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Abstract

The sedenions form a 16-dimensional non-associative and non-commutative algebra

over the set of real numbers. In this paper, we introduce the Fibonacci and Lucas

sedenions. We present generating functions and Binet formulas for the Fibonacci and

Lucas sedenions, and derive adaptations for some well-known identities of Fibonacci

and Lucas numbers.

1 Introduction

Sedenions appear in many areas of science, such as electromagnetic theory and linear gravity.
Sedenion algebra, which is usually denoted by S, is a 16-dimensional Cayley–Dickson algebra.
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Because of their zero divisors, sedenions do not form a composition algebra or a division
algebra. They are hyper-complex numbers, similar to quaternions and octonions. Sedenion
algebra is a non-associative, non-commutative, and non-alternative but power-associative
Cayley–Dickson algebra over the reals. Throughout this paper, we take the basis elements of
S as {e0, e1, . . . , e15}, where e0 is the unit element and e1, . . . , e15 are imaginaries. A sedenion
S can be written as

S =
15∑

i=0

aiei

where a0, a1, · · · , a15 are reals.
Imaeda and Imaeda [8] defined a sedenion by

S = (O1;O2) ∈ S, O1, O2 ∈ O

where O is the octonion algebra over the reals. As a sedenion is an ordered pair of two
octonions, the conjugate of a sedenion S = (O1;O2) is defined by S = (O1;−O2). Under the
Cayley–Dickson process, the product of two sedenions S1 = (O1;O2) and S2 = (O3;O4) is

S1S2 = (O1O3 + ρO4O2;O2O3 +O4O1).

After choosing the field parameter ρ = −1 and the generator e8, Imaeda and Imaeda exam-
ined the sedenions. By setting i ≡ ei, where i = 0, 1, · · · , 15, Cawagas [3] constructed the
following multiplication table for the basis of S.

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 −0 3 −2 5 −4 −7 6 9 −8 −11 10 −13 12 15 −14

2 2 −3 −0 1 6 7 −4 −5 10 11 −8 −9 −14 −15 12 13

3 3 2 −1 −0 7 −6 5 −4 11 −10 9 −8 −15 14 −13 12

4 4 −5 −6 −7 −0 1 2 3 12 13 14 15 −8 −9 −10 −11

5 5 4 −7 6 −1 −0 −3 2 13 −12 15 −14 9 −8 11 −10

6 6 7 4 −5 −2 3 −0 −1 14 −15 −12 13 10 −11 −8 9

7 7 −6 5 4 −3 −2 1 −0 15 14 −13 −12 11 10 −9 −8

8 8 −9 −10 −11 −12 −13 −14 −15 −0 1 2 3 4 5 6 7

9 9 8 −11 10 −13 12 15 −14 −1 −0 −3 2 −5 4 7 −6

10 10 11 8 −9 −14 −15 12 13 −2 3 −0 −1 −6 −7 4 5

11 11 −10 9 8 −15 14 −13 12 −3 −2 1 −0 −7 6 −5 4

12 12 13 14 15 8 −9 −10 −11 −4 5 6 7 −0 −1 −2 −3

13 13 −12 15 −14 9 8 11 −10 −5 −4 7 −6 1 −0 3 −2

14 14 −15 −12 13 10 −11 8 9 −6 −7 −4 5 2 −3 −0 1

15 15 14 −13 −12 11 10 −9 8 −7 6 −5 −4 3 2 −1 −0

Table 1: Multiplication table for the basis of S

Cariow and Cariowa [2] derived an algorithm for the fast multiplication of two sedenions.
The well-known integer sequences of Fibonacci and Lucas numbers are constructed with

the same recurrence relation but different initial conditions. Namely, for n ≥ 2, Fibonacci
numbers satisfy the recurrence relation

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1
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whereas Lucas numbers satisfy the recurrence relation

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

The generating functions for the Fibonacci sequence
(
Fn

)
n≥0

and Lucas sequence
(
Ln

)
n≥0

are
∞∑

n=0

Fnx
n =

x

1− x− x2
and

∞∑

n=0

Lnx
n =

2− x

1− x− x2
.

