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Abstract

We consider the normal ordering coefficients of strings consisting of the symbols

V, U which satisfy the commutation rule UV − qV U = hV s. These coefficients are

studied using two approaches. First, we continue the study by Varvak, where the

coefficients were interpreted as q-rook numbers under the row creation rook model

introduced by Goldman and Haglund. Second, we express the coefficients in terms of

a kind of generalization of some symmetric functions. We derive identities involving

the coefficients including some explicit formulas.
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1 Introduction

Let V, U be operators (or variables) that satisfy the commutation rule UV − qV U = hV s,
where s ∈ N and h, q ∈ R. For example, if s = 0, h = 1, q = 1, then V, U , respectively,
can be represented by the creation operator and annihilation operator in quantum physics
[1], or by the operators X, ∂x whose action on a monomial xn are given by Xxn = xn+1 and
∂xx

n = nxn−1. Given a string w consisting of V ’s and U ’s, the normally ordered form of w
is an equivalent operator expressed as a sum

∑
ci,jV

iU j. The normally ordered form can be
computed using the commutation rule alone, i.e., by replacing all occurrences of UV with
qV U + hV s, but this task can be cumbersome especially for long strings. It turns out that
the coefficients ci,j, called normal ordering coefficients, can be computed more efficiently
using combinatorial techniques. In the classical case s = 0, h = 1, q = 1, Navon [7] showed
that the normal ordering coefficients of an arbitrary string are given by rook numbers on
a Ferrers board. Varvak [8] generalized Navon’s result for arbitrary q and derived explicit
formulas for these coefficients using rook factorization. Blasiak [1], El-Desouky et al. [2], and
Mansour et al. [4, 5] also computed explicit formulas using other methods.

In this paper, we study normal ordering coefficients using two approaches. In Section
2, we study the coefficients as q-rook numbers under the row creation rule introduced by
Goldman and Haglund [3]. In Section 3, we study the coefficients by expressing them in
terms of some generalization of elementary and complete homogeneous symmetric functions.
Lastly, some special cases are given in Section 4.

2 First approach: rook numbers

Let v = (v1, v2, . . . , vn),u = (u1, u2, . . . , un), and Hv,u = V vnUun · · ·V v2Uu2V v1Uu1 . In this
section, we obtain explicit formulas for the normal ordering coefficients ofHv,u which uses the
known rook theoretic interpretation directly. We also give a representation of V, U in terms
of linear operators and use it to find another explicit formula which generalizes Varvak’s [8,
Corollary 4.2].

Following Blasiak [1], we write the string Hv,u in the form

Hv,u =

|u|
∑

k=u1

Sv,u
s,h;q[k]V

|v|−(|u|−k)(1−s)Uk , (1)

where |u| = u1 + u2 + · · ·+ un and |v| = v1 + v2 + · · ·+ vn.
Varvak [8] showed that for h = 1, q = 1, the coefficients Sv,u

s,h;q[k] also occur as rook
numbers under the rook model introduced by Goldman and Haglund [3] which we now
describe. An s-rook placement on a Ferrers board B is obtained as follows. First, choose the
columns where rooks will be placed. The rooks are then placed one by one from the right
such that every time a rook is placed in a cell the entire row to its left is divided into s rows.
When s = 0, “division” into s rows can be interpreted as cancellation of the entire row lying
to the left of a rook. Denote by Rs(B, k) the set of all placements of k rooks on B. An
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example of a rook placement where s = 2 is shown in Figure 1. The k-th s-rook number of
a board B is then defined as Rs(B(w), k) = |Rs(B, k)|.

Figure 1: A placement of 3 rooks.

Varvak [8, Theorem 7.1] showed, in our notation (and after correcting for the typo pointed
out by Mansour et al. [4]), that

Hv,u =

|u|−u1∑

k=0

Rs,1;1[B(Hv,u), k]V
|v|−k(1−s)U |u|−k. (2)

Comparing (2) with (1) gives Sv,u
s,1;1[k] = Rs,1;1[B(Hv,u), |u| − k].

