Journal of Integer Sequences, Vol. 20 (2017), Article 17.9.7

Divisors on Overlapped Intervals and Multiplicative Functions

José Manuel Rodríguez Caballero
Département de Mathématiques
UQAM
Case Postale 8888, Succ. Centre-ville
Montréal, Québec H3C 3P8
Canada
rodriguez_caballero.jose_manuel@uqam.ca

Abstract

Reutenauer and Kassel introduced a family $P_{n}(q)$ of polynomials defined in terms of divisors of n on overlapped intervals. The evaluation of $P_{n}(q)$ at roots of unity of order $2,3,4,6$ form well-known integer sequences related to the number of integer solutions of the equations $x^{2}+y^{2}=n, x^{2}+2 y^{2}=n$, and $x^{2}+x y+y^{2}=n$. Also, $P_{n}(1)$ is the sum of divisors of n. In this paper we define a new family $L_{n}(q)$ of polynomials defined in terms of divisors of n on overlapped intervals, slightly modifying the definition of $P_{n}(q)$. The values of $L_{n}(q)$ at $q=1$ and $q=-1$ are related to the sum of divisors of n and to the number of integer solutions of the equations $x^{2}+x y+y^{2}=n$ and $x^{2}+3 y^{2}=n$.

1 Introduction

For a given integer $n \geq 1$, consider the two-sided sequence

$$
p_{n, k}=\ln \left(k+\sqrt{k^{2}+2 n}\right)
$$

where $k \in \mathbb{Z}$ and define the intervals

$$
\mathcal{P}_{n, k}=\left(p_{n, k}-\ln 2, p_{n, k}\right] .
$$

Kassel and Reutenauer [2] introduced the polynomials ${ }^{1}$

$$
\frac{P_{n}(q)}{q^{n-1}}=\sum_{d \mid n} \sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{P}_{n, k}}(\ln d) q^{k}
$$

where $\mathbf{1}_{A}(x)$ is the characteristic function of the set A, i.e., $\mathbf{1}_{A}(x)=1$ if $x \in A$, otherwise $\mathbf{1}_{A}(x)=0$. Each polynomial $P_{n}(q)$ is monic of degree $2 n-2$, its coefficients are non-negative integers and it is self-reciprocal [3]. The evaluations of $P_{n}(q)$ at some complex roots of 1 have number-theoretical interpretations [3], e.g.,

$$
\begin{aligned}
\sigma(n) & =P_{n}(1) \\
\frac{r_{1,0,1}(n)}{4} & =P_{n}(-1) \\
\frac{r_{1,0,2}(n)}{2} & =\left|P_{n}(\sqrt{-1})\right| \\
\frac{r_{1,1,1}(n)}{6} & =\operatorname{Re} P_{n}\left(\frac{-1+\sqrt{-3}}{2}\right)
\end{aligned}
$$

where $\sigma(n), \frac{r_{1,0,1}(n)}{4}, \frac{r_{1,0,2}(n)}{2}$ and $\frac{r_{1,1,1}(n)}{6}$ are multiplicative functions [5] given by

$$
\begin{aligned}
\sigma(n) & =\sum_{d \mid n} d, \\
r_{a, b, c}(n) & =\#\left\{(x, y) \in \mathbb{Z}^{2}: \quad a x^{2}+b x y+c y^{2}=n\right\} .
\end{aligned}
$$

Furthermore, for $q=\frac{1+\sqrt{-3}}{2}$, the same sequence $n \mapsto P_{n}(q)$ is related to $r_{1,0,1}(n)$ in three ways [4], depending on the congruence class of n in $\mathbb{Z} / 3 \mathbb{Z}$,

$$
\left|P_{n}\left(\frac{1+\sqrt{-3}}{2}\right)\right|=\left\{\begin{array}{lll}
r_{1,0,1}(n), & \text { if } n \equiv 0 & (\bmod 3) ; \\
\frac{1}{4} r_{1,0,1}(n), & \text { if } n \equiv 1 & (\bmod 3) ; \\
\frac{1}{2} r_{1,0,1}(n), & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

