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Abstract

This paper presents a formula for the distinct dissections by diagonals of a regular

n-gon modulo the action of the dihedral group. This counting includes dissection

with intersecting or non-intersecting diagonals. We utilize a corollary of the Cauchy-

Frobenius theorem, which involves counting of cycles. We also give an explicit formula

for the prime number case. We give as a remark the number of distinct dissections,

modulo the action of the cyclic group of finite order.

1 Introduction

The theory of polygon dissection has proven to be a rich area of mathematical thoughts.
Cayley derived the number of ways to dissect an n−gon using a specified number of diagonals.
Other mathematicians gave proofs of older formulas involving polygon dissections using new
techniques, such as generating functions, Legendre polynomials, and Lagrange inversion [2].
Przytycki and Sikora showed relationships between polygon dissections and special types of
numbers, such as the Catalan numbers [4]. Explicit formulas for dissections of a regular
polygon using non-intersecting diagonals were derived in a paper of Bowman and Regev
[1]. More recently, Siegel counted the number of dissections of a regular n-gon using non-
intersecting diagonals in his thesis [5].

The main aim of this paper is to count the number of distinct dissections of an unlabeled
regular n-gon by diagonals modulo the dihedral group. We consider both intersecting and
non-intersecting diagonals in our counting. To do this, we first label the vertices of the poly-
gon and determine which dissections of this labeled n-gon are the same up to the canonical
action of the dihedral group of degree n. We present the following definition:
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Definition 1. Let n ≥ 3. A regular polygon with n vertices is called an n-gon. A diagonal

of an n-gon is a segment extending from a vertex to a non-adjacent vertex. A dissection of
the n-gon is any set of crossing or non-crossing diagonals of the n-gon. A dissection without
any diagonal is an empty dissection.

The main result of this paper is anchored on a consequence of the Cauchy-Frobenius
theorem [3, Corollary 1.7A, p. 26]. We give it below as Lemma 2.

Lemma 2. Let G be a finite group acting on a finite set ∆. Suppose Γ is a non-empty finite

set and Fun(∆,Γ) is the set of all functions from ∆ to Γ, then G acts on Fun(∆,Γ) by

fx(δ) = f(δx
−1

) (∀f ∈ Fun(∆,Γ), x ∈ G, δ ∈ ∆.)

In addition, the number of orbits of this action is equal to

1

|G|

(
∑

g∈G

|Γ|c(g)

)

where c(g) counts the number of cycles of g as it acts on ∆, including the trivial cycles, if

they exist.

2 Preliminaries

Let [n] = {1, 2, . . . , n} be the set of vertices of a regular n-gon. It is well-known that the
dihedral group of degree n, with presentation Dn = 〈r, s : rn = 1 = s2, srs = r−1〉, acts on [n]
in a natural way. This is obvious when we express the elements of Dn as permutations of [n]
corresponding to the symmetries of an n-gon, i.e., Dn ≤ Sym([n]). Here, r is the 2π

n
-rotation

and s is the reflection along the axis through center and vertex 1.

Definition 3. Let i, j ∈ [n] be vertices of the n-gon. If i < j, then we define the cycle length

of i and j as follows:

d({i, j}) = min {j − i, n− (j − i) mod n} .

Form ∆n = {{i, j} : d({i, j}) ≥ 2}. This is simply the set of all diagonals of the n-gon
and it can be shown that |∆n| =

n2
−3n
2

. Moreover, the group Dn acts on ∆n in a natural
way. Observe that {i, j} ∈ ∆n if and only if i and j are non-adjacent. Since each element of
Dn only rotates or reflects the n-gon, then for x ∈ Dn

d({ix, jx}) = d({i, j}).

It can then be proven that the map ∆n ×Dn → ∆n defined by

{i, j}g = {ig, jg}
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is an action. Let us denote the corresponding permutation representation of this action by
ρ : Dn → Sym(∆n). That is, ρ(r) and ρ(s) are permutations of the set ∆n satisfying the
following:

i. ρ(r)({i, j}) = {i+ 1 mod n, j + 1 mod n};

ii. ρ(s)({i, j}) = {2− i mod n, 2− j mod n}.