The connection between rook numbers and normal ordering lies on the fact that a string
w determines a unique Ferrers board (where a column or row is allowed to have length zero)
and that the placement or non-placement of a rook corresponds to the choice of replacement
for each occurrence of UV . Specifically, a string w outlines a Ferrers board B(w) whose
underside border is the lattice path obtained from w by replacing V with a unit step up and
U with a unit step to the right. For example, the Ferrers board in Figure 1 is outlined by
V UV UUV V UV V U . Placing a rook on the northeast inner corner of B(w) corresponds to
replacing the rightmost UV with hV s while leaving a cell empty corresponds to replacing UV
with qV U . Under this correspondence, it is now clear how Varvak’s result can be extended
to arbitrary q. Given a rook placement φ, assign the weight w(φ) = ht′qt where t′ is the
number of rooks, and t is the number of cells not containing a rook and not lying above a
rook if s 6= 0 and t is the number of cells not containing a rook and not lying above or to
the left of a rook if s = 0. For example, the rook placement in Figure 1 has weight h3q11.
We define the generalized rook numbers by

Rs,h;q[B, k] =
∑

φ∈Rs(B,k)

w(φ).

When all three parameters s, h, q are arbitrary, the normally ordered form of the string Hv,u

is then given by

Hv,u =

|u|−u1∑

k=0

Rs,h;q[B(Hv,u), k]V
|v|−k(1−s)U |u|−k. (3)
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Again, comparing (3) with (1) gives Sv,u
s,h;q[k] = Rs,h;q[B(Hv,u), |u| − k].

Our first result gives the normally ordered form of strings of the form UmV l. The following
notation will be used. For n ∈ N, let [n]q = 1+ q+ q2 + · · ·+ qn−1 if n > 0 and [0]q = 0. Let
[n]q! = [n]q[n − 1]q · · · [2]q[1]q for n > 0 and [0]q! = 1. The q-binomial coefficient is defined

by
[
n
k

]

q
= [n]q !

[k]q ![n−k]q !
. They satisfy the property (see [6, Table 1 and Identity 2.2])

[
n

k

]

q

=
∑

0≤i1≤i2≤...≤in−k≤k

qi1+i2+···+in−k . (4)

Theorem 1. For s ∈ N, the normally ordered form of UmV l is given by

UmV l =
m∑

j=0

(

hjql(m−j)

[
m

j

]

qs−1

j−1
∏

i=0

[l + i(s− 1)]q

)

V l+j(s−1)Um−j. (5)

Proof. The string UmV l outlines a rectangular Ferrers board withm columns and l rows. The
total weight of all placements of j rooks on this board equals the coefficient of V l+j(s−1)Um−j

in the normally ordered form of UmV l. We now compute the total weight of such rook
placements as follows. Choose j columns where rooks will be placed. If the first rook is
placed on the cell in the ith row, 1 ≤ i ≤ l, then the cells below the rook will contribute a
weight of qi−1. As i varies, a total weight of h(1 + q + · · ·+ ql−1) = h[l]q will be contributed
by all possible placements of the first rook. Since the placement of the first rook adds s− 1
subcells to every cell to its left, the total weight contributed by all possible placement of
the second rook is [l + (s − 1)]q. Continuing this process with the other columns, we see
that the weight contributed by all possible placements of j rooks in the chosen columns is
hj
∏j−1

i=0 [l + i(s− 1)]q, and that this weight is the same for any choice of j columns.
We now consider the weight contributed by the other columns in which no rooks are

placed. For such a column, the weight is completely determined by the number of columns
to its right that contains a rook, i.e., if there are t columns to its right containing a rook,
then the column will assume a weight of ql+t(s−1). Note that t varies from 0 to j and that
for a given placement of j rooks, the weight contributed by all the columns containing no
rooks is qlt0q(l+(s−1))t1q(l+2(s−1))t2 · · · q(l+j(s−1))tj for some t0 + t1 + · · ·+ tj = m− j. Summing
this up over all such possible collections {t0, t1, . . . , ti}, we have

∑

t0+t1+···+tj=m−j

q(l+0(s−1))t0q(l+1(s−1))t1q(l+2(s−1))t2 · · · q(l+j(s−1))tj

= ql(m−j)
∑

t0+t1+···+tj=m−j

q0(s−1)t0q1(s−1)t1q2(s−1)t2 · · · qj(s−1)tj

= ql(m−j)
∑

0≤i1≤i2≤...≤im−j≤j

q(s−1)(i1+i2+···+im−j)

= ql(m−j)

