Number of Dissections of the Regular n-gon by Diagonals

Joris N. Buloron, Roberto B. Corcino, and Jay M. Ontolan Cebu Normal University
Cebu City, Philippines
jorisbuloron@yahoo.com

Abstract

This paper presents a formula for the distinct dissections by diagonals of a regular n-gon modulo the action of the dihedral group. This counting includes dissection with intersecting or non-intersecting diagonals. We utilize a corollary of the CauchyFrobenius theorem, which involves counting of cycles. We also give an explicit formula for the prime number case. We give as a remark the number of distinct dissections, modulo the action of the cyclic group of finite order.

1 Introduction

The theory of polygon dissection has proven to be a rich area of mathematical thoughts. Cayley derived the number of ways to dissect an n-gon using a specified number of diagonals. Other mathematicians gave proofs of older formulas involving polygon dissections using new techniques, such as generating functions, Legendre polynomials, and Lagrange inversion [2]. Przytycki and Sikora showed relationships between polygon dissections and special types of numbers, such as the Catalan numbers [4]. Explicit formulas for dissections of a regular polygon using non-intersecting diagonals were derived in a paper of Bowman and Regev [1]. More recently, Siegel counted the number of dissections of a regular n-gon using nonintersecting diagonals in his thesis [5].

The main aim of this paper is to count the number of distinct dissections of an unlabeled regular n-gon by diagonals modulo the dihedral group. We consider both intersecting and non-intersecting diagonals in our counting. To do this, we first label the vertices of the polygon and determine which dissections of this labeled n-gon are the same up to the canonical action of the dihedral group of degree n. We present the following definition:

Definition 1. Let $n \geq 3$. A regular polygon with n vertices is called an n-gon. A diagonal of an n-gon is a segment extending from a vertex to a non-adjacent vertex. A dissection of the n-gon is any set of crossing or non-crossing diagonals of the n-gon. A dissection without any diagonal is an empty dissection.

The main result of this paper is anchored on a consequence of the Cauchy-Frobenius theorem [3, Corollary 1.7A, p. 26]. We give it below as Lemma 2.

Lemma 2. Let G be a finite group acting on a finite set Δ. Suppose Γ is a non-empty finite set and $\operatorname{Fun}(\Delta, \Gamma)$ is the set of all functions from Δ to Γ, then G acts on $\operatorname{Fun}(\Delta, \Gamma)$ by

$$
f^{x}(\delta)=f\left(\delta^{x^{-1}}\right)(\forall f \in \operatorname{Fun}(\Delta, \Gamma), x \in G, \delta \in \Delta .)
$$

In addition, the number of orbits of this action is equal to

$$
\frac{1}{|G|}\left(\sum_{g \in G}|\Gamma|^{c(g)}\right)
$$

where $c(g)$ counts the number of cycles of g as it acts on Δ, including the trivial cycles, if they exist.

2 Preliminaries

Let $[n]=\{1,2, \ldots, n\}$ be the set of vertices of a regular n-gon. It is well-known that the dihedral group of degree n, with presentation $D_{n}=\left\langle r, s: r^{n}=1=s^{2}\right.$, srs $\left.=r^{-1}\right\rangle$, acts on $[n]$ in a natural way. This is obvious when we express the elements of D_{n} as permutations of $[n]$ corresponding to the symmetries of an n-gon, i.e., $D_{n} \leq \operatorname{Sym}([n])$. Here, r is the $\frac{2 \pi}{n}$-rotation and s is the reflection along the axis through center and vertex 1 .

