

Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.7

Number of Dissections of the Regular *n*-gon by Diagonals

Joris N. Buloron, Roberto B. Corcino, and Jay M. Ontolan Cebu Normal University Cebu City, Philippines jorisbuloron@yahoo.com

Abstract

This paper presents a formula for the distinct dissections by diagonals of a regular n-gon modulo the action of the dihedral group. This counting includes dissection with intersecting or non-intersecting diagonals. We utilize a corollary of the Cauchy-Frobenius theorem, which involves counting of cycles. We also give an explicit formula for the prime number case. We give as a remark the number of distinct dissections, modulo the action of the cyclic group of finite order.

1 Introduction

The theory of polygon dissection has proven to be a rich area of mathematical thoughts. Cayley derived the number of ways to dissect an n-gon using a specified number of diagonals. Other mathematicians gave proofs of older formulas involving polygon dissections using new techniques, such as generating functions, Legendre polynomials, and Lagrange inversion [2]. Przytycki and Sikora showed relationships between polygon dissections and special types of numbers, such as the Catalan numbers [4]. Explicit formulas for dissections of a regular polygon using non-intersecting diagonals were derived in a paper of Bowman and Regev [1]. More recently, Siegel counted the number of dissections of a regular n-gon using nonintersecting diagonals in his thesis [5].

The main aim of this paper is to count the number of distinct dissections of an unlabeled regular n-gon by diagonals modulo the dihedral group. We consider both intersecting and non-intersecting diagonals in our counting. To do this, we first label the vertices of the polygon and determine which dissections of this labeled n-gon are the same up to the canonical action of the dihedral group of degree n. We present the following definition:

Definition 1. Let $n \ge 3$. A regular polygon with n vertices is called an n-gon. A diagonal of an n-gon is a segment extending from a vertex to a non-adjacent vertex. A dissection of the n-gon is any set of crossing or non-crossing diagonals of the n-gon. A dissection without any diagonal is an *empty dissection*.

The main result of this paper is anchored on a consequence of the Cauchy-Frobenius theorem [3, Corollary 1.7A, p. 26]. We give it below as Lemma 2.

Lemma 2. Let G be a finite group acting on a finite set Δ . Suppose Γ is a non-empty finite set and Fun (Δ, Γ) is the set of all functions from Δ to Γ , then G acts on Fun (Δ, Γ) by

$$f^{x}(\delta) = f(\delta^{x^{-1}}) \ (\forall f \in \operatorname{Fun}(\Delta, \Gamma), x \in G, \delta \in \Delta).$$

In addition, the number of orbits of this action is equal to

$$\frac{1}{|G|} \left(\sum_{g \in G} |\Gamma|^{c(g)} \right)$$

where c(g) counts the number of cycles of g as it acts on Δ , including the trivial cycles, if they exist.

2 Preliminaries

Let $[n] = \{1, 2, ..., n\}$ be the set of vertices of a regular *n*-gon. It is well-known that the *dihedral group* of degree *n*, with presentation $D_n = \langle r, s : r^n = 1 = s^2, srs = r^{-1} \rangle$, acts on [n] in a natural way. This is obvious when we express the elements of D_n as permutations of [n] corresponding to the symmetries of an *n*-gon, i.e., $D_n \leq \text{Sym}([n])$. Here, *r* is the $\frac{2\pi}{n}$ -rotation and *s* is the reflection along the axis through center and vertex 1.

Definition 3. Let $i, j \in [n]$ be vertices of the *n*-gon. If i < j, then we define the *cycle length* of *i* and *j* as follows:

$$d(\{i, j\}) = \min\{j - i, n - (j - i) \mod n\}$$

Form $\Delta_n = \{\{i, j\} : d(\{i, j\}) \ge 2\}$. This is simply the set of all diagonals of the *n*-gon and it can be shown that $|\Delta_n| = \frac{n^2 - 3n}{2}$. Moreover, the group D_n acts on Δ_n in a natural way. Observe that $\{i, j\} \in \Delta_n$ if and only if *i* and *j* are non-adjacent. Since each element of D_n only *rotates* or *reflects* the *n*-gon, then for $x \in D_n$

$$d(\{i^x, j^x\}) = d(\{i, j\})$$

It can then be proven that the map $\Delta_n \times D_n \to \Delta_n$ defined by

$${i,j}^g = {i^g, j^g}$$

is an action. Let us denote the corresponding permutation representation of this action by $\rho: D_n \to \text{Sym}(\Delta_n)$. That is, $\rho(r)$ and $\rho(s)$ are permutations of the set Δ_n satisfying the following:

