Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.

# Long and Short Sums of a Twisted Divisor Function 

Olivier Bordellès<br>2, allée de la Combe<br>43000 Aiguilhe<br>France<br>borde43@wanadoo.fr


#### Abstract

Let $q>2$ be a prime number and define $\lambda_{q}:=\left(\frac{\tau}{q}\right)$ where $\tau(n)$ is the number of divisors of $n$ and $(\dot{\bar{q}})$ is the Legendre symbol. When $\tau(n)$ is a quadratic residue modulo $q$, then the convolution $\left(\lambda_{q} \star \mathbf{1}\right)(n)$ could be close to the number of divisors of $n$. The aim of this work is to compare the mean value of the function $\lambda_{q} \star \mathbf{1}$ to the well known average order of $\tau$. A bound for short sums in the case $q=5$ is also given, using profound results from the theory of integer points close to certain smooth curves.


## 1 Introduction and main result

If $\Omega(n)$ stands for the number of total prime factors of $n$ and $\lambda=(-1)^{\Omega}$ is the Liouville function, then

$$
L(s, \lambda)=\frac{\zeta(2 s)}{\zeta(s)} \quad(\sigma>1)
$$

This implies the convolution identity

$$
\sum_{n \leqslant x}(\lambda \star \mathbf{1})(n)=\left\lfloor x^{1 / 2}\right\rfloor,
$$

where, as usual, $F \star G$ is the Dirichlet convolution product of the arithmetic functions $F$ and $G$ given by

$$
(F \star G)(n):=\sum_{d \mid n} F(d) G(n / d) .
$$

Define $\lambda_{3}:=\left(\frac{\tau}{3}\right)$ where $\tau(n)$ is the number of divisors of $n$ and $(\dot{\overline{3}})$ is the Legendre symbol. Then from Proposition 3 below

$$
L\left(s, \lambda_{3}\right)=\frac{\zeta(3 s)}{\zeta(s)} \quad(\sigma>1)
$$

implying the convolution identity

$$
\sum_{n \leqslant x}\left(\lambda_{3} \star \mathbf{1}\right)(n)=\left\lfloor x^{1 / 3}\right\rfloor .
$$

Now let $q>2$ be a prime number and define $\lambda_{q}:=\left(\frac{\tau}{q}\right)$ where $(\dot{\bar{q}})$ is the Legendre symbol. Our main aim is to investigate the sum

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n) .
$$

When $\tau(n)$ is a quadratic residue modulo $q$, one may wonder if $\left(\lambda_{q} \star \mathbf{1}\right)(n)$ has a high probability to be equal to the number of divisors of $n$. Note that this function is multiplicative, and, for any prime $p,\left(\lambda_{q} \star \mathbf{1}\right)(p)=1+\left(\frac{2}{q}\right)$. Consequently, when 2 is a quadratic residue modulo $q$, then $\left(\lambda_{q} \star \mathbf{1}\right)(n)=\tau(n)$ for all squarefree numbers $n$. On the other hand, when 2 is a quadratic nonresidue modulo $q$, then $\left(\lambda_{q} \star \mathbf{1}\right)(n)=0$ unless $n=1$ or $n$ is squarefull, so that $\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n) \ll x^{1 / 2}$ in this case. It then could be interesting to compare this sum to the average order of the function $\tau$, i.e.,

$$
\begin{equation*}
\sum_{n \leqslant x} \tau(n)=x(\log x+2 \gamma-1)+O\left(x^{\theta+\varepsilon}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{4} \leqslant \theta \leqslant \frac{131}{416}, \tag{2}
\end{equation*}
$$

the left-hand side being established by Hardy [5], the right-hand side being the best estimate to date due to Huxley [6].

To state our first main result, some specific notation are needed. For any prime $q>3$, let $c_{q}$, respectively $d_{q}$, be least positive integer $m \in\{1, \ldots, q-2\}$ for which $\left(\frac{m}{q}\right) \neq\left(\frac{m+1}{q}\right)$, respectively $\left(\frac{m}{q}\right) \neq-\left(\frac{m+1}{q}\right)$. Note that $c_{q}$ and $d_{q}$ are well-defined, since it is known from [3, p. 75-76] that the number of $m$ for which $\left(\frac{m}{q}\right)=\left(\frac{m+1}{q}\right)$ and $\left(\frac{m}{q}\right)=-\left(\frac{m+1}{q}\right)$ are respectively $\frac{1}{2}(q-3)$ and $\frac{1}{2}(q-1)$. Hence there is at least $\frac{1}{2}(q-3)$ integers $m$ for which $\left(\frac{m}{q}\right) \neq \pm\left(\frac{m+1}{q}\right)$. For convenience, set $d_{3}=3$.