Definition 3. Let $i, j \in[n]$ be vertices of the n-gon. If $i<j$, then we define the cycle length of i and j as follows:

$$
d(\{i, j\})=\min \{j-i, n-(j-i) \bmod n\} .
$$

Form $\Delta_{n}=\{\{i, j\}: d(\{i, j\}) \geq 2\}$. This is simply the set of all diagonals of the n-gon and it can be shown that $\left|\Delta_{n}\right|=\frac{n^{2}-3 n}{2}$. Moreover, the group D_{n} acts on Δ_{n} in a natural way. Observe that $\{i, j\} \in \Delta_{n}$ if and only if i and j are non-adjacent. Since each element of D_{n} only rotates or reflects the n-gon, then for $x \in D_{n}$

$$
d\left(\left\{i^{x}, j^{x}\right\}\right)=d(\{i, j\}) .
$$

It can then be proven that the map $\Delta_{n} \times D_{n} \rightarrow \Delta_{n}$ defined by

$$
\{i, j\}^{g}=\left\{i^{g}, j^{g}\right\}
$$

is an action. Let us denote the corresponding permutation representation of this action by $\rho: D_{n} \rightarrow \operatorname{Sym}\left(\Delta_{n}\right)$. That is, $\rho(r)$ and $\rho(s)$ are permutations of the set Δ_{n} satisfying the following:
i. $\rho(r)(\{i, j\})=\{i+1 \bmod n, j+1 \bmod n\}$;
ii. $\rho(s)(\{i, j\})=\{2-i \bmod n, 2-j \bmod n\}$.

Consider the family $\operatorname{Fun}\left(\Delta_{n}, \Gamma\right)$ where $\Gamma=\{0,1\}$. We can view each function $f \in$ $\operatorname{Fun}\left(\Delta_{n}, \Gamma\right)$ as a way of dissecting the n-gon. Here, $f(\{i, j\})=1$ means that there exists a diagonal from vertex i to j. Otherwise, i and j are not connected by any diagonal. The action of an element $x \in D_{n}$ on $\operatorname{Fun}\left(\Delta_{n}, \Gamma\right)$ can be viewed as either rotating or reflecting the dissection f to f^{x} preserving the form of the dissection. Consequently, every orbit of this action represents a certain way of dissecting an n-gon. This only means that counting the distinct orbits is equivalent to counting the number of distinct dissections of the n-gon modulo the dihedral group.

Proposition 4. The number $\gamma(n)$ of distinct dissections of an n-gon modulo the dihedral action is

$$
\gamma(n)=\frac{1}{2 n}\left(\sum_{g \in D_{n}} 2^{c(g)}\right)
$$

where $c(g)$ counts the number of cycles of g as it acts on Δ_{n}, including the trivial cycles whenever they exist.

3 Result

The following observation will be used to prove the succeeding claims:
Proposition 5. Let $n>4$ be a natural number. Then $\rho\left[D_{n}\right] \cong D_{n}$.
Proof. Let r, s be the generators of D_{n}. When we express $\rho(r)$ as a product of disjoint cycles, we see that $(\{1,3\}\{2,4\}\{3,5\} \ldots\{n-1,1\}\{n, 2\})$ is one of these cycles. Since this cycle is of length n and $|\rho(r)| \leq n$, then the length of each cycle is at most n and so $|\rho(r)|=n$.

We now show that $|\rho(s)|=2$. Since $|s|=2$, then $|\rho(s)|$ divides 2 and so the length of each cycle is at most two. If n is odd then $\rho(s)$ sends $\left\{1, \frac{n+1}{2}\right\}$ to $\left\{1, \frac{n+3}{2}\right\}$ and this creates a cycle of length two. If n is even, $\rho(s)$ sends $\left\{1, \frac{n}{2}\right\}$ to $\left\{1, \frac{n+4}{2}\right\}$ and again, this makes a cycle of length two. Hence, $|\rho(s)|=2$.

Finally, we obtain

$$
\rho(s) \rho(r) \rho(s)=\rho(s r s)=\rho\left(r^{-1}\right)=\rho(r)^{-1}
$$

For $x \in D_{n}$, we now count the number of cycles in the decomposition of $\rho(x)$. We make use of the well-known properties of permutations stated as Lemma 6.

Lemma 6. Let $\alpha \in \operatorname{Sym}([n])$ such that $\alpha=c_{1} c_{2} \cdots c_{l}$, where c_{i} 's are disjoint cycles, then

$$
|\alpha|=\operatorname{lcm}\left(\operatorname{length}\left(c_{i}\right): i \in\{1,2, \ldots, l\}\right) .
$$

If $\alpha=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{k}\end{array}\right)$, then the number of disjoint cycles of α^{t}, where $1 \leq t \leq k$, is $\operatorname{gcd}(k, t)$.