[
m

j

]

qs−1

,

where the last equality follows from (4). This proves the theorem.
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Corollary 2. Let s ∈ N. The string Hv,u may be written as

Hv,u =

u2∑

j1=0

u3∑

j2=0

· · ·
un∑

jn−1=0

n−1∏

i=1

hj1+···+jn−1Γq,s[ji, v1 + · · ·+ vi + (j1 + · · ·+ ji−1)(s− 1), ui+1]q

V v1+···+vn+(j1+···+jn−1)(s−1)Uu1+···+un−(j1+···+jn−1). (6)

where

Γq,s[j, l,m] = ql(m−j)

[
m

j

]

qs−1

j−1
∏

i=0

[l + i(s− 1)]q.

Hence, the numbers Sv,u
s,h;q[k] are given by

Sv,u
s,h;q[k] = h|u|−k

∑

j1+···+jn−1=u1+···+un−k

n−1∏

i=1

Γq,s[ji, v1+· · ·+vi+(j1+· · ·+ji−1)(s−1), ui+1]. (7)

Proof. Identity (6) is proved by repeated application of (5) beginning from Uu2V v1 . Identity
(7) follows by comparing the coefficient of Uk in (6) and (1).

We note that the case s = 0, h = 1, q = 1 of Corollary 2 was derived by El Desouky et
al. [2] using the Leibniz formula.

Corollary 3. Let s ∈ N and set v = u = (1, 1, . . . , 1
︸ ︷︷ ︸

n

). Then the following explicit formula

for Sv,u
s,h;q[k] holds

Sv,u
s,h;q[k] = hn−k

∑

j1+···+jn−1=n−k

n−1∏

i=1

q(i+(j1+···+ji−1)(s−1))(1−ji)

[
i+ (j1 + · · ·+ ji−1)(s− 1)

ji

]

q

.

Varvak’s [8] use of rook factorization to obtain an explicit formula adapts readily in the
case of Sv,u

s,h;q[k] after some modification. We will need the following analogues of the falling

factorial and factorial: for r ∈ R, j ∈ N, define [r]
(j)

q,1−s = [r(1− s)]q[(r − 1)(1− s)]q · · · [(r −

j + 1)(1− s)]q and for n ∈ N, define [n]q,1−s! = [n]
(n)
q,1−s.

Theorem 4. Let s 6= 1. The coefficients Sv,u
s,h;q[k] satisfy the explicit formula

Sv,u
s,h;q[k] =

h|u|−k

[k]q,1−s!

k∑

j=0

(−1)k−jq(
k−j
2 )(1−s)

[
k

j

]

q1−s

Ωv,u
s;q [j],

where

Ωv,u
s;q [j] =

n∏

t=1

[j − (u1 + u2 + · · ·+ ut−1) + (v1 + v2 + · · ·+ vt−1)/(1− s)]
(ut)
q,1−s.
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Proof. We use a representation of V, U as linear operators whose action on the monomial
tj is given by V tj = tj+1 and Utj = h[j]qt

j+s−1. One can verify that these operators

satisfy V U − qV U = hV s and that Uktn(1−s) = hk[n]
(k)
q,1−st

(n−k)(1−s). We then apply both

sides of (1) to tx(1−s). After letting t = 1 to the resulting equation and using the property

[x]
(k)
q,1−s = [1− s]kq [x]q1−s [x− 1]q1−s · · · [x− k + 1]q1−s , we obtain

h|u|Ωv,u
s;q [x] =

|u|
∑

k=u1

hkSv,u
s,h;q[k][1− s]kq [x]q1−s [x− 1]q1−s · · · [x− k + 1]q1−s .

Let E denote the shift operator EP (x) = P (x+1) and ∆k
Q the k-th Q-difference operator

defined by ∆k
Q = (E−1)(E−Q) · · · (E−Qk−1). If P (x) =

∑

k pk[x]Q[x−1]Q · · · [x−k+1]Q,

then pk = 1
[k]Q!

∆k
QP (x)|x=0. By the q-binomial theorem, ∆k

Q =
∑k

j=0(−1)jQ(j2)
[
k
j

]

Q
Ek−j.

The result then follows by letting Q = q1−s, pk = hkSv,u
s,h;q[k][1− s]kq and P (x) = h|u|Ωv,u

s;q [x].