Consider the family Fun(∆n,Γ) where Γ = {0, 1}. We can view each function f ∈
Fun(∆n,Γ) as a way of dissecting the n-gon. Here, f({i, j}) = 1 means that there exists
a diagonal from vertex i to j. Otherwise, i and j are not connected by any diagonal. The
action of an element x ∈ Dn on Fun(∆n,Γ) can be viewed as either rotating or reflecting
the dissection f to fx preserving the form of the dissection. Consequently, every orbit of
this action represents a certain way of dissecting an n-gon. This only means that counting
the distinct orbits is equivalent to counting the number of distinct dissections of the n-gon
modulo the dihedral group.

Proposition 4. The number γ(n) of distinct dissections of an n-gon modulo the dihedral

action is

γ(n) =
1

2n

(
∑

g∈Dn

2c(g)

)

where c(g) counts the number of cycles of g as it acts on ∆n, including the trivial cycles

whenever they exist.

3 Result

The following observation will be used to prove the succeeding claims:

Proposition 5. Let n > 4 be a natural number. Then ρ[Dn] ∼= Dn.

Proof. Let r, s be the generators of Dn. When we express ρ(r) as a product of disjoint
cycles, we see that ({1, 3} {2, 4} {3, 5} . . . {n− 1, 1} {n, 2}) is one of these cycles. Since
this cycle is of length n and |ρ(r)| ≤ n, then the length of each cycle is at most n and so
|ρ(r)| = n.

We now show that |ρ(s)| = 2. Since |s| = 2, then |ρ(s)| divides 2 and so the length of
each cycle is at most two. If n is odd then ρ(s) sends

{
1, n+1

2

}
to
{
1, n+3

2

}
and this creates

a cycle of length two. If n is even, ρ(s) sends
{
1, n

2

}
to
{
1, n+4

2

}
and again, this makes a

cycle of length two. Hence, |ρ(s)| = 2.
Finally, we obtain

ρ(s)ρ(r)ρ(s) = ρ(srs) = ρ(r−1) = ρ(r)−1.
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For x ∈ Dn, we now count the number of cycles in the decomposition of ρ(x). We make
use of the well-known properties of permutations stated as Lemma 6.

Lemma 6. Let α ∈ Sym([n]) such that α = c1c2 · · · cl, where ci’s are disjoint cycles, then

|α| = lcm(length(ci) : i ∈ {1, 2, . . . , l}).

If α = (a1 a2 . . . ak), then the number of disjoint cycles of αt, where 1 ≤ t ≤ k, is gcd(k, t).

Lemma 7. Let n ≥ 4. For i ∈ {1, 2, . . . , n},

c(ri) =

{(
n−4
2

)
gcd(n, i) + gcd(n

2
, i), if n is even;

(
n−3
2

)
gcd(n, i), if n is odd.

Proof. We start with n = 4. Then ∆4 = {{1, 3} , {2, 4}}, i ∈ {1, 2, 3, 4} and we obtain the
following computations:

i = 1. ρ(r) = ({1, 3} {2, 4}) and so c(r) = 1 =
(
4−4
2

)
gcd(4, 1) + gcd(4

2
, 1);

i = 2. ρ(r2) = ({1, 3}) ({2, 4}) = 1∆4
and so c(r2) = 2 =

(
4−4
2

)
gcd(4, 2) + gcd(4

2
, 2);

i = 3. ρ(r3) = ({1, 3} {2, 4}) and so c(r3) = 1 =
(
4−4
2

)
gcd(4, 3) + gcd(4

2
, 3);

i = 4. ρ(r4) = ρ(1[4]) = 1∆4
= ({1, 3}) ({2, 4}) and so c(r4) = 2 =

(
4−4
2

)
gcd(4, 4) + gcd(4

2
, 4).

We let n > 4 and consider two cases. Firstly, assume n is even. The elements of ∆n can be
partitioned according to different cycle lengths and we get the following cycle decomposition:

ρ(r) = ({1, 3} {2, 4} . . . {n, 2})
︸ ︷︷ ︸

n−cycle

({1, 4} {2, 5} . . . {n, 3})
︸ ︷︷ ︸

n−cycle

. . .

