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José Manuel Rodŕıguez Caballero
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Abstract

Reutenauer and Kassel introduced a family Pn(q) of polynomials defined in terms of
divisors of n on overlapped intervals. The evaluation of Pn(q) at roots of unity of order
2, 3, 4, 6 form well-known integer sequences related to the number of integer solutions
of the equations x2 + y2 = n, x2 + 2y2 = n, and x2 + xy + y2 = n. Also, Pn(1) is the
sum of divisors of n. In this paper we define a new family Ln(q) of polynomials defined
in terms of divisors of n on overlapped intervals, slightly modifying the definition of
Pn(q). The values of Ln(q) at q = 1 and q = −1 are related to the sum of divisors
of n and to the number of integer solutions of the equations x2 + xy + y2 = n and
x2 + 3y2 = n.

1 Introduction

For a given integer n ≥ 1, consider the two-sided sequence

pn,k = ln
(

k +
√
k2 + 2n

)

,

where k ∈ Z and define the intervals

Pn,k = (pn,k − ln 2, pn,k] .
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Kassel and Reutenauer [2] introduced the polynomials1

Pn(q)

qn−1
=

∑

d|n

∑

k∈Z
1Pn,k

(ln d) qk,

where 1A(x) is the characteristic function of the set A, i.e., 1A(x) = 1 if x ∈ A, otherwise
1A(x) = 0. Each polynomial Pn(q) is monic of degree 2n−2, its coefficients are non-negative
integers and it is self-reciprocal [3]. The evaluations of Pn(q) at some complex roots of 1
have number-theoretical interpretations [3], e.g.,

σ(n) = Pn(1),

r1,0,1(n)

4
= Pn(−1),

r1,0,2(n)

2
=

∣

∣Pn

(√
−1

)∣

∣ ,

r1,1,1(n)

6
= Re Pn

(−1 +
√
−3

2

)

,

where σ(n), r1,0,1(n)

4
, r1,0,2(n)

2
and r1,1,1(n)

6
are multiplicative functions [5] given by

σ(n) =
∑

d|n
d,

ra,b,c(n) = #
{

(x, y) ∈ Z
2 : a x2 + b x y + c y2 = n

}

.

Furthermore, for q = 1+
√
−3

2
, the same sequence n 7→ Pn(q) is related to r1,0,1(n) in three

ways [4], depending on the congruence class of n in Z/3Z,

∣

∣

∣

∣

Pn

(

1 +
√
−3

2

)∣

∣

∣

∣

=











r1,0,1(n), if n ≡ 0 (mod 3);
1
4
r1,0,1(n), if n ≡ 1 (mod 3);

1
2
r1,0,1(n), if n ≡ 2 (mod 3).

For any integer n ≥ 1, consider the two-sided sequence

ℓn,k = ln

(

3
2
k +

√

(

3
2
k
)2

+ 3n

)

and the intervals

Ln,k = (ℓn,k − ln 3, ℓn,k] ,

1The original definition of Pn(q), which we refer to as Kassel-Reutenauer polynomials [2] is rather different,
but equivalent, to the one presented here. We preferred to take the logarithm of the divisors in place of the
divisors themselves in order to work with intervals Pn,k of constant length.
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Figure 1: Representation of L6(q).

where k runs over the integers. Define a variation of the polynomials Pn(q) as follows:

Ln(q)

qn−1
=

∑

d|n

∑

k∈Z
1Ln,k

(ln d) qk.

For example, in order to compute L6(q) from the definition, we need to consider the
intervals (ℓ6,k − ln 3, ℓ6,k] on the real line and to count the number of values of ln d inside
each interval, where d runs over the divisors of n. These data are shown in Figure 1, where
the numbers ℓ6,k are plotted on the line below (the corresponding values of k are labelled)
whereas the numbers ln d are plotted on the line above (the corresponding values of d are
labelled). Counting the number of intersections between the horizontal and the vertical lines,

we obtain that the coefficients of L6(q)
q6−1 are as follows:

L6(q)

q6−1
= q5 + q4 + q3 + 2 q2 + 2 q + 2 q0 + 2 q−1 + 2 q−2 + q−3 + q−4 + q−5.