The Binet formulas for the Fibonacci and Lucas numbers are

Fn =
αn − βn

α− β
and Ln = αn + βn (1)

where α = 1+
√
5

2
and β = 1−

√
5

2
are the roots of the characteristic equation of x2 − x− 1 = 0.

The positive root α is known as the golden ratio (see [11] for details).
Horadam [6] defined Fibonacci and Lucas quaternions as

Qn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3

and
Kn = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3

respectively, where Fn is the nth classical Fibonacci number and Ln is the nth classical Lucas
number. He also defined generalized Fibonacci quaternions by

Pn = Hn +Hn+1e1 +Hn+2e2 +Hn+3e3

where Hn is the nth generalized Fibonacci number defined by the recursive relation H1 = p,
H2 = p + q, Hn = Hn−1 +Hn−2 (p and q are arbitrary integers). Iyer [9] described various
properties of the Fibonacci quaternions and generalized Fibonacci quaternions. Swammy [12]
also studied these two types of quaternions, and obtained some relations between Fibonacci
and Lucas numbers. Harman [5] defined complex Fibonacci numbers by the following two-
dimensional recurrence relation

G(n+ 2,m) = G(n+ 1,m) +G(n,m),

G(n,m+ 2) = G(n,m+ 1) +G(n,m)

where G(0, 0) = 0, G(1, 0) = 1, G(0, 1) = i, and G(1, 1) = 1 + i. By extending this idea,
Horadam [7] defined the recurrence relations

G(h+ 2, l,m, n) = G(h+ 1, l,m, n) +G(h, l,m, n),

G(h, l + 2,m, n) = G(h, l + 1,m, n) +G(h, l,m, n),

G(h, l,m+ 2, n) = G(h, l,m+ 1, n) +G(h, l,m, n),

G(h, l,m, n+ 2) = G(h, l,m, n+ 1) +G(h, l,m, n)
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with initial conditions

G(0, 0, 0, 0) = 0, G(1, 0, 0, 0) = 1, G(0, 1, 0, 0) = e1, G(0, 0, 1, 0) = e2, G(0, 0, 0, 1) = e3,

G(1, 1, 0, 0) = 1 + e1, . . . , G(0, 0, 1, 1) = e2 + e3,

G(1, 1, 1, 0) = 1 + e1 + e2, . . . , G(0, 1, 1, 1) = e1 + e2 + e3,

G(1, 1, 1, 1) = 1 + e1 + e2 + e3

and examined quaternion recurrence relations. Halici [4] investigated some properties of
the Fibonacci and Lucas quaternions, obtaining generating functions, Binet formulas, and
certain identities.

Kecilioglu and Akkus [10] introduced the Fibonacci and Lucas octonions. These hyper-
complex numbers are defined as

Qn =
7∑

s=0

Fn+ses

and

Tn =
7∑

s=0

Ln+ses

respectively, where Fn and Ln are the nth classical Fibonacci and Lucas numbers. In another
study [1], they defined split Fibonacci and Lucas octonions in a similar manner.

In this paper, following Horadam, Kecilioglu, and Akkus, we define the Fibonacci and
Lucas sedenions over the sedenion algebra S. The nth Fibonacci sedenion is

F̂n =
15∑

s=0

Fn+ses (2)

and the nth Lucas sedenion is

L̂n =
15∑

s=0

Ln+ses. (3)

Using the identities F−n = (−1)n+1Fn and L−n = (−1)nLn, we immediately have that
the generalized Fibonacci and Lucas sedenions with negative indexes are

F̂−n =
15∑

s=0

(−1)n+s+1Fn−ses

and

L̂−n =
15∑

s=0

(−1)n+sLn−ses.

