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Abstract

Let a(n) = ⌊nα⌋ and b(n) = ⌊nα2⌋, where α = 1+
√
5

2 . Then a theorem of Kimberling
states that each function f , composed of several a’s and b’s, can be expressed in the
form c1a + c2b − c3, where c1 and c2 are consecutive Fibonacci numbers determined
by the numbers of a’s and of b’s composing f and c3 is a nonnegative constant. We
provide generalizations of this theorem to two infinite families of complementary pairs
of Beatty sequences. The particular case involving ‘Narayana’ numbers is examined in
depth. The details reveal that xn = ⌊α3⌊α3⌊· · · ⌊α3⌋ · · ·⌋⌋⌋, with n nested pairs of ⌊ ⌋,
is a 7th-order linear recurrence, where α is the dominant zero of x3 − x2 − 1.

1 Introduction

If α is a positive irrational number, then a(n) = ⌊nα⌋ is said to be a Beatty sequence.
A pair of Beatty sequences a(n) = ⌊nα⌋ and b(n) = ⌊nβ⌋ is said to be complementary
whenever their ranges form a partition of the positive integers. A famous theorem states
that complementarity occurs if and only if 1/α + 1/β = 1. According to Kimberling [9],
though this theorem was stated as a problem [3], it had appeared even earlier in the book
[14, p. 123].

The lower and upper Wythoff sequences, i.e., the sequences a(n) = ⌊nα⌋ and b(n) =

⌊nα2⌋, where α = 1+
√
5

2
, are a pair of complementary Beatty sequences. This pair has

often been considered, in part because the positions (a(n), b(n)) are winning positions in
a variant of the game of Nim [21]. Kimberling [8] studied the functions (w(n))n≥1, where
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w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓs and each ℓi is either the a or the b sequence. The following lemma was
proved

Lemma 1. Let a(n) = ⌊nα⌋ and b(n) = ⌊nα2⌋, where α = (1 +
√
5)/2. Then

a2 = b− 1,

ba = a+ b− 1,

ab = a+ b,

b2 = a+ 2b,

where ℓ1ℓ2 stands for ℓ1 ◦ ℓ2 and ℓ2 for ℓℓ.

One of the key facts is that, as α2 = α + 1, we have b(n) = a(n) + n, for all integers n.
Here is the principal theorem of Kimberling [8], proved by induction on s using Lemma 1.

Theorem 2. Let w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓs, (s ≥ 1), where each ℓi is either a or b. Assume x and
y are, respectively, the number of a’s and the number of b’s in w. Then,

w(n) = Fx+2y−2 a(n) + Fx+2y−1 b(n)− ew,

where ew = Fx+2y+1 − w(1) ≥ 0 and Fk denotes the kth Fibonacci number.

As usual, the Fibonacci sequence (Fk) is defined by F0 = 0, F1 = 1 and Fk+2 = Fk+1+Fk

for all integers k. With fx denoting the x-fold composite function f ◦ f ◦ · · · ◦ f , we state a
corollary from material observed by Kimberling [8].

Corollary 3. We have ax = Fx−2a+Fx−1b−Fx+1+1 and by = F2y−2a+F2y−1b. In particular,
by(1) = F2y+1.

For each pair a(n) = ⌊nα⌋ and b(n) = ⌊nβ⌋ of complementary Beatty sequences, we will
always take α to be less than β. Then we necessarily have 1 < α < 2 < β = α/(α− 1).

This paper studies two infinite families of pairs of complementary Beatty sequences. Each
of the two families contains the Wythoff pair as its simplest case. For each family, our main
goal is to find a sensible generalization of Theorem 2.

Our investigation begins in Section 2 by looking at the pair of complementary Beatty
sequences (α, β) = (

√
2, 2 +

√
2). That is, a(n) = ⌊n

√
2⌋ and b(n) = ⌊n(2 +

√
2)⌋. This pair

satisfies the obvious property b(n) = a(n) + 2n instead of b(n) = a(n) + n for the Wythoff
pair. In Section 3, we study the general pair of complementary Beatty sequences where
b(n) = a(n) + rn, r ≥ 1 any integer. We obtain Theorem 8, a most general theorem.