Lemma 7. Let $n \geq 4$. For $i \in\{1,2, \ldots, n\}$,

$$
c\left(r^{i}\right)= \begin{cases}\left(\frac{n-4}{2}\right) \operatorname{gcd}(n, i)+\operatorname{gcd}\left(\frac{n}{2}, i\right), & \text { if } n \text { is even } ; \\ \left(\frac{n-3}{2}\right) \operatorname{gcd}(n, i), & \text { if } n \text { is odd } .\end{cases}
$$

Proof. We start with $n=4$. Then $\Delta_{4}=\{\{1,3\},\{2,4\}\}, i \in\{1,2,3,4\}$ and we obtain the following computations:
$i=1 . \rho(r)=(\{1,3\} \quad\{2,4\})$ and so $c(r)=1=\left(\frac{4-4}{2}\right) \operatorname{gcd}(4,1)+\operatorname{gcd}\left(\frac{4}{2}, 1\right)$;
$i=2 . \rho\left(r^{2}\right)=(\{1,3\})(\{2,4\})=1_{\Delta_{4}}$ and so $c\left(r^{2}\right)=2=\left(\frac{4-4}{2}\right) \operatorname{gcd}(4,2)+\operatorname{gcd}\left(\frac{4}{2}, 2\right)$;
$i=3 . \rho\left(r^{3}\right)=(\{1,3\}\{2,4\})$ and so $c\left(r^{3}\right)=1=\left(\frac{4-4}{2}\right) \operatorname{gcd}(4,3)+\operatorname{gcd}\left(\frac{4}{2}, 3\right)$;
$i=4$. $\rho\left(r^{4}\right)=\rho\left(1_{[4]}\right)=1_{\Delta_{4}}=(\{1,3\})(\{2,4\})$ and so $c\left(r^{4}\right)=2=\left(\frac{4-4}{2}\right) \operatorname{gcd}(4,4)+\operatorname{gcd}\left(\frac{4}{2}, 4\right)$.
We let $n>4$ and consider two cases. Firstly, assume n is even. The elements of Δ_{n} can be partitioned according to different cycle lengths and we get the following cycle decomposition:

$$
\begin{gathered}
\rho(r)=\underbrace{(\{1,3\}\{2,4\} \ldots\{n, 2\})}_{n-\text { cycle }} \underbrace{(\{1,4\}\{2,5\} \ldots\{n, 3\})}_{n-\text { cycle }} \ldots \\
\underbrace{(\{1, n / 2\}\{2,(n+2) / 2\} \ldots\{n,(n-2) / 2\})}_{n-\text { cycle }} \underbrace{(\{1,(n+2) / 2\}\{2,(n+4) / 2\} \ldots\{n / 2, n\})}_{n / 2 \text {-cycle }}
\end{gathered}
$$

in which there are $\frac{n-4}{2} n$-cycles and only one $\frac{n}{2}$-cycle. For $i \in\{1,2, \ldots, n\}$:

$$
\begin{gathered}
\rho\left(r^{i}\right)=(\{1,3\}\{2,4\} \ldots\{n, 2\})^{i}(\{1,4\}\{2,5\} \ldots\{n, 3\})^{i} \ldots \\
(\{1, n / 2\}\{2,(n+2) / 2\} \ldots\{n,(n-2) / 2\})^{i}(\{1,(n+2) / 2\}\{2,(n+4) / 2\} \ldots\{n / 2, n\})^{i} .
\end{gathered}
$$

By Lemma 6, we obtain

$$
c\left(r^{i}\right)=\left(\frac{n-4}{2}\right) \operatorname{gcd}(n, i)+\operatorname{gcd}(n / 2, i)
$$