For all integers n, we can easily see that

F̂n = F̂n−1 + F̂n−2 and L̂n = L̂n−1 + L̂n−2. (4)

Additionally, for any integer n, we have

L̂n = F̂n−1 + F̂n+1.
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2 Generating functions and Binet formulas for the Fi-

bonacci and Lucas sedenions

Generating functions for the Fibonacci and Lucas sedenions are given in the next theorem.

Theorem 1. The generating functions for the Fibonacci and Lucas sedenions are

∞∑

i=0

F̂ix
i =

F̂0 + F̂−1x

1− x− x2
(5)

and
∞∑

i=0

L̂ix
i =

L̂0 + L̂−1x

1− x− x2
(6)

respectively.

Proof. Define f(x) =
∑∞

i=0
F̂ix

i. Expanding the first two terms of f(x), we have

f(x) = F̂0 + F̂1x+
∞∑

i=2

F̂ix
i. (7)

Multiplying both sides of this equation by −x and −x2, we obtain

−xf(x) = −F̂0x−
∞∑

i=2

F̂i−1x
i (8)

and

−x2f(x) = −
∞∑

i=2

F̂i−2x
i. (9)

Adding Eqs. (7), (8) and (9) with consideration of the first equation in Eq. (4) gives

f(x) =
F̂0 + (F̂1 − F̂0)x

1− x− x2
.

Using the identity F̂−1 = F̂1 − F̂0, we have Eq. (5). Similarly, we can obtain Eq. (6).

The next theorem gives the Binet formulas for the Fibonacci and Lucas sedenions.

Theorem 2. For any integer n, the nth Fibonacci sedenion is

F̂n =
α̂αn − β̂βn

α− β
(10)

and the nth Lucas sedenion is

L̂n = α̂αn + β̂βn (11)

where α̂ =
∑

15

s=0
αses and β̂ =

∑
15

s=0
βses.
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Proof. For the first equation, we have

αF̂n + F̂n−1 =
15∑

s=0

(αFn+s + Fn+s−1) es.

From the identity αFn + Fn−1 = αn, we obtain

αF̂n + F̂n−1 = α̂αn. (12)

Similarly, we have
βF̂n + F̂n−1 = β̂βn. (13)

Subtracting Eq. (13) from Eq. (12) gives

(α− β)F̂n = α̂αn − β̂βn

from which we obtain Eq. (10). Summing Eqs. (12) and (13), we have

F̂n + 2F̂n−1 = α̂αn + β̂βn

and, with the help of the identity Ln = Fn + 2Fn−1, we obtain Eq. (11).

When using the Binet formulas to obtain identities for the Fibonacci and Lucas sedenions,
we require α̂β̂, β̂α̂, α̂2, and β̂2. These products are given in the next lemma.

Lemma 3. We have

α̂β̂ = L̂0 −
√
5(F̂0 − ω), (14)

β̂α̂ = L̂0 +
√
5(F̂0 − ω), (15)

α̂2 = −1505175 + L̂0 +
√
5(−673134 + F̂0), (16)

and

β̂2 = −1505175 + L̂0 −
√
5(−673134 + F̂0) (17)

where

ω = 94e9 + 94e10 + 188e11 + 282e12 − 188e13 + 94e14 + 893e15.

Proof. From the definitions of α̂ and β̂, and using Table 1, we have

α̂β̂ =

(
15∑

n=0

αnen

)(
15∑

n=0

βnen

)

= 2 + e1 + 3e2 + · · ·+ 1364e15 −
√
5
(
e1 + e2 + 2e3 + · · ·+ 21e8

−60e9 − 39e10 − 99e11 − 138e12 + 421e13 + 283e14 − 283e15

)

where the final equation gives Eq. (14). The others can be computed similarly.