The second infinite family we study stems from the observation [2] that for all integers
q ≥ 2, the complex polynomial xq − xq−1 − 1 has a simple dominant real zero α, 1 < α < 2,
and the pair (α, β), where β = αq, generates a complementary pair of Beatty sequences
(a(n), b(n)). Section 4 studies in detail the case q = 3. Then, of course, β is the cube rather
than the square of α, as was the case for the Wythoff pair. Section 5 is a brief section on
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the case q = 4. A sixth section deals with the general case q ≥ 2, where we reach our most
general result, Theorem 32. We believe beginning with particular cases makes the transition
to the general case both more readable and more enjoyable. However, readers can skip
Sections 2 and 5, if they wish. Yet in Sections 2, 4, and 5, we investigate the functions ew
in more detail than in the general cases. For instance, the functions ew studied in Sections
2 and 4 are nonnegative, in contrast to their general counterparts in Theorems 8 and 32.

A subsidiary investigation of the paper is the study of the sequences (by(n))y. This
function turns out to be a second-order linear recurrence whose characteristic polynomial
is the minimal polynomial of β not just in the Wythoff case, but in all (a(n), a(n) + rn)
cases for r ≥ 1, as shown in the later part of Section 3. Also, Section 4, where a(n) = ⌊αn⌋
and b(n) = ⌊α3n⌋, α3 = α2 + 1, α > 1, is divided into two subsections, the second of which
studies the behavior of by(1) = ⌊α3⌊α3⌊· · · ⌊α3⌋ · · ·⌋⌋⌋, with y nested pairs ⌊ ⌋. This sequence
(by(1))y turns out to be a seventh-order linear recurrence. We find several explicit formulas
for it. Note that the corresponding sequence (ax(1))x is the constant sequence equal to 1 as
⌊α⌋ = 1 for all complementary Beatty pairs.

We now relate our paper to general questions and other work. We begin with the mention
that Stolarsky [19] compiled an extended bibliography of work linked to Beatty sequences
done before 1973. A quite general question is ‘what sort of behavior and structures emerge
from all possible compositions of a given set of functions?’ For a single function this is the
problem of analyzing iteration (e.g., see the comments on by(n) above). Here we examine
functions of the form

g(n) = ⌊nαi⌋
(i.e., Beatty sequences), where the αi are algebraic irrationalities. In various cases of interest
we determine the nature of ‘homogeneous’ compositions

g1(g2(· · · (gk(n)) · · · ).

There has also been some study of ‘inhomogeneous’ compositions such as

g1(g2(n) + c1n+ c2)

in the Beatty context. See [12], especially formula (1.1.4), and [6], in particular Theorem 1
of §2. Boshernitzan and Fraenkel [5] discussed characteristic properties of functions of the
form

g(n) = ⌊nαi + βi⌋,
but perhaps the study of arbitrarily long compositions of such functions has not been done
in any detail. Fraenkel et al. [7] studied more general combinations of such functions. Cases
in which the most interesting results are found frequently involve numbers α that are real
algebraic integers larger than their conjugates. Even more special are cases in which α is a
Pisot number. For example, the dominant real zero of xq−xq−1−1 is a Pisot number for q = 2,
3, and 4. In §4, i.e., in Section 4, we examine in special detail the ‘Narayana case’ q = 3.
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Bertin et al. [4] published a general reference book on Pisot numbers and their relatives. In
fact, the Fibonacci (q = 2) and Narayana cases involve a dominant zero that comes from the
finite set of ‘special Pisot numbers’. The significance of these numbers appears in various
papers [10, 11, 16]. Smyth [18] provided a definitive complete determination of them. The α
of §5 is also a special Pisot number. In connection with §6 we note that the dominant zero of
P (q, x) = xq −xq−1− 1 is not Pisot for q ≥ 6, and that P (5, x) = (x3−x− 1)(x2−x+1). It
has been noted that a full understanding of the Beatty sequences and Wythoff pairs related
to

√
5 involves recurrences of degree 4. This is the basic theme of two papers [20, 15]. Here

in §4 we find that the study of Beatty sequences corresponding to the ‘Narayana’ cubic
irrationality (one of the special Pisot numbers) inevitably involves recurrences of degree 7.
See Problems 36 and 37 of Section 7 for precise questions.

Indeed, Section 7, our final section, proposes five problems for further consideration.

By convention, throughout the paper, the sums
∑

i≤j≤k aj or
∑k

j=i aj are zero whenever
k < i. If α is an irrational real number, then the uniform distribution of the sequence of
fractional parts of the multiples of α, i.e., the sequence ({nα})n≥1, is a well-known fact that
we occasionally use.

2 The (
√
2, 2 +

√
2) case

Thus, we now have a(n) := ⌊nα⌋ and b(n) := ⌊nβ⌋, where α =
√
2 and β = 2 +

√
2.