Corollary 5. Let s ∈ N\{0, 1}. If v = u = (1, 1, . . . , 1
︸ ︷︷ ︸

n

), then the numbers Sv,u
s,h;q[k] have the

following explicit formula

Sv,u
s,h;q[k] =

hn−k[s]nq
[k]q1−s ![1− s]kq

k∑

j=0

(−1)k−jq(
k−j
2 )(1−s)

[
k

j

]

q1−s

n∏

t=1

[(j/s) + t− j − 1]qs .

When s = 0,

Sv,u
0,h;q[k] =

hn−k

[k]q!

k∑

j=0

(−1)k−jq(
k−j
2 )
[
k

j

]

q

[j]nq .

Theorem 4 can be used to derive a Dobinsky formula for the Bell numbers corresponding
to Sv,u

s,h;q[k]. Define the generalized q-Bell polynomials Bv,u
s,h;q[x] and generalized q-Bell numbers

Bv,u
s,h;q by

Bv,u
s,h;q[x] =

|u|
∑

k=u1

Sv,u
s,h;q[k]x

k, Bv,u
s,h;q = Bv,u

s,h;q[1].

When s = 0, h = 1, q = 1 and the associated string Hv,u outlines a staircase board, i.e., when
v = u = (1, 1, . . . , 1

︸ ︷︷ ︸

n

), the numbers Bv,u
s,h;q[x] and Bv,u

s,h;q reduce to the usual Bell polynomial

B(n; x) and Bell number B(n), respectively. The classical Dobinsky formula is given by

B(n; x) =
1

ex

∞∑

j=0

jn
xj

j!
.

The Dobinsky formula corresponding to Bv,u
s,h;q[x] is as follows.
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Corollary 6. Let s ∈ N\{1} and Ωv,u
s;q [j] be as in Theorem 4. Then,

Bv,u
s,h;q[x] =

(
∞∑

j=0

h|u|−j(−1)jq(
j
2)(1−s) xj

[j]q,1−s!

)(
∞∑

j=0

Ωv,u
s;q [j]

xj

hj[j]q,1−s!

)

.

Proof. Using Theorem 4, the property Sv,u
s,h;q[k] = 0 when |u| < k < u1 and the property

[
k
j

]

q1−s
= [k]q,1−s!

[j]q,1−s![k−j]q,1−s!
, respectively, we have

Bv,u
s,h;q[hx] =

|u|
∑

k=u1

Sv,u
s,h;q[k]h

kxk

=
∞∑

k=0

k∑

j=0

h|u|

[k]q,1−s!
(−1)k−jq(

k−j
2 )(1−s)

[
k

j

]

q1−s

Ωv,u
s;q [j]x

k

=
∞∑

k=0

k∑

j=0

(

h|u|(−1)k−jq(
k−j
2 )(1−s)

[k − j]q,1−s!

)(
Ωv,u

s;q [j]

[j]q,1−s!

)

xk.

The desired result is then obtained after replacing x with x/h and by using the Cauchy
product rule.

3 Second approach: generalized symmetric functions

In this section, we derive formulas for Sv,u
s,h;q[k] by showing that it can be expressed in terms

of a certain generalization of some symmetric functions. Our derivation will involve the
following shift in notation. Let w = Hv,u. Label the columns of B(w) from the right
by 0, 1, 2, . . . , |u| − 1 and let wi be the length of the column labeled i. Let B0(w) = ∅

and for n = 1, 2, . . . , |u| − 1, let Bn(w) be the Ferrers board whose column lengths are
w0, w1, w2 . . . , wn−1. Finally, define Sw

s,h;q[n, k] = Rs,h;q[Bn(w), n− k].

Theorem 7. Let n = 0, 1, 2, . . . , |u| − 1, k ≤ n. The rook numbers Rs,h;q[Bn(w), k] satisfy
the recurrence relation

Rs,h;q[Bn(w), k] = qwn−1+k(s−1)Rs,h;q[Bn−1(w), k]

+ h[wn−1 + (k − 1)(s− 1)]q Rs,h;q[Bn−1(w), k − 1] (8)

with boundary conditions Rs,h;q[Bn(w), n] =
∏n−1

i=0 [wi+(i− 1)(s− 1)]q and Rs,h;q[B0(w), 0] =
Rs,h;q[Bn(w), 0] = 1.

