname{des}_{k}}(312 ; q)$ are the Narayana numbers, appearing in the OEIS as sequence A001263. The sequence of coefficients of the polynomials $F_{n}^{\operatorname{des}_{n-1}}(312 ; q)$ appear as A026008, where the coefficients are listed with the degree-1 summand first and then the constant term second.

We can use the previous proposition in conjunction with Proposition 12 to produce formulae for $F_{n}^{\operatorname{des}_{k}}(\Pi ; q)$ and $F_{n}^{\operatorname{inv}_{k}}(\Pi ; q)$ whenever Π is a single element of \mathfrak{S}_{3} other than 123 or 321 . The only nontrivial work required, then, is to compute the degrees of the two polynomials.

Corollary 14. For all n,

$$
\operatorname{deg} F_{n}^{\operatorname{des}_{k}}(312 ; q)=n-k \text { and } \operatorname{deg} F_{n}^{\operatorname{inv}_{k}}(312 ; q)=\sum_{i=1}^{n-k}\left\lfloor\frac{n-i}{k}\right\rfloor .
$$

Proof. The degrees of the above polynomials are given by identifying a permutation in $\operatorname{Av}_{n}(312)$ with the most possible descents. This is satisfied by $n(n-1) \cdots 21 \in \operatorname{Av}_{n}(312)$ which has $n-k$ descents of width k. Determining the number of width- k inversions in this permutation is done similarly.

Although 321 is Wilf equivalent to 312 , it is not so obvious how to construct a recurrence relation for $F_{n}^{\operatorname{des}_{k}}(321 ; q)$ in general. In the special case of $k=1$, the coefficients are given by sequence $\underline{\text { A166073, }}$, but the coefficients for other k are not easily identifiable. To help describe the elements of $\operatorname{Av}_{n}(321)$, first let $\sigma=a_{1} \cdots a_{n} \in \mathfrak{S}$ and call a_{i} a left-right maximum if $a_{i}>a_{j}$ for all $j<i$. Thus $\sigma \in \operatorname{Av}_{n}(321)$ if and only if its set of non-left-right maxima form an increasing subsequence of σ. Indeed, if the non-left-right maxima did contain a descent, then there would be some left-right maximum preceding both elements, which violates the condition that σ avoid 321. Despite such a description, using it to reveal $F_{n}^{\operatorname{des}_{k}}(321 ; q)$ has thus far been unsuccessful. So, we leave the following as an open question.

Question 15. Is there a closed formula or simple recursion for $F_{n}^{\operatorname{des}_{k}}(321 ; q)$ (equivalently, for $\left.F_{n}^{\operatorname{des}_{k}}(123 ; q)\right)$?

3.2 Avoiding doubletons

At this point, we begin studying the functions $F_{n}^{\operatorname{des}_{k}}(\Pi ; q)$ when avoiding doubletons from \mathfrak{S}_{3}. Recall that, by the Erdős-Szekeres theorem [2], there are no permutations in \mathfrak{S}_{n} for $n \geq 5$ that avoid both 123 and 321. Thus, we will not consider this pair. Additionally, the functions $F_{n}^{\operatorname{inv}_{k}}(\Pi ; q)$ are quite unwieldy, so we will not consider these either.

For our first nontrivial example, we begin with $\{123,132\}$. Permutations $a_{1} \cdots a_{n} \in$ $\operatorname{Av}_{n}(123,132)$ have the following structure: for any $i=1, \ldots, n$, if $a_{i}=n$, then the substring $a_{1} a_{2} \cdots a_{i-1}$ is decreasing and consists of the elements from the interval $[n-i+1, n-1]$. Additionally, the substring $a_{i+1} \cdots a_{n}$ is an element of $\operatorname{Av}_{n-i}(123,132)$. This structure makes it easy to show that there are 2^{n-1} elements of $\operatorname{Av}_{n}(123,132)$ [9].