Secondly, take n to be odd. Similar to the first case, the elements of Δ_{n} can be partitioned according to different cycle lengths. We obtain the following:

$$
\begin{aligned}
\rho(r)= & \underbrace{(\{1,3\}\{2,4\} \ldots\{n, 2\})}_{n-\text { cycle }} \underbrace{(\{1,4\}\{2,5\} \ldots\{n, 3\})}_{n-\text { cycle }} \ldots \\
& \underbrace{(\{1,(n+1) / 2\}\{2,(n+3) / 2\} \ldots\{n,(n-1) / 2\})}_{n \text {-cycle }}
\end{aligned}
$$

in which there are $\frac{n-3}{2} n$-cycles. As with the above, we can compute the following:

$$
c\left(r^{i}\right)=\left(\frac{n-3}{2}\right) \operatorname{gcd}(n, i) .
$$

Lemma 8. Let $n \geq 4$ and $s_{v} \in D_{n} \backslash\langle r\rangle$ be a reflection with axis passing through the center and a vertex. Then

$$
c\left(s_{v}\right)= \begin{cases}\frac{n^{2}-2 n}{4}, & \text { if } n \text { is even } ; \\ \frac{n^{2}-2 n-3}{4}, & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Note that the case $n=4$ is an easy computation. We consider two cases for $n>4$. Firstly, take n to be even. The axis of s_{v} is the diagonal $\left\{i, i+\frac{n}{2} \bmod n\right\}$. Form

$$
\Delta_{o}=\left\{\{i-k \bmod n, i+k \bmod n\}: k \in\left\{1,2, \ldots, \frac{n-2}{2}\right\}\right\}
$$

Observe that $(i \pm k \bmod n)^{s_{v}}=i \mp k \bmod n$ and preserves both i and $i+\frac{n}{2} \bmod n$. This implies that s_{v} fixes setwise each element of $\Delta_{o} \cup\left\{\left\{i, i+\frac{n}{2} \bmod n\right\}\right\}$. Let $\{\alpha, \beta\}$ be an element of $\Delta_{n} \backslash\left(\Delta_{o} \cup\left\{\left\{i, i+\frac{n}{2} \bmod n\right\}\right\}\right)$, we consider three subcases. Let $\alpha=i$. It follows that $\beta \in\left\{i \pm k \bmod n: k \in\left\{2, \ldots, \frac{n-2}{2}\right\}\right\}$. If $\beta=i+k \bmod n$ then $\{i, i+k \bmod n\}^{s_{v}}=$ $\{i, i-k \bmod n\}$. If $\beta=i-k \bmod n$ then $\{i, i-k \bmod n\}^{s_{v}}=\{i, i+k \bmod n\}$. Similar argument when $\alpha=i+\frac{n}{2} \bmod n$. Suppose $\{\alpha, \beta\} \cap\left\{i, i+\frac{n}{2} \bmod n\right\}$. It implies that $\alpha, \beta \in$ $\left\{i \pm k \bmod n: k \in\left\{1,2, \ldots, \frac{n-2}{2}\right\}\right\}$. If $\alpha=i+k_{1} \bmod n$ and $\beta=i+k_{2} \bmod n$ where $k_{1}, k_{2} \in$ $\left\{1,2, \ldots, \frac{n-2}{2}\right\}$, then $\left\{i+k_{1} \bmod n, i+k_{2} \bmod n\right\}^{s_{v}}=\left\{i-k_{1} \bmod n, i-k_{2} \bmod n\right\}$. Similar argument can be used for $\alpha=i-k_{1} \bmod n$ and $\beta=i-k_{2} \bmod n$. Without loss of generality, assume $\alpha=i-k_{1} \bmod n$ and $\beta=i+k_{2} \bmod n$. It means that $k_{1} \neq k_{2}$ and so $\left\{i-k_{1} \bmod n, i+k_{2} \bmod n\right\}^{s_{v}}=\left\{i+k_{1} \bmod n, i-k_{2} \bmod n\right\}$. In all these subcases, we obtain $\{\alpha, \beta\}^{s_{v}} \neq\{\alpha, \beta\}$.