Proof. The identity can be proved by induction but a combinatorial proof appears to be
more straightforward. Divide the set R(B(w), k) into two, with the first set consisting of
rook placements without a rook in the m-th column and the other set consisting of rook
placements with a rook in m-th column. The sum of the weights of all rook placements in
the first set is qwn−1+k(s−1)Rs,h;q[Bn−1(w), k] while that of the second set is h[wn−1 + (k −
1)(s− 1)]qRs,h;q[Bn−1(w), k − 1].
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From Equation (8), we have

Sw
s,h;q[n, k] = qwn−1+(n−k)(s−1)Sw

s,h;q[n− 1, k − 1]

+ h[wn−1 + (n− k − 1)(s− 1)]qS
w
s,h;q[n− 1, k]. (9)

Now, multiply both sides of (9) by q(s−1)(k+1

2 )−(s−1)(n+1

2 )−
∑n−1

i=0
wi and let

sn,k = q(s−1)(k+1

2 )−(s−1)(n+1

2 )−
∑n−1

i=0
wiSw

s,h;q[n, k].

Equation (9) then becomes

sn,k = sn−1,k−1 + hqs
(
[wn−1 + (n− 1)(s− 1)]1/q − [k(s− 1)]1/q

)
sn−1,k.

This shows that the numbers sn,k, and hence Sw
s,h;q[n, k], can be studied under a more general

setting. (A similar observation was made by Mansour et al. [5] in the case of the normal
ordering coefficients of (V U)n.) Specifically, let α = (α0, α1, . . .) and w = (β0, β1, . . .) be

sequences (or equivalently, weight functions) and define the numbers Aα,β
n,k by the recurrence

relation
Aα,β

n,k = Aα,β
n−1,k−1 + (αn−1 + βk)A

α,β
n−1,k, (10)

with initial conditions Aα,β
0,n = δ0,n and Aα,β

n,0 = (αn−1+β0)(αn−2+β0) · · · (α0+β0). When only
the value of a weight function at i = 0, 1, 2, . . . is specified (for instance, αi), it is understood
that the corresponding weight function is the same letter in boldface without the subscript.

In the theorem that follows, we denote the matrix whose (n, k) entry is Mn,k by [Mn,k].
The zero weight function is denoted 0 = (0, 0, . . .). The matrices are all assumed to be
square.

Theorem 8. There holds the matrix factorization
[

Aα,β
n,k

]

=
[
Aα,0

n,k

] [

A0,β
n,k

]

. Equivalently,

Aα,β
n,k =

∑n
j=k A

α,0
n,j A

0,β
j,k .

Proof. By (10),

Aα,0
n,j A

0,β
j,k = (Aα,0

n−1,j−1 + αn−1A
α,0
n−1,j)(A

0,β
j−1,k−1 + βkA

0,β
j−1,k)

= Aα,0
n−1,j−1A

0,β
j−1,k−1 + αn−1A

α,0
n−1,jA

0,β
j,k + βkA

α,0
n−1,j−1A

0,β
j−1,k

Hence, the numbers Aα,β
n,k viewed as the (n, k) entry of the matrix product

[
Aα,0

n,k

] [

A0,β
n,k

]

satisfy the same recursion as the numbers defined by Equation (10).

The theorem that follows gives different formulations for the numbers Aα,β
n,k in terms of

expressions that are analogous to elementary and complete symmetric functions.
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Theorem 9. The following identities hold:

Aα,β
n,k =

∑

0≤i1<i2<...<in−k≤n−1

n−k∏

j=1

(αij + βij−j+1) (11)

Aα,β
n,k =

∑

0≤i1≤i2≤...≤in−k≤k

n−k∏

j=1

(αij+j−1 + βij) (12)

Aα,β
n,k =

∑

i0+i1+i2+···+ik=n−k

k∏

j=0

ij−1
∏

l=0

(αj+l+i0+i1+i2+···+ij−1
+ βj). (13)

Proof. It can be shown by partitioning the set of indices that the RHS of (11) and (12)
satisfy the recursion (10). Identity (13) is a restatement of (12).