Proposition 16. For all n and $1 \leq k \leq n-1$,

$$
\begin{aligned}
F_{n}^{\operatorname{des}_{k}}(123,132 ; q)= & \sum_{i=1}^{k} q^{\min (i, n-k)} F_{n-i}^{\operatorname{des}_{k}}(123,132 ; q) \\
& +\sum_{i=k+1}^{n-k} q^{\min (i-1, n-k-1)} F_{n-i}^{\operatorname{des}_{k}}(123,132 ; q) \\
& +2^{n-\max (k+1, n-k+1)} q^{n-k-1} .
\end{aligned}
$$

Proof. Let $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(123,132 ; q)$. If $a_{i}=n$ for $i \leq k$, then it is clear from the preceding description of the elements in $\operatorname{Av}_{n}(123,132)$ that all of $1, \ldots, \min (i, n-k)$ are elements of $\operatorname{Des}_{k}(\sigma)$. If $j>n-k$ for some j, then $j \notin \operatorname{Des}_{k}(\sigma)$ since a_{j+k} does not exist.

The remaining elements of $\operatorname{Des}_{k}(\sigma)$ arise as a width- k descent of $a_{i+1} \cdots a_{n}$, which accounts for the factor of $F_{n-i}^{\operatorname{des}_{k}}(123,132 ; q)$ in the first summand.

Now, if $k+1 \leq n-k$ and $a_{i}=n$ for $i=k+1, \ldots, n-k$, then every element of $1, \ldots, i$ except $i-k$ is an element of $\operatorname{Des}_{k}(\sigma)$. If $k+1>n-k$, then the second summand is empty and nothing is lost by continuing to the case of $a_{i}=n$ for $i \geq \max (k+1, n-k+1)$. Again, the remaining elements of $\operatorname{Des}_{k}(\sigma)$ are the width- k descents of $a_{i+1} \cdots a_{n}$, hence the additional factor of $F_{n-i}^{\operatorname{des}_{k}}(123,132 ; q)$. This accounts for the second summand.

Finally, let $m=\max (k+1, n-k+1)$. If $a_{i}=n$ for $i \geq m$, then all of $1, \ldots, n-k$ are descents except $i-k$, and these are the only possible width- k descents. In particular, none of $i+1, i+2, \ldots, n$ can be the index for a width- k descent. This leads to the sum

$$
\sum_{i=m}^{n} q^{n-k-1}\left|\operatorname{Av}_{n-i}(123,132)\right|=\left(1+\sum_{i=m}^{n-1} 2^{n-i-1}\right) q^{n-k-1}=2^{n-m} q^{n-k-1}
$$

which accounts for the third summand.
Again, the sequence of coefficients for $k=1$ has appeared already, this time as sequence A109446, but the sequences for nontrivial $k>1$ appear to be entirely unstudied.

Next, we consider $\{123,312\}$. We proceed similarly as before but with some minor differences, reflecting the new structure we encounter. If $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(123,312)$ and $a_{i}=1$ for some $i<n$, then σ is of the form

$$
\sigma=i(i-1) \cdots 21 n(n-1) \cdots(i+2)(i+1)
$$

since neither subsequence $a_{1} \cdots a_{i-1}$ and $a_{i+1} \cdots a_{n}$ may contain an ascent. If $a_{n}=1$, though, then $\operatorname{std}\left(a_{1} \cdots a_{n-1}\right) \in \operatorname{Av}_{n-1}(123,312)$.

Proposition 17. For all n and $1 \leq k<n$,

$$
\begin{aligned}
F_{n}^{\operatorname{des}_{k}}(123,312 ; q)= & \sum_{i=1}^{k} q^{\max (0, n-k-i)}+\sum_{i=k+1}^{n-1} q^{\max (n-2 k, i-k)} \\
& +q F_{n-1}^{\operatorname{des}_{k}}(123,312 ; q)
\end{aligned}
$$

Proof. Suppose $a_{i}=1$ for some $i \leq k$. Using the description of elements in $\operatorname{Av}_{n}(123,312)$, we know there are $n-k-i$ width- k descents. Since there is only one such permutation for each i, we simply add all of the q^{n-k-i}, so long as $n-k-i \geq 0$. If this inequality does not hold, then there are no width- k descents in this range. This accounts for the first summand.