({1, n/2} {2, (n+ 2)/2} . . . {n, (n− 2)/2})
︸ ︷︷ ︸

n−cycle

({1, (n+ 2)/2} {2, (n+ 4)/2} . . . {n/2, n})
︸ ︷︷ ︸

n/2−cycle

in which there are n−4
2

n-cycles and only one n
2
-cycle. For i ∈ {1, 2, . . . , n}:

ρ(ri) = ({1, 3} {2, 4} . . . {n, 2})i ({1, 4} {2, 5} . . . {n, 3})i . . .

({1, n/2} {2, (n+ 2)/2} . . . {n, (n− 2)/2})i ({1, (n+ 2)/2} {2, (n+ 4)/2} . . . {n/2, n})i .

By Lemma 6, we obtain

c(ri) =

(
n− 4

2

)

gcd(n, i) + gcd(n/2, i).
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Secondly, take n to be odd. Similar to the first case, the elements of ∆n can be partitioned
according to different cycle lengths. We obtain the following:

ρ(r) = ({1, 3} {2, 4} . . . {n, 2})
︸ ︷︷ ︸

n−cycle

({1, 4} {2, 5} . . . {n, 3})
︸ ︷︷ ︸

n−cycle

. . .

({1, (n+ 1)/2} {2, (n+ 3)/2} . . . {n, (n− 1)/2})
︸ ︷︷ ︸

n−cycle

in which there are n−3
2

n-cycles. As with the above, we can compute the following:

c(ri) =

(
n− 3

2

)

gcd(n, i).

Lemma 8. Let n ≥ 4 and sv ∈ Dn\〈r〉 be a reflection with axis passing through the center

and a vertex. Then

c(sv) =

{
n2

−2n
4

, if n is even;
n2

−2n−3
4

, if n is odd.

Proof. Note that the case n = 4 is an easy computation. We consider two cases for n > 4.
Firstly, take n to be even. The axis of sv is the diagonal

{
i, i+ n

2
mod n

}
. Form

∆o =

{

{i− k mod n, i+ k mod n} : k ∈

{

1, 2, . . . ,
n− 2

2

}}

.

Observe that (i ± k mod n)sv = i ∓ k mod n and preserves both i and i + n
2
mod n. This

implies that sv fixes setwise each element of ∆o ∪
{{

i, i+ n
2
mod n

}}
. Let {α, β} be an

element of ∆n\
(
∆o ∪

{{
i, i+ n

2
mod n

}})
, we consider three subcases. Let α = i. It follows

that β ∈
{
i± k mod n : k ∈

{
2, . . . , n−2

2

}}
. If β = i + k mod n then {i, i+ k mod n}sv =

{i, i− k mod n}. If β = i − k mod n then {i, i− k mod n}sv = {i, i+ k mod n}. Similar
argument when α = i+ n

2
mod n. Suppose {α, β} ∩

{
i, i+ n

2
mod n

}
. It implies that α, β ∈

{
i± k mod n : k ∈

{
1, 2, . . . , n−2

2

}}
. If α = i+k1 mod n and β = i+k2 mod n where k1, k2 ∈{

1, 2, . . . , n−2
2

}
, then {i+ k1 mod n, i+ k2 mod n}sv = {i− k1 mod n, i− k2 mod n}. Sim-

ilar argument can be used for α = i − k1 mod n and β = i − k2 mod n. Without loss of
generality, assume α = i − k1 mod n and β = i + k2 mod n. It means that k1 6= k2 and
so {i− k1 mod n, i+ k2 mod n}sv = {i+ k1 mod n, i− k2 mod n}. In all these subcases, we
obtain {α, β}sv 6= {α, β}.

Proposition 5 and Lemma 6 assure that the length of every cycle in ρ(sv) is at most two.
The above results tell us that each element of ∆o ∪

{
i, i+ n

2
mod n

}
creates an 1-cycle in

ρ(sv), while each element of ∆n\
(
∆o ∪

{
i, i+ n

2
mod n

})
creates a 2-cycle. Hence,

c(sv) =
n2 − 2n

4
.
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For the second case, assume n is an odd integer. The axis of sv is the segment extending
from vertex i to the midpoint of the edge {i+ (n− 1)/2 mod n, i− (n− 1)/2 mod n}. Form

∆o =

{

{i+ k mod n, i− k mod n} : k ∈

{

1, 2, . . . ,
n− 1

2

}}

.