As usual in number theory, we adopt Riemann's notation $s=\sigma+i t \in \mathbb{C}$ and $\zeta$ is the Riemann zeta function, and define the Euler products

$$
P_{q}(s):=\prod_{p}\left(1+\sum_{m=c_{q}}^{q-1}\left(\left(\frac{m+1}{q}\right)-\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \quad\left(\sigma>\frac{1}{c_{q}}\right)
$$

and

$$
R_{q}(s):=\prod_{p}\left(1+\sum_{m=3}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \quad\left(\sigma>\frac{1}{3}\right) .
$$

Theorem 1. Let $q>3$ be a prime number.
(a) If $q \equiv \pm 1(\bmod 8)$

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star 1\right)(n)=x \zeta(q) P_{q}(1)\left(\log x+2 \gamma-1+q \frac{\zeta^{\prime}}{\zeta}(q)+\frac{P_{q}^{\prime}}{P_{q}}(1)\right)+O_{q, \varepsilon}\left(x^{\max \left(1 / c_{q}, \theta\right)+\varepsilon}\right),
$$

where $\theta$ is defined in (1) and (2).
(b) If $q \equiv \pm 11(\bmod 24)$

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n)=x^{1 / 2} \zeta\left(\frac{q}{2}\right) R_{q}\left(\frac{1}{2}\right)+O_{q, \varepsilon}\left(x^{1 / 3+\varepsilon}\right) .
$$

(c) If $q \equiv \pm 5(\bmod 24)$, there exists $c>0$ such that

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n)<_{q} x^{1 / 2} e^{-c\left(\log x^{1 / 4}\right)^{3 / 5}\left(\log \log x^{1 / 4}\right)^{-1 / 5} .}
$$

Furthermore, if the Riemann hypothesis is true, then for $x$ sufficiently large

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n) \ll_{q, \varepsilon} x^{1 / 4} e^{(\log \sqrt{x})^{1 / 2}(\log \log \sqrt{x})^{5 / 2+\varepsilon}}
$$

## Example 2.

$$
\begin{aligned}
& \sum_{n \leqslant x}\left(\lambda_{7} \star \mathbf{1}\right)(n) \doteq 0.454 x(\log x+2 \gamma+0.784)+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right) . \\
& \sum_{n \leqslant x}\left(\lambda_{23} \star \mathbf{1}\right)(n) \doteq 0.899 x(\log x+2 \gamma-0.678)+O_{\varepsilon}\left(x^{131 / 416+\varepsilon}\right) . \\
& \sum_{n \leqslant x}\left(\lambda_{13} \star \mathbf{1}\right)(n) \doteq 1.969 x^{1 / 2}+O_{\varepsilon}\left(x^{1 / 3+\varepsilon}\right) . \\
& \sum_{n \leqslant x}\left(\lambda_{5} \star \mathbf{1}\right)(n) \ll x^{1 / 2} e^{-c\left(\log x^{1 / 4}\right)^{3 / 5}\left(\log \log x^{1 / 4}\right)^{-1 / 5}} .
\end{aligned}
$$

## 2 Notation

In what follows, $x \geqslant e^{4}$ is a large real number, $\varepsilon \in\left(0, \frac{1}{4}\right)$ is a small real number which does not need to be the same at each occurrence, $q$ always denotes an odd prime number, $\left(\frac{\dot{\bar{q}}}{}\right)$ is the Legendre symbol and

$$
\lambda_{q}:=\left(\frac{\tau}{q}\right)
$$

where $\tau(n):=\sum_{d \mid n} 1$. Also, $\mathbf{1}$ is the constant arithmetic function equal to 1 .
For any arithmetic functions $F$ and $G, L(s, F)$ is the Dirichlet series of $F$, and $F^{-1}$ is the Dirichlet convolution inverse of $F$. If $r \in \mathbb{Z}_{\geqslant 2}$, then

$$
a_{r}(n):= \begin{cases}1, & \text { if } n=m^{r} \\ 0, & \text { otherwise }\end{cases}
$$

For some $c>0$, set

$$
\delta_{c}(x):=e^{-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}} \quad \text { and } \quad \omega(x):=e^{(\log x)^{1 / 2}(\log \log x)^{5 / 2+\varepsilon}} .
$$

Finally, let $M(x)$ and $L(x)$ be respectively the Mertens function and the summatory function of the Liouville function, i.e.

$$
M(x):=\sum_{n \leqslant x} \mu(n) \quad \text { and } \quad L(x):=\sum_{n \leqslant x} \lambda(n) .
$$

## 3 The Dirichlet series of $\lambda_{q}$

Proposition 3. Let $q \geqslant 3$ be a prime number. For any $s \in \mathbb{C}$ such that $\sigma>1$

- If $q \equiv \pm 1(\bmod 8)$

$$
L\left(s, \lambda_{q}\right)=\zeta(q s) \zeta(s) \prod_{p}\left(1+\sum_{m=c_{q}}^{q-1}\left(\left(\frac{m+1}{q}\right)-\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) .
$$

- If $q \equiv \pm 3(\bmod 8)$

$$
L\left(s, \lambda_{q}\right)=\frac{\zeta(q s) \zeta(2 s)}{\zeta(s)} \prod_{p}\left(1+\sum_{m=d_{q}}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right)
$$