Proposition 5 and Lemma 6 assure that the length of every cycle in $\rho\left(s_{v}\right)$ is at most two. The above results tell us that each element of $\Delta_{o} \cup\left\{i, i+\frac{n}{2} \bmod n\right\}$ creates an 1-cycle in $\rho\left(s_{v}\right)$, while each element of $\Delta_{n} \backslash\left(\Delta_{o} \cup\left\{i, i+\frac{n}{2} \bmod n\right\}\right)$ creates a 2-cycle. Hence,

$$
c\left(s_{v}\right)=\frac{n^{2}-2 n}{4} .
$$

For the second case, assume n is an odd integer. The axis of s_{v} is the segment extending from vertex i to the midpoint of the edge $\{i+(n-1) / 2 \bmod n, i-(n-1) / 2 \bmod n\}$. Form

$$
\Delta_{o}=\left\{\{i+k \bmod n, i-k \bmod n\}: k \in\left\{1,2, \ldots, \frac{n-1}{2}\right\}\right\}
$$

Observe that $i^{s_{v}}=i$ and $(i \pm k \bmod n)^{s_{v}}=i \mp k \bmod n$. Thus, each element of

$$
\Delta_{o} \backslash\left\{\left\{i+\frac{n-1}{2} \bmod n, i-\frac{n-1}{2} \bmod n\right\}\right\}
$$

creates an 1-cycle in $\rho\left(s_{v}\right)$. Let $\{\alpha, \beta\} \in \Delta_{n} \backslash \Delta_{o}$. We consider two subcases. Without loss of generality, assume $\alpha=i$. It follows that $\beta \in\{i \pm k \bmod n: k \in\{2, \ldots,(n-1) / 2\}\}$ and either $\{i, i+k \bmod n\}^{s_{v}}=\{i, i-k \bmod n\}$ or $\{i, i-k \bmod n\}^{s_{v}}=\{i, i+k \bmod n\}$. Let $i \notin\{\alpha, \beta\}$. It means that $\alpha, \beta \in\{i \pm k \bmod n: k \in\{1,2, \ldots,(n-1) / 2\}\}$. As with the above, we always obtain $\{\alpha, \beta\}^{s_{v}} \neq\{\alpha, \beta\}$ in different subcases.

Since the length of each cycle of $\rho\left(s_{v}\right)$ is at most two, then the two subcases above imply that every $\{\alpha, \beta\} \in \Delta_{n} \backslash \Delta_{o}$ creates a 2 -cycle in $\rho\left(s_{v}\right)$. Hence,

$$
c\left(s_{v}\right)=\frac{n^{2}-2 n-3}{4}
$$

Lemma 9. Let $n \geq 6$ be even. Suppose $s_{e} \in D_{n} \backslash\langle r\rangle$ to be a reflection with axis passing through the origin and midpoints of opposing edges. Then

$$
c\left(s_{e}\right)=\frac{n^{2}-2 n-4}{4}
$$

Proof. The axis of s_{e} is the segment extending from the midpoint of an edge $\{i, i+1 \bmod n\}$ to the midpoint of $\left\{i-\left(\frac{n}{2}-1\right) \bmod n, i+\frac{n}{2} \bmod n\right\}$. We note that for $j \in[n], j^{s_{e}}=$ $(2 i+1)-j \bmod n$. Let

$$
\Delta_{o}=\{\{i+k \bmod n, i-k+1 \bmod n\}: k \in\{2,3, \ldots,(n-2) / 2\}\}
$$

It should be noted that s_{e} fixes setwise each element of Δ_{o} and creates an 1-cycle in $\rho\left(s_{e}\right)$.
For $\{\alpha, \beta\} \in \Delta_{n} \backslash \Delta_{o}$, there exists $k \in\left\{1,2, \ldots, \frac{n}{2}\right\}$ such that if $\alpha=i+k \bmod n$, then $\beta \in[n] \backslash\{i+k \bmod n, i-k+1 \bmod n\}$ and so

$$
\{i+k \bmod n, \beta\}^{s_{e}}=\left\{i-k+1 \bmod n, \beta^{s_{e}}\right\} \neq\{\alpha, \beta\}
$$