Lemma 4. For all integers n ≥ 1, we have

a2(n) = −a(n) + b(n)− d(n)

ba(n) = a(n) + b(n)− d(n)

ab(n) = a(n) + b(n)

b2(n) = a(n) + 3b(n),

where d(n) is the function ⌈
√
2{n

√
2}⌉ which is either 1 or 2.

Proof. See the proof of the more general Lemma 6 of the next section.

Theorem 5. Let w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓs, (s ≥ 1), where each ℓi is either a or b. If w has an
even number of a’s, say 2x, and y b’s (x ≥ 0, y ≥ 0), then

w(n) = 2xuy a(n) + 2xvy b(n)− e(n), (1)

whereas, if w has 2x+ 1 a’s and y b’s, then

w(n) = 2x+1vy−1 a(n) + 2xuy+1 b(n)− e(n), (2)

where in both cases e = ew is some nonnegative integral bounded function of n that depends
on w, and (uy) and (vy) are the recurrences with characteristic polynomial x2 − 4x+ 2 that
satisfy u1 = 0, u2 = 1 and v1 = 1, v2 = 3.
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Proof. It is easy to verify that

uy + vy = uy+1 vy − uy = 2vy−1

uy + 3vy = vy+1 uy+1 − 2vy−1 = 2uy.
(3)

We may proceed by induction on s. Both (1) and (2) trivially hold for s = 1 with e = 0,
as v−1 = v0 = 1/2. Assuming the property holds for some s ≥ 1 and w is a ‘word’ with s
letters, we check the property for wa and wb. There are four cases to treat as the form of
w depends on the parity of the number of a’s in w. If w has 2x a’s and y b’s, then, by the
inductive hypothesis,

wa(n) = w(a(n)) = 2xuy a
2(n) + 2xvy b(a(n))− e(a(n)),

for some nonnegative bounded function e. Using Lemma 4 and gathering together the
coefficients of a(n) and b(n), we find that

wa(n) = 2x(vy − uy) a(n) + 2x(uy + vy) b(n)− e′(n),

with e′(n) = uy+1d(n) + e(a(n)). By (3), wa(n) = 2x+1vy−1 a(n) + 2xuy+1 b(n)− e′(n), which
is the expected result for the word wa. We proceed in the same manner for wb(n) and obtain

wb(n) = 2x(uy + vy) a(n) + 2x(uy + 3vy) b(n)− e(b(n)).

We conclude using the first pair of equations of (3). If w has 2x + 1 a’s and y b’s, then the
inductive hypothesis yields

wa(n) = 2x+1vy−1 a
2(n) + 2xuy+1 ba(n)− e(a(n)).

Using Lemma 4, we find that wa(n) = 2x(uy+1− 2vy−1) a(n)+ 2x(uy+1+2vy−1) b(n)− e′′(n),
where e′′(n) = 2x(2vy−1 + uy+1)d(n) + e(a(n)). Since v−1 = v0 = 1/2, we see that e′′ is
nonnegative in all cases. We conclude using the second pair of identities of (3), as uy+1 −
2vy−1 = 2uy and uy+1 + 2vy−1 = (uy+1 − 2vy−1) + 4vy−1 = 2(uy + 2vy−1) = 2vy. Finally, we
obtain, in similar fashion, wb(n) = 2x(uy+1 + 2vy−1) a(n) + 2x(3uy+1 + 2vy−1) b(n)− e(b(n)).
We just saw that uy+1 + 2vy−1 = 2vy. Moreover,

3uy+1 + 2vy−1 = 2uy+1 + 2vy = uy+1 + (uy+1 + 2vy) = uy+1 + vy+1 = uy+2,

according to the two identities on the first line of (3).

3 The general (α, α + r) case, (r ≥ 1)

We fix an integer r ≥ 1. If β = α + r, then we see that b(n) = a(n) + rn. Solving
1/α + 1/(α + r) = 1 leads to α2 + (r − 2)α − r = 0. Since α ∈ (1, 2), we find that

α = 1 +
√
r2+4−r

2
. Thus, β = 1 +

√
r2+4+r

2
and β satisfies β2 − (r + 2)β + r = 0. As r2 + 4 is

never a perfect square, we note that α and β are irrational.
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Lemma 6. For all integers n ≥ 1, we have

a2(n) = (1− r)a(n) + b(n)− d(n)

ba(n) = a(n) + b(n)− d(n)

ab(n) = a(n) + b(n)

b2(n) = a(n) + (r + 1)b(n),

where d(n) is the function ⌈(α + r − 2){nα}⌉ whose range is {1, 2, . . . , r}.