Observe that isv = i and (i± k mod n)sv = i∓ k mod n. Thus, each element of

∆o\

{{

i+
n− 1

2
mod n, i−

n− 1

2
mod n

}}

creates an 1-cycle in ρ(sv). Let {α, β} ∈ ∆n\∆o. We consider two subcases. Without loss
of generality, assume α = i. It follows that β ∈ {i± k mod n : k ∈ {2, . . . , (n− 1)/2}} and
either {i, i+ k mod n}sv = {i, i− k mod n} or {i, i− k mod n}sv = {i, i+ k mod n}. Let
i /∈ {α, β}. It means that α, β ∈ {i± k mod n : k ∈ {1, 2, . . . , (n− 1)/2}}. As with the
above, we always obtain {α, β}sv 6= {α, β} in different subcases.

Since the length of each cycle of ρ(sv) is at most two, then the two subcases above imply
that every {α, β} ∈ ∆n\∆o creates a 2-cycle in ρ(sv). Hence,

c(sv) =
n2 − 2n− 3

4
.

Lemma 9. Let n ≥ 6 be even. Suppose se ∈ Dn\〈r〉 to be a reflection with axis passing

through the origin and midpoints of opposing edges. Then

c(se) =
n2 − 2n− 4

4

Proof. The axis of se is the segment extending from the midpoint of an edge {i, i+ 1 mod n}
to the midpoint of

{
i−
(
n
2
− 1
)
mod n, i+ n

2
mod n

}
. We note that for j ∈ [n], jse =

(2i+ 1)− j mod n. Let

∆o = {{i+ k mod n, i− k + 1 mod n} : k ∈ {2, 3, . . . , (n− 2)/2}} .

It should be noted that se fixes setwise each element of ∆o and creates an 1-cycle in ρ(se).
For {α, β} ∈ ∆n\∆o, there exists k ∈

{
1, 2, . . . , n

2

}
such that if α = i + k mod n, then

β ∈ [n]\ {i+ k mod n, i− k + 1 mod n} and so

{i+ k mod n, β}se = {i− k + 1 mod n, βse} 6= {α, β} .

Also, if α = i− k + 1 mod n then β ∈ [n]\ {i+ k mod n, i− k + 1 mod n} and so

{i− k + 1 mod n, β}se = {i+ k mod n, βse} 6= {α, β} .
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Hence, each element of ∆n\∆o creates a 2-cycle of ρ(se). That is,

c(se) =
n2 − 2n− 4

4
.

We now collect the properties from Lemmas 7, 8 and 9 and plug them in to the equation
in Proposition 4 to obtain our main result.

Theorem 10. Let n ≥ 3. The number γ(n) of distinct ways of dissecting an n-gon modulo

the action of the dihedral group Dn is:

γ(n) =







1
2n

((
n∑

i=1

2(
n−4

2
) gcd(n,i)+gcd(n

2
,i)

)

+ n
2

(

2
n
2
−2n

4 + 2
n
2
−2n−4

4

)
)

, if n is even;

1
2n

((
n∑

i=1

2(
n−3

2
) gcd(n,i)

)

+ n
(

2
n
2
−2n−3

4

)
)

, if n is odd.

Corollary 11. The number of dissections of a regular p-gon modulo the dihedral action,

where p is prime with p ≥ 3, is

(p− 1) · 2
p−3

2 + 2
p
2
−3p

2 + p · 2
p
2
−2p−3

4

2p
.

4 Remark

The number γc(n) of distinct ways of dissecting an n-gon modulo the action of the cyclic
group 〈(1 2 . . . n)〉 is

γc(n) =







1
n

(
n∑

i=1

2(
n−4

2
) gcd(n,i)+gcd(n

2
,i)

)

, if n is even;

1
n

(
n∑

i=1

2(
n−3

2
) gcd(n,i)

)

, if n is odd.

Moreover, when n = p ≥ 3, then

γc(p) =
(p− 1) · 2

p−3

2 + 2
p
2
−3p

2

p
.
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