Proof. Set $\chi_{q}:=(\dot{\bar{q}})$ for convenience. From [8, Lemma 2.1], we have

$$
\begin{aligned}
L\left(s, \lambda_{q}\right) & =\prod_{p}\left(1+\sum_{\alpha=1}^{\infty} \frac{\chi_{q}(\alpha+1)}{p^{s \alpha}}\right)=\prod_{p}\left(1+p^{s} \sum_{\alpha=2}^{\infty} \frac{\chi_{q}(\alpha)}{p^{s \alpha}}\right) \\
& =\prod_{p}\left(1+p^{s}\left(\left(1-\frac{1}{p^{q s}}\right)^{-1} \sum_{m=1}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{m s}}-p^{-s}\right)\right) \\
& =\prod_{p}\left(\left(1-\frac{1}{p^{q s}}\right)^{-1} \sum_{m=1}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}}\right) \\
& =\zeta(q s) \prod_{p}\left(1+\sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}}\right) .
\end{aligned}
$$

If $q \equiv \pm 1(\bmod 8)$, then $\left(\frac{2}{q}\right)=1$ and

$$
L\left(s, \lambda_{q}\right)=\zeta(q s) \zeta(s) \prod_{p}\left(1-\frac{1}{p^{s}}+\left(1-\frac{1}{p^{s}}\right) \sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}}\right)
$$

where

$$
\begin{aligned}
\left(1-\frac{1}{p^{s}}\right) \sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}} & =\sum_{m=2}^{q-1}\left(\frac{m}{q}\right)\left(\frac{1}{p^{(m-1) s}}-\frac{1}{p^{m s}}\right) \\
& =\sum_{m=1}^{q-2}\left(\frac{m+1}{q}\right) \frac{1}{p^{m s}}-\sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{m s}} \\
& =\left(\frac{2}{q}\right) \frac{1}{p^{s}}+\sum_{m=2}^{q-1}\left(\left(\frac{m+1}{q}\right)-\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}-\left(\frac{q}{q}\right) \frac{1}{p^{(q-1) s}} \\
& =\sum_{m=2}^{q-1}\left(\left(\frac{m+1}{q}\right)-\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}+\frac{1}{p^{s}} .
\end{aligned}
$$

Similarly, if $q \equiv \pm 3(\bmod 8)$, then $\left(\frac{2}{q}\right)=-1$ and

$$
L\left(s, \lambda_{q}\right)=\frac{\zeta(q s) \zeta(2 s)}{\zeta(s)} \prod_{p}\left(1+\frac{1}{p^{s}}+\left(1+\frac{1}{p^{s}}\right) \sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}}\right)
$$

where

$$
\begin{aligned}
\left(1+\frac{1}{p^{s}}\right) \sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{(m-1) s}} & =\sum_{m=2}^{q-1}\left(\frac{m}{q}\right)\left(\frac{1}{p^{(m-1) s}}+\frac{1}{p^{m s}}\right) \\
& =\sum_{m=1}^{q-2}\left(\frac{m+1}{q}\right) \frac{1}{p^{m s}}+\sum_{m=2}^{q-1}\left(\frac{m}{q}\right) \frac{1}{p^{m s}} \\
& =\left(\frac{2}{q}\right) \frac{1}{p^{s}}+\sum_{m=2}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}-\left(\frac{q}{q}\right) \frac{1}{p^{(q-1) s}} \\
& =\sum_{m=2}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}-\frac{1}{p^{s}} .
\end{aligned}
$$

We achieve the proof noting that, if $q \equiv \pm 1(\bmod 24)$, then $\left(\frac{3}{q}\right)-\left(\frac{2}{q}\right)=\left(\frac{4}{q}\right)-\left(\frac{3}{q}\right)=0$ and, similarly, if $q \equiv \pm 11(\bmod 24)$, then $\left(\frac{3}{q}\right)+\left(\frac{2}{q}\right)=0$ whereas $\left(\frac{4}{q}\right)+\left(\frac{3}{q}\right)=2$.

## 4 Proof of Theorem 1

### 4.1 The case $q \equiv \pm 1(\bmod 8)$

For $\sigma>1$, we set

$$
G_{q}(s)=\zeta(q s) \prod_{p}\left(1+\sum_{m=c_{q}}^{q-1}\left(\left(\frac{m+1}{q}\right)-\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right)=\zeta(q s) P_{q}(s):=\sum_{n=1}^{\infty} \frac{g_{q}(n)}{n^{s}} .
$$

This Dirichlet series is absolutely convergent in the half-plane $\sigma>\frac{1}{c_{q}}$, so that

$$
\sum_{n \leqslant x}\left|g_{q}(n)\right|<_{q, \varepsilon} x^{1 / c_{q}+\varepsilon}
$$

By partial summation, we infer

$$
\begin{aligned}
\sum_{n \leqslant x} \frac{g_{q}(n)}{n} & =\zeta(q) P_{q}(1)+O\left(x^{-1+1 / c_{q}+\varepsilon}\right) \\
\sum_{n \leqslant x} \frac{g_{q}(n)}{n} \log \frac{x}{n} & =\zeta(q) P_{q}(1) \log x+q P_{q}(1) \zeta^{\prime}(q)+P_{q}^{\prime}(1) \zeta(q)+O\left(x^{-1+1 / c_{q}+\varepsilon}\right) .
\end{aligned}
$$