Let H be a set. Them-th elementary symmetric function e andm-th complete symmetric

function h are defined as follows: em(H) (resp. hm(H)) is the sum of all products of m
elements from H taken without (resp. with) replacement. Observe that by (11), Aα,0

n,k =

en−k({α0, α1, . . . , αn−1}) and by (12) or (13), A0,α
n,k = hn−k({α0, α1, . . . , αk}). This shows

that the numbers Aα,0
n,k and A0,α

n,k are exactly the U -Stirling numbers studied by Medicis and
Leroux [6] which they defined in terms of A-tableaux.

We now give an interpretation for Aα,β
n,k in terms of certain lattice paths which reduces to

the A-tableau interpretation for Aα,0
n,k and A0,β

n,k . Let m,m′ ∈ N and denote by L(m,m′) the
set of pairs of lattice paths (λ, λ′) on an m by m′ grid consisting of unit left (L) and unit up
(U) steps beginning from the origin (the lower left corner of the grid) such that λ contains
no two consecutive L’s and such that λ′ is the lattice path obtained from λ by replacing
every occurrence of UL by L. Figure 2 shows an example of a pair of lattice path in L(6, 5)
where λ is the lattice path in bold lines and λ′ is the lattice path in dotted lines.

Figure 2: A pair of lattice paths in L(6, 5)

Given a weight function γ, we assign to a lattice path λ∗ with m∗ L’s the weight γ(λ∗) =
∏m∗

i=1 γλ∗

i
where the λ∗

i ’s are the second coordinates of the L’s of λ∗. For instance, the
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lattice path in bold lines in Figure 2 has weight γ0γ1γ2γ4γ6. The next theorem gives the
interpretation of Aα,β

n,k in terms of lattice paths and follows directly from Equation (11) of
Theorem 9.

Theorem 10. The following interpretation for Aα,β
n,k holds

Aα,β
n,k =

∑

(λ,λ′)∈L(n−1,n−k)

(α(λ) + β(λ′)) .

Going back to Sw
s,h;q[n, k], the discussion in the beginning of this section shows that if

αi = hqs[wi + i(s− 1)]1/q, βi = −hqs[i(s− 1)]1/q, then

q(s−1)(k+1

2 )−(s−1)(n+1

2 )−
∑n−1

i=0
wiSw

s,h;q[n, k] = Aα,β
n,k . (14)

If w = Hv,u where B(w) has n = |u| columns, then Sw
s,h;q[n, k] = Sv,u

s,h;q[k]. This shows that

properties of Sv,u
s,h;q[k] can be easily lifted from the properties of Aα,β

n,k .

Theorem 11. Let n = |u|. Then the numbers Sv,u
s,h;q[k] satisfy the formula

Sv,u
s,h;q[k] = f(n, k)hn−k

∑

i,j,l

(−1)j−lAρ,0
n,j

(
j

i

)(
i

l

)[
l

k

]

q1−s

,

where fq(n, k) = q2(s+1)(n−k)−(s−1)(k+1

2 )+(s−1)(n+1

2 )−
∑n−1

i=0
wi(1− q)−2(n−k), ρ is the weight func-

tion given by ρi = (1/q)wi+i(s−1) and wi is the length of the (i+ 1)-st column from the rights

of the Ferrers board B(Hv,w). Hence,

Hv,u =
n∑

k=u1

(

fq(n, k)
∑

i,j,l

hn−k(−1)j−lAρ,0
n,j

(
j

i

)(
i

l

)[
l

k

]

q1−s

)

V |v|−(|u|−k)(1−s)Uk.

Proof. For simplicity, let h = 1. We can easily recover the more general identity using
the fact that Sw

s,h;q[n, k] = hn−kSw
s,1;q[n, k]. Define the weight functions α and β by αi =

qs[wi + i(s− 1)]1/q, βi = −qs[i(s − 1)]1/q. We first gather all the facts we will use. Also, let

Q = 1/q by α∗
i = Qwi+i(s−1) and β∗

i = Qi(s−1). Then we can rewrite the weight functions as

αi = Q−s α
∗

i−1

Q−1
, βi = −Q−s α

∗

i−1

Q−1
.