For any integer $n \geq 1$, consider the two-sided sequence

$$
\ell_{n, k}=\ln \left(\frac{3}{2} k+\sqrt{\left(\frac{3}{2} k\right)^{2}+3 n}\right)
$$

and the intervals

$$
\mathcal{L}_{n, k}=\left(\ell_{n, k}-\ln 3, \ell_{n, k}\right],
$$

[^0]

Figure 1: Representation of $L_{6}(q)$.
where k runs over the integers. Define a variation of the polynomials $P_{n}(q)$ as follows:

$$
\frac{L_{n}(q)}{q^{n-1}}=\sum_{d \mid n} \sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d) q^{k}
$$

For example, in order to compute $L_{6}(q)$ from the definition, we need to consider the intervals $\left(\ell_{6, k}-\ln 3, \ell_{6, k}\right]$ on the real line and to count the number of values of $\ln d$ inside each interval, where d runs over the divisors of n. These data are shown in Figure 1, where the numbers $\ell_{6, k}$ are plotted on the line below (the corresponding values of k are labelled) whereas the numbers $\ln d$ are plotted on the line above (the corresponding values of d are labelled). Counting the number of intersections between the horizontal and the vertical lines, we obtain that the coefficients of $\frac{L_{6}(q)}{q^{6-1}}$ are as follows:

$$
\frac{L_{6}(q)}{q^{6-1}}=q^{5}+q^{4}+q^{3}+2 q^{2}+2 q+2 q^{0}+2 q^{-1}+2 q^{-2}+q^{-3}+q^{-4}+q^{-5}
$$

Like $P_{n}(q)$, the polynomial $L_{n}(q)$ is monic of degree $2 n-2$, self-reciprocal and its coefficients are non-negative integers. The aim of this paper is to express the multiplicative functions [5, p. 421] $\frac{r_{1,1,1}(n)}{6}$ and $\frac{r_{1,0,3}(n)}{2}$ in terms of the evaluations of $L_{n}(q)$ at roots of the unity. More precisely, we will prove the following result.

Theorem 1. For each $n \geq 1$,

$$
\begin{align*}
& \underline{A 002324}(n):=\frac{r_{1,1,1}(n)}{6}=4 \sigma(n)-3 L_{n}(1) \tag{1}\\
& \underline{A 096936}(n):=\frac{r_{1,0,3}(n)}{2}=L_{n}(-1) \tag{2}
\end{align*}
$$

2 Auxiliary results for the first identity of Theorem 1

For any $n \geq 1$, we will use the notation

$$
d_{a, m}(n):=\#\{d \mid n: \quad d \equiv a \quad(\bmod m)\} .
$$

We will use the following well-known result [1].
Lemma 2. For all integers $n \geq 1$,

$$
\frac{r_{1,1,1}(n)}{6}=d_{1,3}(n)-d_{2,3}(n)
$$

Lemma 3. For any integer $n \geq 1$,

$$
\begin{aligned}
& 3\left\lceil 3^{-1} n\right\rceil-n=\left\{\begin{array}{lll}
0, & \text { if } n \equiv 0 & (\bmod 3) ; \\
2, & \text { if } n \equiv 1 & (\bmod 3) ; \\
1, & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right. \\
& n-3\left\lfloor 3^{-1} n\right\rfloor
\end{aligned}=\left\{\begin{array}{lll}
0, & \text { if } n \equiv 0 & (\bmod 3) ; \\
1, & \text { if } n \equiv 1 & (\bmod 3) ; \\
2, & \text { if } n \equiv 2 & (\bmod 3) .
\end{array}\right.
$$

Proof. It is enough to evaluate $3\left\lceil 3^{-1} n\right\rceil-n$ and $3\left\lceil 3^{-1} n\right\rceil-n$ at $n=3 k+r$, for $k \in \mathbb{Z}$ and $r \in\{0,1,2\}$.