Proof. Using α2 = (2− r)α + r and {αn} = {βn}, we find that

a2(n) = ⌊α⌊αn⌋⌋ = ⌊α2n− α{αn}⌋ = ⌊
(

(1− r)α + (α + r)
)

n− α{αn}⌋
= (1− r)a(n) + b(n) + ⌊(1− r){αn}+ {αn} − α{αn}⌋
= (1− r)a(n) + b(n)− ⌈(r − 2 + α){αn}⌉.

But the sequence ({αn})n≥1 is dense in (0, 1) and r− 2 + α lies in (r− 1, r), so the range of
d is {1, 2, . . . , r}. Hence, b(a(n)) = ⌊(α+ r)a(n)⌋ = ra(n)+a2(n) = a(n)+ b(n)−d(n). Now

ab(n) = ⌊α(α + r)n− α{(α + r)n}⌋ = ⌊αn+ (α + r)n− α{αn}⌋
= a(n) + b(n) + ⌊(2− α){αn}⌋ = a(n) + b(n),

as both 2− α and {αn} lie in the interval (0, 1). Thus,

b2(n) = ⌊(α + r)b(n)⌋ = rb(n) + ab(n) = a(n) + (r + 1)b(n).

Define (Uα
n )n≥0 and (Uβ

n )n≥0, respectively, as the fundamental Lucas sequences associated
with (x − α)(x − ᾱ) and with (x − β)(x − β̄), where ᾱ and β̄ are the respective algebraic
conjugates of α and β. Thus,

Uα
n =

αn − ᾱn

α− ᾱ
and Uβ

n =
βn − β̄n

β − β̄
. (4)

We also define two matrices

Ea =

(

1− r 1
1 1

)

and Eb =

(

1 1
1 1 + r

)

. (5)

Lemma 7. For all integers x ≥ 0 and y ≥ 0, we find that

Ex
a =

(

Uα
x+1 − Uα

x Uα
x

Uα
x Uα

x + rUα
x−1

)

and Ey
b =

(

Uβ
y − rUβ

y−1 Uβ
y

Uβ
y Uβ

y+1 − Uβ
y

)

.
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Proof. The characteristic polynomials of Ea and Eb are, respectively, the minimal polyno-
mials of α and β. Thus, their respective eigenvalues are {α, ᾱ} and {β, β̄}. Thus, we may
diagonalize the two matrices Ea and Eb and find that

Ea = Pa

(

α 0
0 ᾱ

)

P−1
a and Eb = Pb

(

β 0
0 β̄

)

P−1
b ,

where we took

Pa =

(

α− 1 ᾱ− 1
1 1

)

and Pb =

(

1 1
β − 1 β̄ − 1

)

,

as eigenvector matrices. We then simply calculate

Ex
a = Pa

(

αx 0
0 ᾱx

)

P−1
a and Ey

b = Pb

(

βy 0
0 β̄y

)

P−1
b ,

noting that for x = 0 or for y = 0, the expressions in the lemma produce the identity matrix
(

1 0
0 1

)

. Indeed, Uα
−1 = 1/r and Uβ

−1 = −1/r.

Theorem 8. Let r ≥ 1 be an integer, α = 1 +
√
r2+4−r

2
and β = α + r. Define a(n) = ⌊αn⌋

and b(n) = ⌊βn⌋. Let w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓx+y, where ℓi = a for x ≥ 0 values and ℓi = b for
the remaining y values of i, 1 ≤ i ≤ x+ y. Then for all n ≥ 1

w(n) = sx,y a(n) + tx,y b(n)− dw(n), (6)

where

sx,y = Uα
x U

β
y − rUβ

y−1(U
α
x − Uα

x−1) = Uα
x U

β
y + Uβ

y−1(U
α
x+1 − 2Uα

x ),

tx,y = Uα
x U

β
y + rUα

x−1(U
β
y − Uβ

y−1) = Uα
x U

β
y + Uα

x−1(U
β
y+1 − 2Uβ

y ),
(7)

(Uα
x ) and (Uβ

y ) were defined in (4) and dw is an integral and bounded function of n that
depends on w.