The second summand is computed very similarly to that of the second summand in Proposition 16. The final summand is a direct result of noting that when $a_{n}=1$, then $\left(a_{1}-1\right) \cdots\left(a_{n-1}-1\right)$ may be any element of $\operatorname{Av}_{n-1}(123,312 ; q)$, which accounts for the factor $F_{n-1}^{\operatorname{des}_{k}}(123,312 ; q)$. For each of these choices, we know $n-k \in \operatorname{Des}_{k}(\sigma)$, hence the factor of q. Adding the sums results in the identity claimed.

Now we consider $\{132,231\}$. Note that if $a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(132,231)$, then $a_{i} \neq n$ for any $1<i<n$. If $a_{1}=n$, then $\operatorname{std}\left(a_{2} \cdots a_{n}\right) \in \operatorname{Av}_{n-1}(132,231)$, and similarly if $a_{n}=n$. Once again, this allows us to quickly compute that $\left|\operatorname{Av}_{n}(132,231)\right|=2^{n-1}$.

Proposition 18. Let $K=\left\{k_{1}, \ldots, k_{l}\right\}$ be a nonempty subset of $[n-1]$ whose elements are listed in increasing order. We then have

$$
F_{n}^{\operatorname{des}_{K}}(132,231 ; q)=\prod_{i=1}^{l+1}\left(1+q^{i-1}\right)^{k_{i}-k_{i-1}}
$$

where $k_{0}=1$ and $k_{l+1}=n$.
Proof. It follows from the description of elements in $\operatorname{Av}_{n}(132,231)$ that there are two summands in a recurrence for $F_{n}^{\operatorname{des}_{K}}(132,231 ; q)$: one corresponding to $a_{1}=n$ and one corresponding to $a_{n}=n$. When $a_{1}=n$, then there are $|K|=l$ copies of $1 \in \operatorname{Des}_{K}(\sigma)$; if $a_{n}=n$, then a_{n} makes no contribution to $\operatorname{Des}_{K}(\sigma)$. Thus, by deleting n from σ, we get the recurrence

$$
F_{n}^{\operatorname{des}_{K}}(132,231 ; q)=\left(1+q^{l}\right) F_{n-1}^{\operatorname{des}_{K}}(132,231 ; q) .
$$

Repeating this, a factor of $1+q^{l}$ appears until we get to

$$
F_{n}^{\operatorname{des}_{K}}(132,231 ; q)=\left(1+q^{l}\right)^{n-k_{l}} F_{k_{l}}^{\operatorname{des}_{K}}(132,231 ; q)
$$

At this point, note that

$$
F_{k_{l}}^{\operatorname{des}_{K}}(132,231 ; q)=F_{k_{l}}^{\operatorname{des}_{K \backslash\left\{k_{l}\right\}}}(132,231 ; q) .
$$

Repeating the previous argument ends up with the identity claimed.
Next, consider $\{132,213\}$. If $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(132,213)$, then if $a_{i}=n$ for any i, then $a_{1} \cdots a_{i-1}$ must be increasing in order to avoid 213. Moreover,

$$
\max \left(a_{i+1}, \cdots, a_{n}\right)<a_{1}
$$

in order to avoid 132, and $\operatorname{std}\left(a_{i+1} \cdots a_{n}\right) \in \operatorname{Av}_{n-i}(132,213)$.
Proposition 19. For all n and $1 \leq k<n$,

$$
\begin{aligned}
F_{n}^{\operatorname{des}_{k}}(132,213 ; q)= & \sum_{i=1}^{k} q^{\min (i, n-k)} F_{n-i}^{\operatorname{des}_{k}}(132,213 ; q) \\
& +\sum_{i=k+1}^{n-k} q^{\min (k, n-i)} F_{n-i}^{\operatorname{des}_{k}}(132,213 ; q) \\
& +\sum_{i=\max (k+1, n-k+1)}^{n} q^{n-i} F_{n-i}^{\operatorname{des}_{k}}(132,213 ; q) .
\end{aligned}
$$

Proof. The proof of this is entirely analogous to the proof of Proposition 16.
In this case, when $k=2$, the sequence of coefficients as n grows is the sequence A208343. No other nontrivial choice of k appears to have been previously studied. Additionally, for all remaining choices of Π we consider, the instances of previously-studied sequences appear to be only when $k=1$.