Lemma 4. For any pair of integers $n \geq 1$ and k, the inequalities

$$
\ell_{n, k}-\ln 3<\ln d \leq \ell_{n, k}
$$

hold if and only if the inequalities

$$
3^{-1} d-\frac{n}{d} \leq k<d-3^{-1} \frac{n}{d}
$$

hold.
Proof. The inequalities

$$
\ell_{n, k}-\ln 3<\ln d \leq \ell_{n, k}
$$

are equivalent to

$$
\ln d \leq \ell_{n, k}<\ln d+\ln 3
$$

Applying the strictly increasing function $x \mapsto \frac{e^{x}}{3}-n e^{-x}$ to the last inequalities we obtain the following equivalent inequalities

$$
3^{-1} d-\frac{n}{d} \leq k<d-3^{-1} \frac{n}{d}
$$

Indeed, $\frac{e^{\ln d}}{3}-n e^{-\ln d}=3^{-1} d-\frac{n}{d}, \frac{e^{\ln d+\ln 3}}{3}-n e^{-(\ln d+\ln 3)}=d-3^{-1 \frac{n}{d}}$ and

$$
\begin{aligned}
\frac{e^{\ell_{n, k}}}{3}-n e^{-\ell_{n, k}} & =\frac{\frac{3}{2} k+\sqrt{\left(\frac{3}{2} k\right)^{2}+3 n}}{3}-\frac{n}{\frac{3}{2} k+\sqrt{\left(\frac{3}{2} k\right)^{2}+3 n}} \\
& =\frac{\frac{3}{2} k+\sqrt{\left(\frac{3}{2} k\right)^{2}+3 n}}{3}+\frac{\frac{3}{2} k-\sqrt{\left(\frac{3}{2} k\right)^{2}+3 n}}{3} \\
& =k .
\end{aligned}
$$

So the lemma is proved.
Lemma 5. Let $n \geq 1$ be an integer. For all $d \mid n$,

$$
\sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d)=\left\lceil d-3^{-1} \frac{n}{d}\right\rceil-\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil
$$

Proof. For all integers $n \geq 1$ and k, we have that

$$
\begin{aligned}
& \sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d) \\
= & \#\left\{k \in \mathbb{Z}: \quad \ell_{n, k}-\ln 3<\ln d \leq \ell_{n, k}\right\} \\
= & \#\left\{k \in \mathbb{Z}: \quad 3^{-1} d-\frac{n}{d} \leq k<d-3^{-1} \frac{n}{d}\right\} \quad \text { (Lemma 4) } \\
= & \#\left\{k \in \mathbb{Z}: \quad\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil \leq k<\left\lceil d-3^{-1} \frac{n}{d}\right\rceil\right\} \\
= & \left\lceil d-3^{-1} \frac{n}{d}\right\rceil-\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil .
\end{aligned}
$$

So the lemma is proved.

3 Auxiliary results for the second identity of Theorem 1

We will use the following well-known result [5, p. 421].
Lemma 6. The function $\frac{r_{1,0,3}(n)}{2}$ is multiplicative.
We will use the following well-known result [1].
Lemma 7. For all integers $n \geq 1$,

$$
\frac{r_{1,0,3}(n)}{2}=d_{1,3}(n)-d_{2,3}(n)+2\left(d_{4,12}(n)-d_{8,12}(n)\right)
$$

Recall that the nonprincipal Dirichlet character mod 3 is the 3-periodic arithmetic function $\chi_{3}(n)$ given by $\chi_{3}(0)=0, \chi_{3}(1)=1$ and $\chi_{3}(2)=-1$.

Lemma 8. For all $n \geq 1$,

$$
\frac{(-1)^{\left\lfloor 3^{-1} n\right\rfloor}-(-1)^{\left\lceil 3^{-1} n\right\rceil}}{2}=(-1)^{n-1} \chi_{3}(n)
$$

Proof. It is enough to substitute $n=3 k+r$, with $k \in \mathbb{Z}$ and $r \in\{0,1,2\}$, in both sides in order to check that they are equal.