For an arbitrary weight function γ and constant c, Equations (11) and (12) imply that
Acγ,0

n,k = cn−kAγ,0
n,k and A0,cγ

n,k = cn−kA0,γ
n,k , respectively. Furthermore, if γi = qi, then A0,γ

n,k =
[
n
k

]

q
by the recurrence (10) and the fact that

[
n
k

]

q
=
[
n−1
k−1

]

q
+ qk

[
n−1
k

]

q
. Using these facts and

10



by the repeated use of Theorem 8,

Aα,β
n,k = (Qs(Q− 1))−2(n−k)

∑

i

Aα,0
n,i A

0,β
i,k

= (Qs(Q− 1))−2(n−k)
∑

i

Aα∗,−1

n,i A−1,β∗

i,k

= (Qs(Q− 1))−2(n−k)
∑

i,j,l

Aα∗,0
n,j A0,−1

j,i A−1,0
i,l A0,β∗

l,k

= (Qs(Q− 1))−2(n−k)
∑

i,j,l

(−1)j−lAα∗,0
n,j

(
j

i

)(
i

l

)[
l

k

]

Qs−1

.

The theorem now follows from (14) and after letting ρ = α∗.

We can use the previous theorem to obtain explicit formulas for the rook numbers of some
special types of Ferrers boards studied by Goldman and Haglund [3]. If the columns lengths
of the Ferrers board B(Hv,u) has column lengths 0, c, 2c, . . . , (|u| − 1)c, we call B(Hv,u) a
c-jump board. If B(Hv,u) is an |u| × |u| Ferrers board, then we call B(Hv,u) an Abel board.

Corollary 12. Let n = |u| and let fq(n, k) be as in Theorem 11. If w outlines a c-jump

board, then

Rs,h;q[B(Hv,u), k] = fq(n, n− k)hk
∑

i,j,l

(−1)j−lq(
n−j
2 )(c+s−1)

[
n

j

]

q1−s−c

(
j

i

)(
i

l

)[
l

n− k

]

q1−s

.

On the other hand, if w outlines a d× |u| Ferrers board, then

Rs,h;q[B(Hv,u), k] = fq(n, n− k)hk
∑

i,j,l

(−1)j−lq−d(k)−(n−j
2 )
[
n

j

]

q1−s

(
j

i

)(
i

l

)[
l

n− k

]

q1−s

.

The Abel board is the case where d = n.

4 Some Special Cases

In this section, we enumerate special cases of the normal ordering coefficients considered
in Sections 2 and 3 for some strings, with h = 1, q = 1. We have verified that the OEIS
sequences cited below are indeed the coefficients of the given strings by comparing their
known recurrence relations with Equation (9). We have also included sequences whose
recurrence relations are not given in the OEIS entry, but whose table of values match the
ones we have generated. These sequences are marked with an asterisk, and it remains an
open question if these sequences indeed occur as normal ordering coefficients. The name or
short description of the sequences are also given when available.

11



String s OEIS entry Name or short description

(V U)n −3 A265604 ∗ Inverse Bell transform of quartic factorial numbers
(V U)n −2 A265605 ∗ Inverse Bell transform of the triple factorial numbers
(V U)n −1 A122848 ∗ Exponential Riordan array (1, x(1 + x/2))
(V U)n 0 A008277 Stirling numbers of the second kind
(V U)n 1 A132393 Stirling numbers of the first kind
(V U)n 2 A001497 Coefficients of Bessel polynomials
(V U)n 3 A203412
(V U)n 4 A265606∗ Bell transform of the quartic factorial numbers
(V 2U)n 0 A271703 unsigned Lah numbers
(V 3U)n 0 A035342∗ convolution matrix of A001147
(V 4U)n 0 A035469 Bell transform of A007559 without column 0
(V 2U)n 1 unsigned A039683
(V 3U)n 1 unsigned A051141
(V 4U)n 1 unsigned A051142
(V 2U)n 2 A004747 Bell transform of A008544 without column 0.

5 Acknowledgment

The third author was supported in part by the Department of Science and Technology
(DOST) through its ASTHRD Program. The research was also supported by the grant MAT-
15-1-03 from the Natural Sciences Research Institute (NSRI), University of the Philippines
Diliman. The support of these institutions are gratefully acknowledged.

References

[1] P. Blasiak, Combinatorics of boson normal ordering and some applications,
Ph. D. thesis, University of Paris VI and Polish Academy of Sciences, 2005,
http://arxiv.org/abs/quant-ph/0507206.
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