This lemma gives us the following useful identity:

α̂β̂ + β̂α̂ = 2L̂0. (18)
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3 Some identities for the Fibonacci and Lucas sede-

nions

There are three well-known identities for Fibonacci and Lucas numbers, namely, Catalan’s,
Cassini’s, and d’Ocagne’s identities. The proofs of these identities are based on Binet for-
mulas. We can obtain these types of identities for Fibonacci and Lucas sedenions using the
Binet formulas derived above. Catalan’s identities for Fibonacci and Lucas sedenions are
given in the next theorem.

Theorem 4. For any integers m and n, we have

F̂m+nF̂m−n − F̂ 2

m
=
(
−1
)m

F−n

(
FnL̂0 − Ln(F̂0 − ω)

)
(19)

and

L̂m+nL̂m−n − L̂2

m
= −5

(
−1
)m

F−n

(
FnL̂0 − Ln(F̂0 − ω)

)
. (20)

Proof. From the Binet formula for Fibonacci sedenions, we have

F̂m+nF̂m−n − F̂ 2

m
=

1

5

((
α̂αm+n − β̂βm+n

)(
α̂αm−n − β̂βm−n

)

−
(
α̂αm − β̂βm

)2)

=
1

5

(
(−1)m−n+1

(
α̂β̂α2n + β̂α̂β2n

)

+
(
−1
)m

2L̂0

)
.

We require Eqs. (14) and (15). Using this equation, we obtain

F̂m+nF̂m−n − F̂ 2

m
=

1

5

(
(−1)m−n+1

((
L̂0 −

√
5(F̂0 − ω)

)
α2n

+
(
L̂0 +

√
5(F̂0 − ω)

)
β2n
)
+ 2(−1)mL̂0

)

=
1

5

(
(−1)m−n+1

(
L̂0L2n − 5(F̂0 − ω)F2n

)

+2(−1)mL̂0

)

=
1

5
(−1)m−n+1L̂0

(
L2n − 2(−1)n

)

−(−1)m−n+1F2n(F̂0 − ω).

Using the identity 5F 2
n
= L2n − 2(−1)n gives

F̂m+nF̂m−n − F̂ 2

m
= (−1)m+n+1

(
F 2

n
L̂0 − F2n(F̂0 − ω)

)
.

With the help of the identity F2n = FnLn, we have Eq. (19). Similarly, we can obtain Eq.
(20).
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Taking n = 1 in this theorem and using the identity Ln−Fn = 2Fn−1, we obtain Cassini’s
identities for Fibonacci and Lucas sedenions.

Corollary 5. For any integer m, we have

F̂m+1F̂m−1 − F̂ 2

m
=
(
−1
)
m
(
2F̂−1 + ω

)
(21)

and

L̂m+1L̂m−1 − L̂2

m
= −5

(
−1
)m(

2F̂−1 + ω
)
. (22)

The following theorem gives d’Ocagne’s identities for Fibonacci and Lucas sedenions.

Theorem 6. For any integers n and m, we have

F̂mF̂n+1 − F̂m+1F̂n = (−1)n
(
Fm−nL̂0 + Lm−n(F̂0 − ω)

)

and

L̂mL̂n+1 − L̂m+1L̂n = −5(−1)n
(
Fm−nL̂0 + Lm−n(F̂0 − ω)

)
.

Proof. Using the Binet formula for the Fibonacci sedenions gives

F̂mF̂n+1 − F̂m+1F̂n =
1

5

(
α̂αm − β̂βm

)(
α̂αn+1 − β̂βn+1

)

−1

5

(
α̂αm+1 − β̂βm+1

)(
α̂αn − β̂βn

)

=

√
5

5
(−1)n

(
α̂β̂αm−n − β̂α̂βm−n

)
.

We require Eqs. (14) and (15). Substituting these into the previous equation, we have

F̂mF̂n+1 − F̂m+1F̂n =

√
5

5
(−1)n

((
L̂0 −

√
5(F̂0 − ω)

)
αm−n

−
(
L̂0 +

√
5(F̂0 − ω)

)
βm−n

)

= (−1)n
(
Fm−nL̂0 − Lm−n(F̂0 − ω)

)
.