Lemma 9. For all $n \geq 1$,

$$
\sum_{d \mid n}(-1)^{\frac{n}{d}-1}(-1)^{d-1} \chi_{3}(d)=(-1)^{n-1} \frac{r_{1,0,3}(n)}{2}
$$

Proof. By Lemma 6, the function $\frac{r_{1,0,3}(n)}{2}$ is multiplicative. Also, it is easy to check that the functions $(-1)^{n-1}$ and $\chi_{3}(n)$ are multiplicative. So the functions $f(n)=(-1)^{n-1} \frac{r_{1,0,3}(n)}{2}$ and $(-1)^{n-1} \chi_{3}(n)$ are multiplicative, because the multiplicative property is preserved by ordinary product. The function $g(n)=\sum_{d \mid n}(-1)^{\frac{n}{d}-1}(-1)^{d-1} \chi_{3}(d)$ is multiplicative, because Dirichlet convolution preserves the multiplicative property. So it is enough to prove that $f\left(p^{k}\right)=g\left(p^{k}\right)$ for each prime power p^{k}.

Considering the case $p=2$. The following elementary equivalences hold for any integer $m \geq 0$,

$$
\begin{aligned}
2^{m} \equiv 1 \quad(\bmod 3) & \Longleftrightarrow m \equiv 0 \quad(\bmod 2), \\
2^{m} \equiv 2 \quad(\bmod 3) & \Longleftrightarrow m \equiv 1 \quad(\bmod 2), \\
2^{m} \equiv 4 \quad(\bmod 12) & \Longleftrightarrow m \equiv 0 \quad(\bmod 2) \text { and } m \neq 0, \\
2^{m} \equiv 8 \quad(\bmod 12) & \Longleftrightarrow m \equiv 1 \quad(\bmod 2) \text { and } m \neq 1 .
\end{aligned}
$$

So, for each integer $k \geq 1$,

$$
\begin{aligned}
d_{1,3}\left(2^{k}\right) & =\#[0, k] \cap 2 \mathbb{Z}=\left\lfloor\frac{k}{2}\right\rfloor+1 \\
d_{2,3}\left(2^{k}\right) & =\#[1, k] \cap(2 \mathbb{Z}+1)=\left\lceil\frac{k}{2}\right\rceil \\
d_{4,12}\left(2^{k}\right) & =\#[2, k] \cap 2 \mathbb{Z}=\left\lfloor\frac{k}{2}\right\rfloor \\
d_{8,12}\left(2^{k}\right) & =\#[3, k] \cap(2 \mathbb{Z}+1)=\left\lceil\frac{k}{2}\right\rceil-1
\end{aligned}
$$

For any $k \geq 1$, it follows that

$$
\begin{aligned}
g\left(2^{k}\right) & =\sum_{j=0}^{k}(-1)^{2^{k-j}-1}(-1)^{2^{j}-1} \chi_{3}\left(2^{j}\right) \\
& =\sum_{j=0}^{k}(-1)^{2^{k-j}-1}(-1)^{2 j-1}(-1)^{j} \\
& =-1-(-1)^{k}+\sum_{j=1}^{k-1}(-1)^{j} \\
& =-1-(-1)^{k}+\frac{-1-(-1)^{k}}{2} \\
& =-3 \frac{1+(-1)^{k}}{2} \\
& =-3\left(1+\left\lfloor\frac{k}{2}\right\rfloor-\left\lceil\frac{k}{2}\right\rceil\right) \\
& =-\left(\left(\left\lfloor\frac{k}{2}\right\rfloor+1\right)-\left\lceil\frac{k}{2}\right\rceil+2\left(\left\lfloor\frac{k}{2}\right\rfloor-\left(\left\lceil\frac{k}{2}\right\rceil-1\right)\right)\right) \\
& =(-1)^{2^{k}-1}\left(d_{1,3}\left(2^{k}\right)-d_{2,3}\left(2^{k}\right)+2\left(d_{4,12}\left(2^{k}\right)-d_{8,12}\left(2^{k}\right)\right)\right) \\
& =f\left(2^{k}\right) \quad(\text { Lemma } 7) .
\end{aligned}
$$