- *i*. $\rho(r)(\{i, j\}) = \{i + 1 \mod n, j + 1 \mod n\};$
- *ii.* $\rho(s)(\{i, j\}) = \{2 i \mod n, 2 j \mod n\}.$

Consider the family $\operatorname{Fun}(\Delta_n, \Gamma)$ where $\Gamma = \{0, 1\}$. We can view each function $f \in \operatorname{Fun}(\Delta_n, \Gamma)$ as a way of dissecting the *n*-gon. Here, $f(\{i, j\}) = 1$ means that there exists a diagonal from vertex *i* to *j*. Otherwise, *i* and *j* are not connected by any diagonal. The action of an element $x \in D_n$ on $\operatorname{Fun}(\Delta_n, \Gamma)$ can be viewed as either rotating or reflecting the dissection *f* to f^x preserving the form of the dissection. Consequently, every orbit of this action represents a certain way of dissecting an *n*-gon. This only means that counting the distinct orbits is equivalent to counting the number of distinct dissections of the *n*-gon modulo the dihedral group.

Proposition 4. The number $\gamma(n)$ of distinct dissections of an n-gon modulo the dihedral action is

$$\gamma(n) = \frac{1}{2n} \left(\sum_{g \in D_n} 2^{c(g)} \right)$$

where c(g) counts the number of cycles of g as it acts on Δ_n , including the trivial cycles whenever they exist.

3 Result

The following observation will be used to prove the succeeding claims:

Proposition 5. Let n > 4 be a natural number. Then $\rho[D_n] \cong D_n$.

Proof. Let r, s be the generators of D_n . When we express $\rho(r)$ as a product of disjoint cycles, we see that $(\{1,3\}, \{2,4\}, \{3,5\}, \ldots, \{n-1,1\}, \{n,2\})$ is one of these cycles. Since this cycle is of length n and $|\rho(r)| \leq n$, then the length of each cycle is at most n and so $|\rho(r)| = n$.

We now show that $|\rho(s)| = 2$. Since |s| = 2, then $|\rho(s)|$ divides 2 and so the length of each cycle is at most two. If *n* is odd then $\rho(s)$ sends $\{1, \frac{n+1}{2}\}$ to $\{1, \frac{n+3}{2}\}$ and this creates a cycle of length two. If *n* is even, $\rho(s)$ sends $\{1, \frac{n}{2}\}$ to $\{1, \frac{n+4}{2}\}$ and again, this makes a cycle of length two. Hence, $|\rho(s)| = 2$.

Finally, we obtain

$$\rho(s)\rho(r)\rho(s) = \rho(srs) = \rho(r^{-1}) = \rho(r)^{-1}.$$

For $x \in D_n$, we now count the number of cycles in the decomposition of $\rho(x)$. We make use of the well-known properties of permutations stated as Lemma 6.

Lemma 6. Let $\alpha \in \text{Sym}([n])$ such that $\alpha = c_1 c_2 \cdots c_l$, where c_i 's are disjoint cycles, then

$$\alpha = \operatorname{lcm}(\operatorname{length}(c_i) : i \in \{1, 2, \dots, l\}).$$

If $\alpha = (a_1 \ a_2 \ \dots \ a_k)$, then the number of disjoint cycles of α^t , where $1 \le t \le k$, is gcd(k,t).

Lemma 7. Let $n \ge 4$. For $i \in \{1, 2, ..., n\}$,

$$c(r^{i}) = \begin{cases} \left(\frac{n-4}{2}\right) \gcd(n,i) + \gcd\left(\frac{n}{2},i\right), & \text{if } n \text{ is even;} \\ \left(\frac{n-3}{2}\right) \gcd(n,i), & \text{if } n \text{ is odd.} \end{cases}$$

Proof. We start with n = 4. Then $\Delta_4 = \{\{1,3\}, \{2,4\}\}, i \in \{1,2,3,4\}$ and we obtain the following computations:

$$i = 1, \ \rho(r) = (\{1,3\} \ \{2,4\}) \text{ and so } c(r) = 1 = \left(\frac{4-4}{2}\right) \gcd(4,1) + \gcd(\frac{4}{2},1);$$

$$i = 2, \ \rho(r^2) = (\{1,3\}) \left(\{2,4\}\right) = 1_{\Delta_4} \text{ and so } c(r^2) = 2 = \left(\frac{4-4}{2}\right) \gcd(4,2) + \gcd(\frac{4}{2},2);$$

$$i = 3, \ \rho(r^3) = (\{1,3\} \ \{2,4\}) \text{ and so } c(r^3) = 1 = \left(\frac{4-4}{2}\right) \gcd(4,3) + \gcd(\frac{4}{2},3);$$

$$i = 4, \ \rho(r^4) = \rho(1_{[4]}) = 1_{\Delta_4} = (\{1,3\}) \left(\{2,4\}\right) \text{ and so } c(r^4) = 2 = \left(\frac{4-4}{2}\right) \gcd(4,4) + \gcd(\frac{4}{2},4).$$