From Proposition $3, \lambda_{q} \star \mathbf{1}=g_{q} \star \tau$. Consequently

$$
\begin{aligned}
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n)= & \sum_{d \leqslant x} g_{q}(d) \sum_{k \leqslant x / d} \tau(k) \\
= & \sum_{d \leqslant x} g_{q}(d)\left(\frac{x}{d} \log \frac{x}{d}+(2 \gamma-1) \frac{x}{d}+O\left(\left(\frac{x}{d}\right)^{\theta+\varepsilon}\right)\right) \\
= & x\left(\zeta(q) P_{q}(1) \log x+q P_{q}(1) \zeta^{\prime}(q)+P_{q}^{\prime}(1) \zeta(q)+(2 \gamma-1) \zeta(q) P_{q}(1)\right) \\
& +O\left(x^{\max \left(1 / c_{q}, \theta\right)+\varepsilon}\right)
\end{aligned}
$$

where $\theta$ is defined in (1) and where we used

$$
x^{-\varepsilon} \sum_{d \leqslant x} \frac{\left|g_{q}(d)\right|}{d^{\theta}} \ll \begin{cases}x^{1 / c_{q}-\theta}, & \text { if } c_{q}^{-1} \geqslant \theta \\ 1, & \text { otherwise }\end{cases}
$$

### 4.2 The case $q \equiv \pm 11(\bmod 24)$

For $\sigma>1$, we set

$$
H_{q}(s)=\zeta(q s) \prod_{p}\left(1+\sum_{m=3}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right)=\zeta(q s) R_{q}(s):=\sum_{n=1}^{\infty} \frac{h_{q}(n)}{n^{s}} .
$$

Since $q>5$, this Dirichlet series is absolutely convergent in the half-plane $\sigma>\frac{1}{3}$, so that

$$
\sum_{n \leqslant x}\left|h_{q}(n)\right|<_{q, \varepsilon} x^{1 / 3+\varepsilon}
$$

From Proposition 3, $\lambda_{q} \star \mathbf{1}=h_{q} \star a_{2}$, hence

$$
\begin{aligned}
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n) & =\sum_{d \leqslant x} h_{q}(d)\left\lfloor\sqrt{\frac{x}{d}}\right\rfloor \\
& =x^{1 / 2} \sum_{d \leqslant x} \frac{h_{q}(d)}{\sqrt{d}}+O\left(x^{1 / 3+\varepsilon}\right) \\
& =x^{1 / 2} H_{q}\left(\frac{1}{2}\right)+O\left(x^{1 / 3+\varepsilon}\right)
\end{aligned}
$$

### 4.3 The case $q \equiv \pm 5(\bmod 24)$

In this case, it is necessary to rewrite $L\left(s, \lambda_{q}\right)$ in the following shape.

Lemma 4. Assume $q \equiv \pm 5(\bmod 24)$. For any $\sigma>1, L\left(s, \lambda_{q}\right)=\frac{K_{q}(s)}{\zeta(s) \zeta(2 s)}$ with

$$
K_{q}(s):= \begin{cases}\zeta(5 s), & \text { if } q=5 \\ \zeta(4 s) L_{q}(s), & \text { if } q \equiv \pm 19, \pm 29(\bmod 120) \\ \frac{\mathcal{L}_{q}(s)}{\zeta(4 s)}, & \text { if } q \equiv \pm 43, \pm 53(\bmod 120)\end{cases}
$$

where

$$
L_{q}(s):=\zeta(q s) \prod_{p}\left(1+\frac{2\left(p^{2 s}+p^{s}+1\right)}{p^{7 s}-p^{5 s}}+\frac{p^{2 s}+1}{p^{2 s}-1} \sum_{m=6}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right)
$$

and

$$
\begin{aligned}
\mathcal{L}_{q}(s):= & \zeta(q s) \prod_{p}\left(1-\frac{2 p^{2 s}-1}{\left(p^{2 s}-1\right)^{3}\left(p^{2 s}+1\right)}\right. \\
& \left.+\frac{p^{8 s}}{\left(p^{2 s}-1\right)^{3}\left(p^{2 s}+1\right)} \sum_{m=6}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) .
\end{aligned}
$$

The Dirichlet series $L_{q}$ is absolutely convergent in the half-plane $\sigma>\frac{1}{5}$, and the Dirichlet series $\mathcal{L}_{q}$ is absolutely convergent in the half-plane $\sigma>\frac{1}{6}$.

Proof. From Proposition 3, we immediately get

$$
\begin{equation*}
L\left(s, \lambda_{5}\right)=\frac{\zeta(5 s)}{\zeta(s) \zeta(2 s)} \tag{3}
\end{equation*}
$$

Now suppose $q>5$ and $q \equiv \pm 5(\bmod 24)$. In this case, $\left(\frac{3}{q}\right)+\left(\frac{2}{q}\right)=-2$ and $\left(\frac{4}{q}\right)+\left(\frac{3}{q}\right)=0$ so that we may write by Proposition 3

$$
\begin{aligned}
L\left(s, \lambda_{q}\right) & =\frac{\zeta(q s) \zeta(2 s)}{\zeta(s)} \prod_{p}\left(1-\frac{2}{p^{2 s}}+\sum_{m=4}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \\
& =\frac{K_{q}(s)}{\zeta(s) \zeta(2 s)}
\end{aligned}
$$

where

$$
K_{q}(s):=\zeta(q s) \prod_{p}\left(1-\frac{1}{\left(p^{2 s}-1\right)^{2}}+\frac{p^{4 s}}{\left(p^{2 s}-1\right)^{2}} \sum_{m=4}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) .
$$