Let p and $k \geq 1$ be an odd prime and an integer respectively. Noticing that $(-1)^{p^{j}-1}=1$ for all $0 \leq j \leq k$. Also, $d_{4,12}\left(p^{k}\right)=d_{8,12}\left(p^{k}\right)=0$, because p^{k} has not even divisor. So, for any $k \geq 1$,

$$
\begin{aligned}
g\left(p^{k}\right) & =\sum_{j=0}^{k}(-1)^{p^{k-j}-1}(-1)^{p^{j}-1} \chi_{3}\left(p^{j}\right) \\
& =\sum_{j=0}^{k} \chi_{3}\left(p^{j}\right) \\
& =d_{1,3}\left(p^{k}\right)-d_{2,3}\left(p^{k}\right) \\
& =(-1)^{p^{k}-1}\left(d_{1,3}\left(p^{k}\right)-d_{2,3}\left(p^{k}\right)+2\left(d_{4,12}\left(p^{k}\right)-d_{8,12}\left(p^{k}\right)\right)\right) \\
& =f\left(p^{k}\right) \quad(\text { Lemma } 7) .
\end{aligned}
$$

Therefore, $f(n)=g(n)$ for all $n \geq 1$.
Lemma 10. For each $d \mid n$,

$$
\sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{C}_{n, k}}(\ln d)(-1)^{k}=\frac{1}{2}\left((-1)^{\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil}-(-1)^{\left\lceil d-3^{-1} \frac{n}{d}\right\rceil}\right) .
$$

Proof. For any integer $n \geq 1$ and any $d \mid n$,

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d)(-1)^{k} & =\sum_{3^{-1} d-\frac{n}{d} \leq k<d-3^{-1} \frac{n}{d}}(-1)^{k} \quad(\text { Lemma } 4) \\
& =\sum_{\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil \leq k<\left\lceil d-3^{-1} \frac{n}{d}\right\rceil}(-1)^{k} .
\end{aligned}
$$

Substituting $a=\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil, b=\left\lceil d-3^{-1} \frac{n}{d}\right\rceil$ and $q=-1$ in the geometric sum

$$
\sum_{a \leq k<b} q^{k}=\frac{q^{a}-q^{b}}{1-q}
$$

we obtain

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d)(-1)^{k} & =\frac{(-1)^{\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil}-(-1)^{\left\lceil d-3^{-1} \frac{n}{d}\right\rceil}}{1-(-1)} \\
& =\frac{1}{2}\left((-1)^{\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil}-(-1)^{\left\lceil d-3^{-1} \frac{n}{d}\right\rceil}\right)
\end{aligned}
$$

So the lemma is proved.

4 Proof of the main result

We proceed now with the proof of the main result of this paper.
Proof of Theorem 1. Identity (1) follows from the following transformations,

$$
\begin{aligned}
L_{n}(1) & =\sum_{d \mid n} \sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d) \\
& =\sum_{d \mid n}\left(\left\lceil d-3^{-1} \frac{n}{d}\right\rceil-\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil\right) \quad(\text { Lemma } 5) \\
& =\sum_{d \mid n}\left(d+\frac{n}{d}\right)+\sum_{d \mid n}\left\lceil-3^{-1} \frac{n}{d}\right\rceil-\sum_{d \mid n}\left\lceil 3^{-1} d\right\rceil \\
& =\sum_{d \mid n}\left(d+\frac{n}{d}\right)-\sum_{d \mid n}\left\lfloor 3^{-1} \frac{n}{d}\right\rfloor-\sum_{d \mid n}\left\lceil 3^{-1} d\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{3} \sum_{d \mid n}\left(d+\frac{n}{d}\right)+\frac{1}{3} \sum_{d \mid n}\left(\frac{n}{d}-3\left\lfloor 3^{-1} \frac{n}{d}\right\rfloor\right)-\frac{1}{3} \sum_{d \mid n}\left(3\left\lceil 3^{-1} d\right\rceil-d\right) \\
& =\frac{4 \sigma(n)}{3}+\frac{d_{1,3}(n)+2 d_{2,3}(n)}{3}-\frac{2 d_{1,3}(n)+d_{2,3}(n)}{3} \quad(\text { Lemma 3) } \\
& =\frac{4 \sigma(n)}{3}-\frac{d_{1,3}(n)-d_{2,3}(n)}{3} \\
& =\frac{4}{3} \sigma(n)-\frac{1}{3} \frac{r_{1,1,1}(n)}{6} \quad \text { (Lemma 2). }
\end{aligned}
$$