The second identity in the theorem, i.e., d’Ocagne’s identity for the Lucas sedenions, can be
proved similarly.

After deriving these three famous identities, we present some other identities for the
Fibonacci and Lucas sedenions.

Theorem 7. For any integer n, we have

L̂2

n
− F̂ 2

n
=

4

5
(−1505175 + L̂0)L2n + 4(−673134 + F̂0)F2n +

12

5
(−1)nL̂0 (23)

and

L̂2

n
+ F̂ 2

n
=

6

5
(−1505175 + L̂0)L2n + 6(−673134 + F̂0)F2n +

8

5
(−1)nL̂0. (24)
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Proof. Using the Binet formulas for the Fibonacci and Lucas sedenions, we obtain

L̂2

n
− F̂ 2

n
=

(
α̂αn + β̂βn

)2 − 1

5

(
α̂αn − β̂βn

)2

=
(
α̂2α2n + β̂2β2n + α̂β̂αnβn + β̂α̂αnβn

)

−1

5

(
α̂2α2n + β̂2β2n − α̂β̂αnβn − β̂α̂αnβn

)
.

Substituting Eqs. (14) and (15) into the last equation, we have

L̂2

n
− F̂ 2

n
=

4

5

(
α̂2α2n + β̂2β2n

)
+

12

5
(−1)nL̂0. (25)

Using Eqs. (16) and (17), we obtain

(
α̂2α2n + β̂2β2n

)
= (−1505175 + L̂0)L2n + 5(−673134 + F̂0)F2n. (26)

Substituting Eq. (26) into Eq. (25) gives Eq. (23). Equation (24) can be proved similarly.

Theorem 8. For any integers n, r and s, we have

L̂n+rF̂n+s − L̂n+sF̂n+r = 2 (−1)n+r
L̂0Fs−r. (27)

Proof. The Binet formulas for the Fibonacci and Lucas sedenions give

L̂n+rF̂n+s − L̂n+sF̂n+r =
1√
5

((
α̂αn+r + β̂βn+r

)(
α̂αn+s − β̂βn+s

)

−
(
α̂αn+s + β̂βn+s

)(
α̂αn+r − β̂βn+r

))

=
1√
5

(
−α̂β̂αn+rβn+s + β̂α̂βn+rαn+s

+α̂β̂αn+sβn+r − β̂α̂αn+rβn+s
)
.

Using Eqs. (14) and (15), we have

L̂n+rF̂n+s − L̂n+sF̂n+r =
2√
5

(
−αn+rβn+sL̂0

+αn+sβn+rL̂0

)

=
2√
5
L̂0

(
αn+rβn+r

(
αs−r − βs−r

))

= 2 (−1)n+r
L̂0Fs−r.
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Some identities for Fibonacci and Lucas sedenions are given without proof in the next
theorem.

Theorem 9. For any integers m and n, we have

F̂m+n + (−1)nF̂m−n = F̂mLn,

F̂mL̂n − L̂nF̂m = −2(−1)mL̂0Fn−m,

F̂mL̂n − L̂mF̂n = −2(−1)m
(
L̂0Fn−m + (F̂0 − ω)Ln−m

)
,

F̂nF̂m − F̂mF̂n = −2(−1)m(F̂0 − ω)Fn−m,

and

L̂nL̂m − L̂mL̂n = 10(−1)m(F̂0 − ω)Fn−m.

The following interesting identities for Fibonacci and Lucas sedenions come directly from
their definitions.

Corollary 10. Fibonacci and Lucas sedenions satisfy

F̂n+rFn+r − F̂n−rFn−r = F̂2nF2r,

F̂n+rLn+r + F̂n−rLn−r = F̂2nL2r + 2(−1)n+rF̂0,

L̂n+rLn+r − L̂n−rLn−r = 5F̂2nF2r,

and

L̂n+rLn+r + L̂n−rLn−r = L2rL̂2n + 2(−1)n+rL̂0.
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