Like Pn(q), the polynomial Ln(q) is monic of degree 2n − 2, self-reciprocal and its co-
efficients are non-negative integers. The aim of this paper is to express the multiplicative
functions [5, p. 421] r1,1,1(n)

6
and r1,0,3(n)

2
in terms of the evaluations of Ln(q) at roots of the

unity. More precisely, we will prove the following result.

Theorem 1. For each n ≥ 1,

A002324(n) :=
r1,1,1(n)

6
= 4σ(n)− 3Ln (1) , (1)

A096936(n) :=
r1,0,3(n)

2
= Ln (−1) . (2)

2 Auxiliary results for the first identity of Theorem 1

For any n ≥ 1, we will use the notation
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da,m(n) := # {d|n : d ≡ a (mod m)} .
We will use the following well-known result [1].

Lemma 2. For all integers n ≥ 1,

r1,1,1(n)

6
= d1,3(n)− d2,3(n).

Lemma 3. For any integer n ≥ 1,

3
⌈

3−1 n
⌉

− n =











0, if n ≡ 0 (mod 3);

2, if n ≡ 1 (mod 3);

1, if n ≡ 2 (mod 3).

n− 3
⌊

3−1 n
⌋

=











0, if n ≡ 0 (mod 3);

1, if n ≡ 1 (mod 3);

2, if n ≡ 2 (mod 3).

Proof. It is enough to evaluate 3 ⌈3−1 n⌉−n and 3 ⌈3−1 n⌉−n at n = 3k+ r, for k ∈ Z and
r ∈ {0, 1, 2}.

Lemma 4. For any pair of integers n ≥ 1 and k, the inequalities

ℓn,k − ln 3 < ln d ≤ ℓn,k

hold if and only if the inequalities

3−1 d− n

d
≤ k < d− 3−1 n

d

hold.

Proof. The inequalities
ℓn,k − ln 3 < ln d ≤ ℓn,k

are equivalent to
ln d ≤ ℓn,k < ln d+ ln 3.

Applying the strictly increasing function x 7→ ex

3
−n e−x to the last inequalities we obtain

the following equivalent inequalities

3−1 d− n

d
≤ k < d− 3−1 n

d
.

Indeed, eln d

3
− n e− ln d = 3−1 d− n

d
, eln d+ln 3

3
− n e−(ln d+ln 3) = d− 3−1 n

d
and
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eℓn,k

3
− n e−ℓn,k =

3
2
k +

√

(

3
2
k
)2

+ 3n

3
− n

3
2
k +

√

(

3
2
k
)2

+ 3n

=

3
2
k +

√

(

3
2
k
)2

+ 3n

3
+

3
2
k −

√

(

3
2
k
)2

+ 3n

3
= k.

So the lemma is proved.

Lemma 5. Let n ≥ 1 be an integer. For all d|n,
∑

k∈Z
1Ln,k

(ln d) =
⌈

d− 3−1 n

d

⌉

−
⌈

3−1 d− n

d

⌉

.

Proof. For all integers n ≥ 1 and k, we have that

∑

k∈Z
1Ln,k

(ln d)

= # {k ∈ Z : ℓn,k − ln 3 < ln d ≤ ℓn,k}
= #

{

k ∈ Z : 3−1 d− n

d
≤ k < d− 3−1 n

d

}

(Lemma 4)

= #
{

k ∈ Z :
⌈

3−1 d− n

d

⌉

≤ k <
⌈

d− 3−1 n

d

⌉}

=
⌈

d− 3−1 n

d

⌉

−
⌈

3−1 d− n

d

⌉

.

So the lemma is proved.

3 Auxiliary results for the second identity of Theo-

rem 1

We will use the following well-known result [5, p. 421].

Lemma 6. The function
r1,0,3(n)

2
is multiplicative.

We will use the following well-known result [1].

Lemma 7. For all integers n ≥ 1,

r1,0,3(n)

2
= d1,3(n)− d2,3(n) + 2 (d4,12(n)− d8,12(n)) .
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Recall that the nonprincipal Dirichlet character mod 3 is the 3-periodic arithmetic func-
tion χ3(n) given by χ3(0) = 0, χ3(1) = 1 and χ3(2) = −1.