Assume $q \equiv \pm 19, \pm 29(\bmod 120)$. Then

$$
\left(\frac{5}{q}\right)+\left(\frac{4}{q}\right)=\left(\frac{6}{q}\right)+\left(\frac{5}{q}\right)=2 .
$$

$K_{q}(s)$ can therefore be written as

$$
\begin{aligned}
K_{q}(s) & =\zeta(q s) \prod_{p}\left(1+\frac{p^{s}+2}{p^{s}\left(p^{2 s}-1\right)^{2}}+\frac{p^{4 s}}{\left(p^{2 s}-1\right)^{2}} \sum_{m=6}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \\
& =\zeta(q s) \zeta(4 s) \prod_{p}\left(1+\frac{2\left(p^{2 s}+p^{s}+1\right)}{p^{7 s}-p^{5 s}}+\frac{p^{2 s}+1}{p^{2 s}-1} \sum_{m=6}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \\
& =\zeta(4 s) L_{q}(s) .
\end{aligned}
$$

Similarly, if $q \equiv \pm 43, \pm 53(\bmod 120)$, then

$$
\left(\frac{5}{q}\right)+\left(\frac{4}{q}\right)=\left(\frac{6}{q}\right)+\left(\frac{5}{q}\right)=0
$$

Hence

$$
\begin{aligned}
K_{q}(s) & :=\zeta(q s) \prod_{p}\left(1-\frac{1}{\left(p^{2 s}-1\right)^{2}}+\frac{p^{4 s}}{\left(p^{2 s}-1\right)^{2}} \sum_{m=6}^{q-1}\left(\left(\frac{m+1}{q}\right)+\left(\frac{m}{q}\right)\right) \frac{1}{p^{m s}}\right) \\
& =\frac{\mathcal{L}_{q}(s)}{\zeta(4 s)}
\end{aligned}
$$

The proof is complete.
We now are in a position to prove Theorem 1 in the case $q \equiv \pm 5(\bmod 24)$.
Assume first that $q \equiv \pm 19, \pm 29(\bmod 120)$ and let $\ell_{q}(n)$ be the $n$-th coefficient of the Dirichlet series $L_{q}(s)$. From Lemma $4, \lambda_{q} \star \mathbf{1}=\ell_{q} \star a_{4} \star a_{2}^{-1}$ and therefore

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n)=\sum_{d \leqslant x} \ell_{q}(d) \sum_{m \leqslant(x / d)^{1 / 4}} M\left(\frac{1}{m^{2}} \sqrt{\frac{x}{d}}\right)=\sum_{d \leqslant x} \ell_{q}(d) L\left(\sqrt{\frac{x}{d}}\right)
$$

Since $L(z) \ll z \delta_{c}(z)$ for some $c>0$

$$
\begin{aligned}
\sum_{n \leqslant x}\left(\lambda_{q} \star 1\right)(n) & \ll x^{1 / 2} \sum_{d \leqslant x} \frac{\left|\ell_{q}(d)\right|}{\sqrt{d}} \delta_{c}\left(\sqrt{\frac{x}{d}}\right) \\
& \ll x^{1 / 2}\left(\sum_{d \leqslant \sqrt{x}}+\sum_{\sqrt{x}<d \leqslant x}\right) \frac{\left|\ell_{q}(d)\right|}{\sqrt{d}} \delta_{c}\left(\sqrt{\frac{x}{d}}\right) \\
& \ll x^{1 / 2} \delta_{c}\left(x^{1 / 4}\right)+x^{1 / 2} \sum_{d>\sqrt{x}} \frac{\left|\ell_{q}(d)\right|}{\sqrt{d}}
\end{aligned}
$$

The Dirichlet series $L_{q}(s):=\sum_{n=1}^{\infty} \ell_{q}(n) n^{-s}$ is absolutely convergent in the half-plane $\sigma>\frac{1}{5}$, consequently

$$
\sum_{d \leqslant z}\left|\ell_{q}(d)\right|<_{q, \varepsilon} z^{1 / 5+\varepsilon}
$$

and by partial summation

$$
\sum_{d>z} \frac{\left|\ell_{q}(d)\right|}{\sqrt{d}} \lll q, \varepsilon z^{-3 / 10+\varepsilon}
$$

We infer that

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star 1\right)(n) \ll x^{1 / 2} \delta_{c}\left(x^{1 / 4}\right)+x^{7 / 20+\varepsilon} \ll x^{1 / 2} \delta_{c}\left(x^{1 / 4}\right)
$$