Identity (2) follows from the following transformations,

$$
\begin{align*}
\frac{L_{n}(-1)}{(-1)^{n-1}} & =\sum_{d \mid n} \sum_{k \in \mathbb{Z}} \mathbf{1}_{\mathcal{L}_{n, k}}(\ln d)(-1)^{k} \\
& =\sum_{d \mid n} \frac{1}{2}\left((-1)^{\left\lceil 3^{-1} d-\frac{n}{d}\right\rceil}-(-1)^{\left\lceil\frac{n}{d}-3^{-1} d\right\rceil}\right) \tag{Lemma10}\\
& =\sum_{d \mid n} \frac{1}{2}\left((-1)^{\left\lceil 3^{-1} d\right\rceil-\frac{n}{d}}-(-1)^{\frac{n}{d}-\left\lfloor 3^{-1} d\right\rfloor}\right) \\
& =\sum_{d \mid n}(-1)^{\frac{n}{d}-1} \frac{(-1)^{\left\lfloor 3^{-1} d\right\rfloor}-(-1)^{\left\lceil 3^{-1} d\right\rceil}}{2} \\
& =\sum_{d \mid n}(-1)^{\frac{n}{d}-1}(-1)^{d-1} \chi_{3}(d) \quad(\text { Lemma } 8) \\
& =(-1)^{n-1} \frac{r_{1,0,3}(n)}{2} \quad(\text { Lemma } 9) .
\end{align*}
$$

So the theorem is proved.

5 Final remarks

1. Let k be a field and \mathcal{R} be a k-algebra. The codimension of an ideal I of \mathcal{R} is the dimension of the quotient \mathcal{R} / I as a vector space over k.
We let $\mathbb{Z} \oplus \mathbb{Z}$ denote the free abelian group of rank 2 . Let $k=\mathbb{F}_{q}$ be the finite field with q elements and $\mathcal{R}=\mathbb{F}_{q}[\mathbb{Z} \oplus \mathbb{Z}]$ be its group algebra. Kassel and Reutenauer [2] proved that, for any prime power q, the number of ideals of codimension $n \geq 1$ of $\mathbb{F}_{q}[\mathbb{Z} \oplus \mathbb{Z}]$ is $(q-1)^{2} P_{n}(q)$. So it is natural to look for connections between the values of $L_{n}(q)$, when q is a prime power, and the algebraic structures related to \mathbb{F}_{q}.
2. The polynomials $P_{n}(q)$ are generated by the product [3]

$$
\prod_{m \geq 1} \frac{\left(1-t^{m}\right)^{2}}{\left(1-q t^{m}\right)\left(1-q^{-1} t^{m}\right)}=1+\left(q+q^{-1}-2\right) \sum_{n=1}^{\infty} \frac{P_{n}(q)}{q^{n-1}} t^{n}
$$

It would be interesting to find a similar generating function for $L_{n}(q)$.

6 Acknowledgments

The author deeply thanks Prof. S. Brlek and Prof. C. Reutenauer for reading carefully the paper and for providing useful comments. The author gratefully acknowledges the referee.

References

[1] M. D. Hirschhorn, Three classical results on representations of a number, in D. Foata and G.-N. Han, eds., The Andrews Festschrift, Springer, 2001, pp. 159-165.
[2] C. Kassel and C. Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, Michigan Math. J., to appear.
[3] C. Kassel and C. Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, Ramanujan J., to appear.
[4] C. Kassel and C. Reutenauer, The Fourier expansion of $\eta(z) \eta(2 z) \eta(3 z) / \eta(6 z)$, Archiv Math. 108 (2017), 453-463.
[5] L. V. Lorenz, Euvres scientifiques de L. Lorenz, Vol. 2, Lehmann \& Stage, 1899.
[6] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11A07, 11A05.
Keywords: multiplicative function, representation by quadratic form, polynomial, divisor.
(Concerned with sequences $\underline{\text { A002324 }}$ and A096936.)

Received September 16 2017; revised versions received October 13 2017; October 212017. Published in Journal of Integer Sequences, October 292017.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ The original definition of $P_{n}(q)$, which we refer to as Kassel-Reutenauer polynomials [2] is rather different, but equivalent, to the one presented here. We preferred to take the logarithm of the divisors in place of the divisors themselves in order to work with intervals $\mathcal{P}_{n, k}$ of constant length.