Lemma 8. For all n ≥ 1,

(−1)⌊3−1 n⌋ − (−1)⌈3−1 n⌉
2

= (−1)n−1 χ3(n).

Proof. It is enough to substitute n = 3k + r, with k ∈ Z and r ∈ {0, 1, 2}, in both sides in
order to check that they are equal.

Lemma 9. For all n ≥ 1,

∑

d|n
(−1)

n
d
−1 (−1)d−1 χ3(d) = (−1)n−1 r1,0,3(n)

2
.

Proof. By Lemma 6, the function r1,0,3(n)

2
is multiplicative. Also, it is easy to check that the

functions (−1)n−1 and χ3(n) are multiplicative. So the functions f(n) = (−1)n−1 r1,0,3(n)

2
and

(−1)n−1 χ3(n) are multiplicative, because the multiplicative property is preserved by ordi-

nary product. The function g(n) =
∑

d|n (−1)
n
d
−1 (−1)d−1 χ3(d) is multiplicative, because

Dirichlet convolution preserves the multiplicative property. So it is enough to prove that
f
(

pk
)

= g
(

pk
)

for each prime power pk.
Considering the case p = 2. The following elementary equivalences hold for any integer

m ≥ 0,

2m ≡ 1 (mod 3) ⇐⇒ m ≡ 0 (mod 2),

2m ≡ 2 (mod 3) ⇐⇒ m ≡ 1 (mod 2),

2m ≡ 4 (mod 12) ⇐⇒ m ≡ 0 (mod 2) and m 6= 0,

2m ≡ 8 (mod 12) ⇐⇒ m ≡ 1 (mod 2) and m 6= 1.

So, for each integer k ≥ 1,

d1,3
(

2k
)

= #[0, k] ∩ 2Z =

⌊

k

2

⌋

+ 1,

d2,3
(

2k
)

= #[1, k] ∩ (2Z+ 1) =

⌈

k

2

⌉

,

d4,12
(

2k
)

= #[2, k] ∩ 2Z =

⌊

k

2

⌋

,

d8,12
(

2k
)

= #[3, k] ∩ (2Z+ 1) =

⌈

k

2

⌉

− 1.
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For any k ≥ 1, it follows that

g
(

2k
)

=
k

∑

j=0

(−1)2
k−j−1 (−1)2

j−1 χ3

(

2j
)

=
k

∑

j=0

(−1)2
k−j−1 (−1)2

j−1 (−1)j

= −1− (−1)k +
k−1
∑

j=1

(−1)j

= −1− (−1)k +
−1− (−1)k

2

= −3
1 + (−1)k

2

= −3

(

1 +

⌊

k

2

⌋

−
⌈

k

2

⌉)

= −
((⌊

k

2

⌋

+ 1

)

−
⌈

k

2

⌉

+ 2

(⌊

k

2

⌋

−
(⌈

k

2

⌉

− 1

)))

= (−1)2
k−1 (

d1,3
(

2k
)

− d2,3
(

2k
)

+ 2
(

d4,12
(

2k
)

− d8,12
(

2k
)))

= f
(

2k
)

(Lemma 7).

Let p and k ≥ 1 be an odd prime and an integer respectively. Noticing that (−1)p
j−1 = 1

for all 0 ≤ j ≤ k. Also, d4,12
(

pk
)

= d8,12
(

pk
)

= 0, because pk has not even divisor. So, for
any k ≥ 1,

g
(

pk
)

=
k

∑

j=0

(−1)p
k−j−1 (−1)p

j−1 χ3

(

pj
)

=
k

∑

j=0

χ3

(

pj
)

= d1,3
(

pk
)

− d2,3
(

pk
)

= (−1)p
k−1 (

d1,3
(

pk
)

− d2,3
(

pk
)

+ 2
(

d4,12
(

pk
)

− d8,12
(

pk
)))

= f
(

pk
)

(Lemma 7).

Therefore, f(n) = g(n) for all n ≥ 1.