Now suppose that the Riemann hypothesis is true. By [1], which is a refinement of [9], we know that $M(z) \ll_{\varepsilon} z^{1 / 2} \omega(z)$. The method of $[9,1]$ may be adapted to the function $L$ yielding

$$
L(z) \ll_{\varepsilon} z^{1 / 2} \omega(z) \log z
$$

Observe that, for any $a \geqslant 2, \varepsilon>0$ and $z \geqslant e^{e^{e}}$

$$
\log z \exp \left(\sqrt{\log z}(\log \log z)^{a}\right) \leqslant \exp \left(\sqrt{\log z}(\log \log z)^{a+\varepsilon}\right)
$$

so that $L(z) \ll_{\varepsilon} z^{1 / 2} \omega(z)$ and hence

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n) \ll x^{1 / 4} \sum_{d \leqslant x} \frac{\left|\ell_{q}(d)\right|}{d^{1 / 4}} \omega\left(\sqrt{\frac{x}{d}}\right) \ll x^{1 / 4} \omega(\sqrt{x}) \sum_{d \leqslant x} \frac{\left|\ell_{q}(d)\right|}{d^{1 / 4}} \ll x^{1 / 4} \omega(\sqrt{x})
$$

completing the proof in that case. The case $q=5$ is similar but simpler since $\lambda_{5} \star \mathbf{1}=a_{5} \star a_{2}^{-1}$ by (3).

Finally, when $q \equiv \pm 43, \pm 53(\bmod 120)$, we proceed as above. Let $\nu_{q}(n)$ be the $n$-th coefficient of the Dirichlet series $\mathcal{L}_{q}(s)$. Then $\lambda_{q} \star \mathbf{1}=\nu_{q} \star a_{4}^{-1} \star a_{2}^{-1}$ from Lemma 4, so that

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star \mathbf{1}\right)(n)=\sum_{d \leqslant x} \nu_{q}(d) \sum_{m \leqslant(x / d)^{1 / 4}} \mu(m) M\left(\frac{1}{m^{2}} \sqrt{\frac{x}{d}}\right)
$$

and estimating trivially yields

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star 1\right)(n) \ll x^{1 / 2} \sum_{d \leqslant x} \frac{\left|\nu_{q}(d)\right|}{\sqrt{d}} \sum_{m \leqslant(x / d)^{1 / 4}} \frac{1}{m^{2}} \delta_{c}\left(\frac{1}{m^{2}} \sqrt{\frac{x}{d}}\right)
$$

and we complete the proof as in the previous case.

Remark 5. Let us stress that a bound of the shape

$$
\sum_{n \leqslant x}\left(\lambda_{q} \star 1\right)(n) \ll x^{1 / 4+\varepsilon}
$$

for all $x$ sufficiently large and small $\varepsilon>0$, is a necessary and sufficient condition for the Riemann hypothesis. Indeed, if this estimate holds, then by partial summation the series $\sum_{n=1}^{\infty}\left(\lambda_{q} \star \mathbf{1}\right)(n) n^{-s}$ is absolutely convergent in the half-plane $\sigma>\frac{1}{4}$. Consequently, the function $K_{q}(s) \zeta(2 s)^{-1}$ is analytic in this half-plane. In particular, $\zeta(2 s)$ does not vanish in this half-plane, implying the Riemann hypothesis, proving the necessary condition, the sufficiency being established above.

## 5 A short interval result for the case $q=5$

### 5.1 Introduction

This section deals with sums of the shape

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star 1\right)(n)
$$

where $x^{\varepsilon} \leqslant y \leqslant x$. From Theorem 1

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star 1\right)(n) \ll x^{1 / 2} e^{-c\left(\log x^{1 / 4}\right)^{3 / 5}\left(\log \log x^{1 / 4}\right)^{-1 / 5}}
$$

and if the Riemann hypothesis is true, then

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star \mathbf{1}\right)(n) \ll_{\varepsilon} x^{1 / 4} e^{(\log \sqrt{x})^{1 / 2}(\log \log \sqrt{x})^{5 / 2+\varepsilon}}
$$

The purpose is to improve significantly upon these estimates when $y=o(x)$, by using fine results belonging to the theory of integer points near a suitably chosen smooth curve. To this end, we need the following additional notation. Let $\delta \in\left(0, \frac{1}{4}\right), N \in \mathbb{Z}_{\geqslant 1}$ large, $f:[N, 2 N] \longrightarrow \mathbb{R}$ be any map, and define $\mathcal{R}(f, N, \delta)$ to be the number of elements of the set of integers $n \in[N, 2 N]$ such that $\|f(n)\|<\delta$, where $\|x\|$ is the distance from $x$ to its nearest integer. Note that the trivial bound is given by

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star 1\right)(n) \ll \sum_{x<n \leqslant x+y} \tau(n) \ll y \log x .
$$

### 5.2 Tools from the theory

In what follows, $N \in \mathbb{Z}_{\geqslant 1}$ is large and $\delta \in\left(0, \frac{1}{4}\right)$. The first result is [7, Theorem 5] with $k=5$. See also [2, Theorem 5.23 (iv)].