We let n > 4 and consider two cases. Firstly, assume n is even. The elements of Δ_n can be partitioned according to different cycle lengths and we get the following cycle decomposition:

$$\rho(r) = \underbrace{\left\{\{1,3\} \ \{2,4\} \ \dots \ \{n,2\}\right\}}_{n-\text{cycle}} \underbrace{\left\{\{1,4\} \ \{2,5\} \ \dots \ \{n,3\}\right\}}_{n-\text{cycle}} \dots \\ \underbrace{\left\{\{1,n/2\} \ \{2,(n+2)/2\} \ \dots \ \{n,(n-2)/2\}\right\}}_{n-\text{cycle}} \underbrace{\left\{\{1,(n+2)/2\} \ \{2,(n+4)/2\} \ \dots \ \{n/2,n\}\right\}}_{n/2-\text{cycle}}$$

in which there are $\frac{n-4}{2}$ *n*-cycles and only one $\frac{n}{2}$ -cycle. For $i \in \{1, 2, \ldots, n\}$:

 $\rho(r^i) = (\{1,3\} \ \{2,4\} \ \dots \ \{n,2\})^i (\{1,4\} \ \{2,5\} \ \dots \ \{n,3\})^i \dots$

 $(\{1, n/2\} \ \{2, (n+2)/2\} \ \dots \ \{n, (n-2)/2\})^i (\{1, (n+2)/2\} \ \{2, (n+4)/2\} \ \dots \ \{n/2, n\})^i.$

By Lemma 6, we obtain

$$c(r^{i}) = \left(\frac{n-4}{2}\right)\gcd(n,i) + \gcd(n/2,i).$$

Secondly, take n to be odd. Similar to the first case, the elements of Δ_n can be partitioned according to different cycle lengths. We obtain the following:

$$\rho(r) = \underbrace{\left\{\{1,3\} \ \{2,4\} \ \dots \ \{n,2\}\right\}}_{n-\text{cycle}} \underbrace{\left\{\{1,4\} \ \{2,5\} \ \dots \ \{n,3\}\right\}}_{n-\text{cycle}} \dots \underbrace{\left\{\{1,(n+1)/2\} \ \{2,(n+3)/2\} \ \dots \ \{n,(n-1)/2\}\right\}}_{n-\text{cycle}}$$

in which there are $\frac{n-3}{2}$ n-cycles. As with the above, we can compute the following:

$$c(r^i) = \left(\frac{n-3}{2}\right) \gcd(n,i).$$

Lemma 8. Let $n \ge 4$ and $s_v \in D_n \setminus \langle r \rangle$ be a reflection with axis passing through the center and a vertex. Then

$$c(s_v) = \begin{cases} \frac{n^2 - 2n}{4}, & \text{if } n \text{ is even}; \\ \frac{n^2 - 2n - 3}{4}, & \text{if } n \text{ is odd}. \end{cases}$$

Proof. Note that the case n = 4 is an easy computation. We consider two cases for n > 4. Firstly, take n to be even. The axis of s_v is the diagonal $\{i, i + \frac{n}{2} \mod n\}$. Form

$$\Delta_o = \left\{ \{i - k \mod n, i + k \mod n\} : k \in \left\{1, 2, \dots, \frac{n-2}{2}\right\} \right\}.$$