Lemma 10. For each d|n,
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∑

k∈Z
1Ln,k

(ln d) (−1)k =
1

2

(

(−1)⌈3−1 d−n
d⌉ − (−1)⌈d−3−1 n

d⌉
)

.

Proof. For any integer n ≥ 1 and any d|n,

∑

k∈Z
1Ln,k

(ln d) (−1)k =
∑

3−1 d−n
d
≤k<d−3−1 n

d

(−1)k (Lemma 4)

=
∑

⌈3−1 d−n
d
⌉≤k<⌈d−3−1 n

d
⌉
(−1)k .

Substituting a = ⌈3−1 d− n
d
⌉, b = ⌈d− 3−1 n

d
⌉ and q = −1 in the geometric sum

∑

a≤k<b

qk =
qa − qb

1− q

we obtain

∑

k∈Z
1Ln,k

(ln d) (−1)k =
(−1)⌈3−1 d−n

d⌉ − (−1)⌈d−3−1 n
d⌉

1− (−1)

=
1

2

(

(−1)⌈3−1 d−n
d⌉ − (−1)⌈d−3−1 n

d⌉
)

.

So the lemma is proved.

4 Proof of the main result

We proceed now with the proof of the main result of this paper.

Proof of Theorem 1. Identity (1) follows from the following transformations,

Ln(1) =
∑

d|n

∑

k∈Z
1Ln,k

(ln d)

=
∑

d|n

(⌈

d− 3−1 n

d

⌉

−
⌈

3−1 d− n

d

⌉)

(Lemma 5)

=
∑

d|n

(

d+
n

d

)

+
∑

d|n

⌈

−3−1 n

d

⌉

−
∑

d|n

⌈

3−1d
⌉

=
∑

d|n

(

d+
n

d

)

−
∑

d|n

⌊

3−1 n

d

⌋

−
∑

d|n

⌈

3−1d
⌉
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=
2

3

∑

d|n

(

d+
n

d

)

+
1

3

∑

d|n

(n

d
− 3

⌊

3−1 n

d

⌋)

− 1

3

∑

d|n

(

3
⌈

3−1d
⌉

− d
)

=
4σ(n)

3
+

d1,3(n) + 2d2,3(n)

3
− 2d1,3(n) + d2,3(n)

3
(Lemma 3)

=
4σ(n)

3
− d1,3(n)− d2,3(n)

3

=
4

3
σ(n)− 1

3

r1,1,1(n)

6
(Lemma 2).

Identity (2) follows from the following transformations,

Ln (−1)

(−1)n−1 =
∑

d|n

∑

k∈Z
1Ln,k

(ln d) (−1)k

=
∑

d|n

1

2

(

(−1)⌈3−1 d−n
d⌉ − (−1)⌈

n
d
−3−1 d⌉) (Lemma 10)

=
∑

d|n

1

2

(

(−1)⌈3−1 d⌉−n
d − (−1)

n
d
−⌊3−1 d⌋)

=
∑

d|n
(−1)

n
d
−1 (−1)⌊3−1 d⌋ − (−1)⌈3−1 d⌉

2

=
∑

d|n
(−1)

n
d
−1 (−1)d−1 χ3(d) (Lemma 8)

= (−1)n−1 r1,0,3(n)

2
(Lemma 9).

So the theorem is proved.

5 Final remarks

1. Let k be a field and R be a k-algebra. The codimension of an ideal I of R is the
dimension of the quotient R/I as a vector space over k.

We let Z⊕Z denote the free abelian group of rank 2. Let k = Fq be the finite field with
q elements and R = Fq [Z⊕ Z] be its group algebra. Kassel and Reutenauer [2] proved
that, for any prime power q, the number of ideals of codimension n ≥ 1 of Fq [Z⊕ Z]
is (q − 1)2 Pn(q). So it is natural to look for connections between the values of Ln(q),
when q is a prime power, and the algebraic structures related to Fq.
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2. The polynomials Pn(q) are generated by the product [3]

∏

m≥1

(1− tm)2

(1− q tm) (1− q−1 tm)
= 1 +

(

q + q−1 − 2
)

∞
∑

n=1

Pn(q)

qn−1
tn.

It would be interesting to find a similar generating function for Ln(q).
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