Lemma 6 (5th derivative test). Let $f \in C^{5}[N, 2 N]$ such that there exist $\lambda_{4}>0$ and $\lambda_{5}>0$ satisfying $\lambda_{4}=N \lambda_{5}$ and, for any $x \in[N, 2 N]$

$$
\left|f^{(4)}(x)\right| \asymp \lambda_{4} \quad \text { and } \quad\left|f^{(5)}(x)\right| \asymp \lambda_{5} .
$$

Then

$$
\mathcal{R}(f, N, \delta) \ll N \lambda_{5}^{1 / 15}+N \delta^{1 / 6}+\left(\delta \lambda_{4}^{-1}\right)^{1 / 4}+1
$$

Remark 7. The basic result of the theory is the following first derivative test (see [2, Theorem 5.6]): Let $f \in C^{1}[N, 2 N]$ such that there exist $\lambda_{1}>0$ such that $\left|f^{\prime}(x)\right| \asymp \lambda_{1}$. Then

$$
\begin{equation*}
\mathcal{R}(f, N, \delta) \ll N \lambda_{1}+N \delta+\delta \lambda_{1}^{-1}+1 . \tag{4}
\end{equation*}
$$

This result is essentially a consequence of the mean value theorem.
The second tool is [4, Theorem 7] with $k=3$.
Lemma 8. Let $s \in \mathbb{Q}^{*} \backslash\{ \pm 2, \pm 1\}$ and $X>0$ such that $N \leqslant X^{1 / s}$. Then there exists a constant $c_{3}:=c_{3}(s) \in\left(0, \frac{1}{4}\right)$ depending only on $s$ such that, if

$$
\begin{equation*}
N^{2} \delta \leqslant c_{3} \tag{5}
\end{equation*}
$$

then

$$
\mathcal{R}\left(\frac{X}{n^{s}}, N, \delta\right) \ll\left(X N^{3-s}\right)^{1 / 7}+\delta\left(X N^{59-s}\right)^{1 / 21} .
$$

Our last result relates the short sum of $\lambda_{5} \star 1$ to a problem of counting integer points near a smooth curve.

Lemma 9. Let $1 \leqslant y \leqslant x$. Then

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star \mathbf{1}\right)(n) \ll \max _{\left(16 y^{2} x^{-1}\right)^{1 / 5}<N \leqslant(2 x)^{1 / 5}} \mathcal{R}\left(\sqrt{\frac{x}{n^{5}}}, N, \frac{y}{\sqrt{N^{5} x}}\right) \log x+y x^{-1 / 2}+x^{-1 / 5} y^{2 / 5} .
$$

Proof. Using (3), we get

$$
\sum_{n \leqslant x}\left(\lambda_{5} \star \mathbf{1}\right)(n)=\sum_{d \leqslant \sqrt{x}} \mu(d)\left\lfloor\left(\frac{x}{d^{2}}\right)^{1 / 5}\right\rfloor
$$

so that

$$
\begin{aligned}
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star \mathbf{1}\right)(n) & =\sum_{d \leqslant \sqrt{x}} \mu(d)\left(\left\lfloor\left(\frac{x+y}{d^{2}}\right)^{1 / 5}\right\rfloor-\left\lfloor\left(\frac{x}{d^{2}}\right)^{1 / 5}\right\rfloor\right)+\sum_{\sqrt{x}<d \leqslant \sqrt{x+y}} \mu(d) \\
& \ll \sum_{d \leqslant \sqrt{x}}\left(\left\lfloor\left(\frac{x+y}{d^{2}}\right)^{1 / 5}\right\rfloor-\left\lfloor\left(\frac{x}{d^{2}}\right)^{1 / 5}\right\rfloor\right)+y x^{-1 / 2} \\
& \ll \sum_{d \leqslant \sqrt{x}} \sum_{x<d^{2} n^{5} \leqslant x+y} 1+y x^{-1 / 2} \\
& \ll \sum_{n \leqslant(2 x)^{1 / 5}\left(\frac{x}{n^{5}}\right)^{1 / 2}<d \leqslant\left(\frac{x+y}{n^{5}}\right)^{1 / 2}} 1+y x^{-1 / 2} \\
& \ll \sum_{\left(16 y^{2} x^{-1}\right)^{1 / 5}<n \leqslant(2 x)^{1 / 5}}\left(\left\lfloor\sqrt{\frac{x+y}{n^{5}}}\right\rfloor-\left\lfloor\sqrt{\frac{x}{n^{5}}}\right\rfloor\right)+x^{-1 / 5} y^{2 / 5}+y x^{-1 / 2}
\end{aligned}
$$

and for any integers $\left.N \in]\left(16 y^{2} x^{-1}\right)^{1 / 5},(2 x)^{1 / 5}\right]$ and $n \in[N, 2 N]$

$$
\sqrt{\frac{x+y}{n^{5}}}-\sqrt{\frac{x}{n^{5}}}<\frac{y}{\sqrt{N^{5} x}}<\frac{1}{4}
$$

so that the sum does not exceed

$$
\ll \max _{\left(16 y^{2} x^{-1}\right)^{1 / 5}<N \leqslant(2 x)^{1 / 5}} \mathcal{R}\left(\sqrt{\frac{x}{n^{5}}}, N, \frac{y}{\sqrt{N^{5} x}}\right) \log x+x^{-1 / 5} y^{2 / 5}+y x^{-1 / 2}
$$

as asserted.