Observe that $(i \pm k \mod n)^{s_v} = i \mp k \mod n$ and preserves both i and $i + \frac{n}{2} \mod n$. This implies that s_v fixes setwise each element of $\Delta_o \cup \left\{ \left\{ i, i + \frac{n}{2} \mod n \right\} \right\}$. Let $\{\alpha, \beta\}$ be an element of $\Delta_n \setminus \left(\Delta_o \cup \left\{ \left\{ i, i + \frac{n}{2} \mod n \right\} \right\} \right)$, we consider three subcases. Let $\alpha = i$. It follows that $\beta \in \left\{ i \pm k \mod n : k \in \left\{ 2, \ldots, \frac{n-2}{2} \right\} \right\}$. If $\beta = i + k \mod n$ then $\{i, i + k \mod n\}^{s_v} = \{i, i - k \mod n\}$. Similar argument when $\alpha = i + \frac{n}{2} \mod n$. Suppose $\{\alpha, \beta\} \cap \left\{ i, i + \frac{n}{2} \mod n \right\}$. It implies that $\alpha, \beta \in \left\{ i \pm k \mod n : k \in \left\{ 1, 2, \ldots, \frac{n-2}{2} \right\} \right\}$. If $\alpha = i + k_1 \mod n$ and $\beta = i + k_2 \mod n$ where $k_1, k_2 \in \left\{ 1, 2, \ldots, \frac{n-2}{2} \right\}$, then $\{i + k_1 \mod n, i + k_2 \mod n\}^{s_v} = \{i - k_1 \mod n, i - k_2 \mod n\}$. Similar argument can be used for $\alpha = i - k_1 \mod n$ and $\beta = i - k_2 \mod n$. Without loss of generality, assume $\alpha = i - k_1 \mod n$ and $\beta = i + k_2 \mod n$. It means that $k_1 \neq k_2$ and so $\{i - k_1 \mod n, i + k_2 \mod n\}^{s_v} = \{i + k_1 \mod n, i - k_2 \mod n\}$. In all these subcases, we obtain $\{\alpha, \beta\}^{s_v} \neq \{\alpha, \beta\}$.

Proposition 5 and Lemma 6 assure that the length of every cycle in $\rho(s_v)$ is at most two. The above results tell us that each element of $\Delta_o \cup \{i, i + \frac{n}{2} \mod n\}$ creates an 1-cycle in $\rho(s_v)$, while each element of $\Delta_n \setminus (\Delta_o \cup \{i, i + \frac{n}{2} \mod n\})$ creates a 2-cycle. Hence,

$$c(s_v) = \frac{n^2 - 2n}{4}.$$

For the second case, assume n is an odd integer. The axis of s_v is the segment extending from vertex i to the midpoint of the edge $\{i + (n-1)/2 \mod n, i - (n-1)/2 \mod n\}$. Form

$$\Delta_o = \left\{ \{i + k \bmod n, i - k \bmod n\} : k \in \left\{1, 2, \dots, \frac{n-1}{2}\right\} \right\}.$$

Observe that $i^{s_v} = i$ and $(i \pm k \mod n)^{s_v} = i \mp k \mod n$. Thus, each element of

$$\Delta_o \setminus \left\{ \left\{ i + \frac{n-1}{2} \mod n, i - \frac{n-1}{2} \mod n \right\} \right\}$$

creates an 1-cycle in $\rho(s_v)$. Let $\{\alpha, \beta\} \in \Delta_n \setminus \Delta_o$. We consider two subcases. Without loss of generality, assume $\alpha = i$. It follows that $\beta \in \{i \pm k \mod n : k \in \{2, \ldots, (n-1)/2\}\}$ and either $\{i, i + k \mod n\}^{s_v} = \{i, i - k \mod n\}$ or $\{i, i - k \mod n\}^{s_v} = \{i, i + k \mod n\}$. Let $i \notin \{\alpha, \beta\}$. It means that $\alpha, \beta \in \{i \pm k \mod n : k \in \{1, 2, \ldots, (n-1)/2\}\}$. As with the above, we always obtain $\{\alpha, \beta\}^{s_v} \neq \{\alpha, \beta\}$ in different subcases.

Since the length of each cycle of $\rho(s_v)$ is at most two, then the two subcases above imply that every $\{\alpha, \beta\} \in \Delta_n \setminus \Delta_o$ creates a 2-cycle in $\rho(s_v)$. Hence,

$$c(s_v) = \frac{n^2 - 2n - 3}{4}.$$

Lemma 9. Let $n \ge 6$ be even. Suppose $s_e \in D_n \setminus \langle r \rangle$ to be a reflection with axis passing through the origin and midpoints of opposing edges. Then

$$c(s_e) = \frac{n^2 - 2n - 4}{4}$$

Proof. The axis of s_e is the segment extending from the midpoint of an edge $\{i, i+1 \mod n\}$ to the midpoint of $\{i - (\frac{n}{2} - 1) \mod n, i + \frac{n}{2} \mod n\}$. We note that for $j \in [n], j^{s_e} = (2i+1) - j \mod n$. Let

$$\Delta_o = \{\{i + k \mod n, i - k + 1 \mod n\} : k \in \{2, 3, \dots, (n-2)/2\}\}.$$

It should be noted that s_e fixes setwise each element of Δ_o and creates an 1-cycle in $\rho(s_e)$.