Also, if $\alpha=i-k+1 \bmod n$ then $\beta \in[n] \backslash\{i+k \bmod n, i-k+1 \bmod n\}$ and so

$$
\{i-k+1 \bmod n, \beta\}^{s_{e}}=\left\{i+k \bmod n, \beta^{s_{e}}\right\} \neq\{\alpha, \beta\}
$$

Hence, each element of $\Delta_{n} \backslash \Delta_{o}$ creates a 2-cycle of $\rho\left(s_{e}\right)$. That is,

$$
c\left(s_{e}\right)=\frac{n^{2}-2 n-4}{4} .
$$

We now collect the properties from Lemmas 7, 8 and 9 and plug them in to the equation in Proposition 4 to obtain our main result.

Theorem 10. Let $n \geq 3$. The number $\gamma(n)$ of distinct ways of dissecting an n-gon modulo the action of the dihedral group D_{n} is:

$$
\gamma(n)= \begin{cases}\frac{1}{2 n}\left(\left(\sum_{i=1}^{n} 2^{\left(\frac{n-4}{2}\right) \operatorname{gcd}(n, i)+\operatorname{gcd}\left(\frac{n}{2}, i\right)}\right)+\frac{n}{2}\left(2^{\frac{n^{2}-2 n}{4}}+2^{\frac{n^{2}-2 n-4}{4}}\right)\right), & \text { if } n \text { is even } ; \\ \frac{1}{2 n}\left(\left(\sum_{i=1}^{n} 2^{\left(\frac{n-3}{2}\right) \operatorname{gcd}(n, i)}\right)+n\left(2^{\frac{n^{2}-2 n-3}{4}}\right)\right), & \text { if } n \text { is odd. }\end{cases}
$$

Corollary 11. The number of dissections of a regular p-gon modulo the dihedral action, where p is prime with $p \geq 3$, is

$$
\frac{(p-1) \cdot 2^{\frac{p-3}{2}}+2^{\frac{p^{2}-3 p}{2}}+p \cdot 2^{\frac{p^{2}-2 p-3}{4}}}{2 p}
$$

4 Remark

The number $\gamma_{c}(n)$ of distinct ways of dissecting an n-gon modulo the action of the cyclic group $\left\langle\left(\begin{array}{l}1 \\ 2\end{array} \ldots n\right)\right\rangle$ is

$$
\gamma_{c}(n)= \begin{cases}\frac{1}{n}\left(\sum_{i=1}^{n} 2^{\left(\frac{n-4}{2}\right) \operatorname{gcd}(n, i)+\operatorname{gcd}\left(\frac{n}{2}, i\right)}\right), & \text { if } n \text { is even } \\ \frac{1}{n}\left(\sum_{i=1}^{n} 2^{\left(\frac{n-3}{2}\right) \operatorname{gcd}(n, i)}\right), & \text { if } n \text { is odd }\end{cases}
$$

Moreover, when $n=p \geq 3$, then

$$
\gamma_{c}(p)=\frac{(p-1) \cdot 2^{\frac{p-3}{2}}+2^{\frac{p^{2}-3 p}{2}}}{p}
$$

5 Acknowledgment

The authors would like to thank Cebu Normal University for its support while the research was being undertaken.

References

[1] D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, preprint, 2012, http://arxiv.org/abs/1209.6270.
[2] D. Callan, Polygon dissections and marked Dyck paths, preprint, 2005, https://pdfs.semanticscholar.org/d405.
[3] J. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, 1996.
[4] J. Przytycki and A. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, preprint, 1998, https://arxiv.org/abs/math/9811086.
[5] A. Siegel, Counting the number of distinct dissections of a regular n-gon, thesis, University of Akron, 2014.

2010 Mathematics Subject Classification: Primary 05C25; Secondary 05C69.
Keywords: n-gon, dissection, dihedral group.

Received September 13 2016; revised version received May 9 2016; June 30 2017; July 18 2017. Published in Journal of Integer Sequences, July 292017.

Return to Journal of Integer Sequences home page.