Next, we consider $\{132,312\}$. For each $i=1, \ldots, n-1$, either $a_{i+1}=\max \left\{a_{1}, \ldots, a_{i}\right\}+1$ or $a_{i+1}=\min \left\{a_{1}, \ldots, a_{i}\right\}-1$. This doubleton often results in especially pleasant formulas, and our results are no exception.

Proposition 20. Let $K=\left\{k_{1}, \ldots, k_{l}\right\}$ be a nonempty subset of $[n-1]$ whose elements are listed in increasing order. We then have

$$
F_{n}^{\operatorname{des}_{K}}(132,312 ; q)=\prod_{i=1}^{l+1}\left(1+q^{i-1}\right)^{k_{i}-k_{i-1}}
$$

where $k_{0}=1$ and $k_{l+1}=n$.
Proof. From the description of elements $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(132,312)$, we know that either $a_{n}=1$ or $a_{n}=n$. In the former case, $n-k \in \operatorname{Des}_{K}(\sigma)$ for each $k \in K$, and in the latter case, $n-k \notin \operatorname{Des}_{K}(\sigma)$ for each $k \in K$. This leads to the recurrence

$$
F_{n}^{\operatorname{des}_{K}}(132,312 ; q)=\left(1+q^{l}\right) F_{n-1}^{\operatorname{des}_{K}}(132,312 ; q) .
$$

Following an analogous argument as in the proof of Proposition 18 obtains the result.
From the general formula given above, we are able to quickly determine $F_{n}^{\operatorname{inv}_{k}}(132,312 ; q)$.
Corollary 21. For fixed n, k, write $n=d k+r$ for unique nonnegative integers d, r such that $0 \leq r<k$. We then have

$$
F_{n}^{\operatorname{inv}_{k}}(132,312 ; q)=F_{n}^{\operatorname{inv}_{k}}(132,231 ; q)=2^{k-1}\left(1+q^{d}\right)^{r} \prod_{i=1}^{d-1}\left(1+q^{i}\right)^{k}
$$

Proof. This is a direct consequence of the general formulas from Propositions 18 and 20, and recalling that

$$
F_{n}^{\operatorname{inv}_{k}}(\Pi ; q)=F_{n}^{\operatorname{des}_{[n-1] \cap k \mathbb{Z}}}(\Pi ; q)
$$

4 Acknowledgments

The author thanks Bruce Sagan and the anonymous referee for their many helpful comments.

References

[1] Theodore Dokos, Tim Dwyer, Bryan P. Johnson, Bruce E. Sagan, and Kimberly Selsor, Permutation patterns and statistics, Discrete Math. 312 (2012), 2760-2775.
[2] Paul Erdős and George Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[3] Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd printing, Addison-Wesley, 1969.
[4] M. Lothaire, Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.
[5] Percy A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math. 35 (1913), 281-322.
[6] Percy A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., 1960.
[7] Olinde Rodrigues, Note sur les inversions, ou derangements produits dans les permutations, Journal de Mathématiques 4 (1839), 236-240.
[8] Joshua Sack and Henning Úlfarsson, Refined inversion statistics on permutations, Electron. J. Combin. 19 (1) (2012), Paper \#P29.
[9] Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin. 6 (1985), 383-406.

2010 Mathematics Subject Classification: Primary 05A05; Secondary 05A15.
Keywords: permutation statistics, pattern avoidance, generating function.
(Concerned with sequences A000108, A001263, A026008, A109446, A166073, A180887, and A208343.)

Received January 19 2017; revised version received May 31 2017. Published in Journal of Integer Sequences, June 252017.

Return to Journal of Integer Sequences home page.