For $\{\alpha, \beta\} \in \Delta_n \setminus \Delta_o$, there exists $k \in \{1, 2, \dots, \frac{n}{2}\}$ such that if $\alpha = i + k \mod n$, then $\beta \in [n] \setminus \{i + k \mod n, i - k + 1 \mod n\}$ and so

$$\{i + k \mod n, \beta\}^{s_e} = \{i - k + 1 \mod n, \beta^{s_e}\} \neq \{\alpha, \beta\}.$$

Also, if $\alpha = i - k + 1 \mod n$ then $\beta \in [n] \setminus \{i + k \mod n, i - k + 1 \mod n\}$ and so

$$\{i - k + 1 \mod n, \beta\}^{s_e} = \{i + k \mod n, \beta^{s_e}\} \neq \{\alpha, \beta\}.$$

Hence, each element of $\Delta_n \setminus \Delta_o$ creates a 2-cycle of $\rho(s_e)$. That is,

$$c(s_e) = \frac{n^2 - 2n - 4}{4}.$$

We now collect the properties from Lemmas 7, 8 and 9 and plug them in to the equation in Proposition 4 to obtain our main result.

Theorem 10. Let $n \ge 3$. The number $\gamma(n)$ of distinct ways of dissecting an n-gon modulo the action of the dihedral group D_n is:

$$\gamma(n) = \begin{cases} \frac{1}{2n} \left(\left(\sum_{i=1}^{n} 2^{\left(\frac{n-4}{2}\right) \gcd(n,i) + \gcd(\frac{n}{2},i)} \right) + \frac{n}{2} \left(2^{\frac{n^2 - 2n}{4}} + 2^{\frac{n^2 - 2n-4}{4}} \right) \right), & \text{if } n \text{ is even} \\ \frac{1}{2n} \left(\left(\sum_{i=1}^{n} 2^{\left(\frac{n-3}{2}\right) \gcd(n,i)} \right) + n \left(2^{\frac{n^2 - 2n-3}{4}} \right) \right), & \text{if } n \text{ is odd.} \end{cases}$$

Corollary 11. The number of dissections of a regular p-gon modulo the dihedral action, where p is prime with $p \ge 3$, is

$$\frac{(p-1)\cdot 2^{\frac{p-3}{2}} + 2^{\frac{p^2-3p}{2}} + p\cdot 2^{\frac{p^2-2p-3}{4}}}{2p}$$

4 Remark

The number $\gamma_c(n)$ of distinct ways of dissecting an *n*-gon modulo the action of the cyclic group $\langle (1 \ 2 \ \dots \ n) \rangle$ is

$$\gamma_c(n) = \begin{cases} \frac{1}{n} \left(\sum_{i=1}^n 2^{\left(\frac{n-4}{2}\right) \gcd(n,i) + \gcd\left(\frac{n}{2},i\right)} \right), & \text{if } n \text{ is even}; \\ \frac{1}{n} \left(\sum_{i=1}^n 2^{\left(\frac{n-3}{2}\right) \gcd(n,i)} \right), & \text{if } n \text{ is odd.} \end{cases}$$

Moreover, when $n = p \ge 3$, then

$$\gamma_c(p) = \frac{(p-1) \cdot 2^{\frac{p-3}{2}} + 2^{\frac{p^2-3p}{2}}}{p}.$$

5 Acknowledgment

The authors would like to thank Cebu Normal University for its support while the research was being undertaken.

References

- [1] D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, preprint, 2012, http://arxiv.org/abs/1209.6270.
- [2] D. Callan, Polygon dissections and marked Dyck paths, preprint, 2005, https://pdfs.semanticscholar.org/d405.
- [3] J. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, 1996.
- [4] J. Przytycki and A. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, preprint, 1998, https://arxiv.org/abs/math/9811086.
- [5] A. Siegel, Counting the number of distinct dissections of a regular *n*-gon, thesis, University of Akron, 2014.

2010 Mathematics Subject Classification: Primary 05C25; Secondary 05C69. Keywords: n-gon, dissection, dihedral group.

Received September 13 2016; revised version received May 9 2016; June 30 2017; July 18 2017. Published in *Journal of Integer Sequences*, July 29 2017.

Return to Journal of Integer Sequences home page.