### 5.3 The main result

Theorem 10. Assume $y \leqslant c_{3} x^{11 / 20}$ where $c_{3}:=c_{3}\left(\frac{5}{2}\right)$ is given in (5). Then

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star 1\right)(n) \ll\left(x^{1 / 12}+y x^{-4 / 9}\right) \log x
$$

Furthermore, if $y \leqslant c_{3} x^{19 / 36}$

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star 1\right)(n) \ll x^{1 / 12} \log x .
$$

Proof. We split the first term in Lemma 9 into three parts, according to the ranges

$$
\left(16 y^{2} x^{-1}\right)^{1 / 5}<N \leqslant 2 x^{1 / 10}, \quad 2 x^{1 / 10}<N \leqslant 2 x^{1 / 6} \quad \text { and } \quad 2 x^{1 / 6}<N \leqslant(2 x)^{1 / 5}
$$

In the first case, we use Lemma 6 with $\lambda_{4}=\left(x N^{-13}\right)^{1 / 2}$ and $\lambda_{5}=\left(x N^{-15}\right)^{1 / 2}$ which yields

$$
\max _{\left(16 y^{2} x^{-1}\right)^{1 / 5}<N \leqslant 2 x^{1 / 10}} \mathcal{R}\left(\sqrt{\frac{x}{n^{5}}}, N, \frac{y}{\sqrt{N^{5} x}}\right) \ll x^{1 / 12}+x^{-1 / 40} y^{1 / 6}+x^{-3 / 20} y^{1 / 4}
$$

For the second range, we use Lemma 8 with $X=x^{1 / 2}, s=\frac{5}{2}$ and $\delta=y\left(N^{5} x\right)^{-1 / 2}$. Notice that the conditions $N>2 x^{1 / 10}$ and $y \leqslant c_{3} x^{11 / 20}$ ensure that $\delta<\frac{1}{4}$ and $N^{2} \delta \leqslant c_{3}$. We get

$$
\max _{2 x^{1 / 10}<N \leqslant 2 x^{1 / 6}} \mathcal{R}\left(\sqrt{\frac{x}{n^{5}}}, N, \frac{y}{\sqrt{N^{5} x}}\right) \ll x^{1 / 12}+y x^{-4 / 9} .
$$

The last range is easily treated with (4), giving

$$
\max _{2 x^{1 / 6}<N \leqslant(2 x)^{1 / 5}} \mathcal{R}\left(\sqrt{\frac{x}{n^{5}}}, N, \frac{y}{\sqrt{N^{5} x}}\right) \ll x^{1 / 12}+y x^{-3 / 4} .
$$

Using Lemma 9, we finally get

$$
\sum_{x<n \leqslant x+y}\left(\lambda_{5} \star \mathbf{1}\right)(n) \ll\left(x^{1 / 12}+x^{-1 / 40} y^{1 / 6}+x^{-3 / 20} y^{1 / 4}+y x^{-4 / 9}\right) \log x+x^{-1 / 5} y^{2 / 5}
$$

and note that $x^{-1 / 40} y^{1 / 6}+x^{-3 / 20} y^{1 / 4}+x^{-1 / 5} y^{2 / 5} \ll x^{1 / 12}$ as soon as $y \leqslant x^{13 / 20}$. This completes the proof of the first estimate, the second one being obvious.

## 6 Acknowledgments

The author deeply thanks Prof. Kannan Soundararajan for the help he gave him to adapt his result to the function $L(x)$, and Benoit Cloitre for bringing this problem to his attention. The author gratefully acknowledges the anonymous referee for some corrections and remarks that have significantly improved the paper.

## References

[1] M. Balazard and A. de Roton, Notes de lecture de l'article "Partial sums of the Möbius function" de Kannan Soundararajan, preprint, 2008, https://arxiv.org/abs/0810.3587.
[2] O. Bordellès, Arithmetic Tales, Springer, 2012.
[3] H. Davenport, The Higher Arithmetic, 5th edition, Cambridge University Press, 1982.
[4] M. Filaseta and O. Trifonov, The distribution of fractional parts with applications to gap results in number theory, Proc. London Math. Soc. 73 (1996), 241-278.
[5] G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. 15 (1916), 1-25.
[6] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591-609.
[7] M. N. Huxley and P. Sargos, Points entiers au voisinage d'une courbe plane de classe $C^{n}$, II, Functiones et Approximatio 35 (2006), 91-115.
[8] R. K. Muthumalai, Note on Legendre symbols connecting with certain infinite series, Notes on Number Theory and Discrete Mathematics 19 (2013), 77-83.
[9] K. Soundararajan, Partial sums of the Möbius function, J. Reine Angew. Math. 631 (2009), 141-152.

2010 Mathematics Subject Classification: Primary 11N37; Secondary 11A25, 11M41.
Keywords: Number of divisors, Legendre symbol, mean value, Riemann hypothesis.
(Concerned with sequences $\underline{\text { A000005 }}$, $\underline{\text { A008836, and A091337.) }}$

Received January 14 2017; revised versions received June 1 2017; June 26 2017. Published in Journal of Integer Sequences, July 12017.

Return to Journal of Integer Sequences home page.