Proof. Suppose w(n) = swa(n) + twb(n) − dw(n), where sw and tw are integers that do not
depend on n and dw is an integral and bounded function of n. Then, by Lemma 6, we find
that

wa(n) =
(

(1− r)sw + tw
)

a(n) + (sw + tw)b(n)− dwa(n),

wb(n) = (sw + tw)a(n) +
(

sw + (r + 1)tw
)

b(n)− dwb(n),
(8)

where dwa(n) = (sw + tw)da2(n) + dw(a(n)) and dwb(n) = dw(b(n)). Thus we see from (8)
that

Ea ·
(

sw
tw

)

=

(

swa

twa

)

and Eb ·
(

sw
tw

)

=

(

swb

twb

)

,
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where the matrices Ea and Eb were defined in (5).
An easy induction on x + y shows that for all words w with x letters a and y letters b

and all n ≥ 1, 0 ≤ αxβyn − w(n) ≤ βx+y. Indeed, if ℓ = a or b and ℓ(n) = ⌊λn⌋, then
0 ≤ αxβyℓ(n) − wℓ(n) ≤ βx+y, by the inductive hypothesis. But ℓ(n) = λn − {λn}, so
0 ≤ αxβyλn − wℓ(n) ≤ βx+y + αxβy{λn} ≤ 2βx+y ≤ βx+y+1, as β > 2 > α. Therefore,
using the triangle inequality, we find that |w(n) − w0(n)| ≤ 2βx+y for all w satisfying the
hypotheses of the theorem and all n ≥ 1, where w0 = axby. Thus, it suffices to prove the

theorem for the function w = w0. Since b = 0 · a + 1 · b, we can find the vector

(

sw
tw

)

by

computing the matrix product Ex
aE

y−1
b

(

0
1

)

. By Lemma 7,

Ex
aE

y−1
b

(

0
1

)

=

(

Uα
x+1 − Uα

x Uα
x

Uα
x Uα

x + rUα
x−1

)(

Uβ
y−1

Uβ
y − Uβ

y−1

)

=

(

Uα
x U

β
y + Uβ

y−1(U
α
x+1 − 2Uα

x )

Uα
x U

β
y + rUα

x−1(U
β
y − Uβ

y−1)

)

.

The other expressions for sx,y and tx,y in (7) are obtained using the relations Uα
x+1 = (2 −

r)Uα
x + rUα

x−1 and (2 + r)Uβ
y − rUβ

y−1 = Uβ
y+1, respectively. Our derivation assumed y ≥ 1.

However, it is easy to check that putting y = 0 in (7) yields

(

sx,0
tx,0

)

=

(

Uα
x − Uα

x−1

Uα
x−1

)

, which

equals Ex−1
a

(

1
0

)

=

(

sax
tax

)

, by Lemma 7.

Remark 9. The functions sx,y and tx,y are integral linear recurrences in x with characteristic
polynomial the minimal polynomial of α when y is fixed, and linear recurrences in y with
characteristic polynomial the minimal polynomial of β when x is fixed.

Remark 10. One can easily recover sx,y and tx,y when r = 1 or r = 2 obtained in Theorems
2 and 5. For instance, if r = 1, then Uα

x = Fx and Uβ
y = F2y so sx,y = FxF2y + F2y−2(Fx+1 −

2Fx) = FxF2y−Fx−2F2y−2. To see that FxF2y−Fx−2F2y−2 = Fx+2y−2, it is enough to observe
that both sides of the equation are linear recurrences satisfying the Fibonacci recursion once
y is fixed. Thus, we are left with verifying equality, say, at x = 0 and x = 1.

Remark 11. In contrast with to the cases r = 1 or r = 2, the functions dw(n) in (6) are not
necessarily always nonnegative when r ≥ 3. For instance, for r = 3,

da3(n) = ⌈(α + 1){αa(n)}⌉ − ⌈(α + 1){nα}⌉,

which is −1 for n = 6.

In the Wythoff case, as we can see from Corollary 3, the sequences (by(n))y for a fixed
integer n ≥ 1 are all second-order recurrences with characteristic polynomial the minimal
polynomial of β = α+ 1. The next two corollaries show this phenomenon holds for all pairs
of Beatty sequences stemming from a pair (α, α + r), (r ≥ 1).
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Corollary 12. For all y ≥ 0 and all n ≥ 1, we find that

by(n) = uya(n) + vyb(n),

where (uy) and (vy) are both second-order linear recurrences with characteristic polynomial
x2 − (r + 2)x+ r and initial values u1 = 0, u2 = 1 and v1 = 1, v2 = r + 1.

Proof. We saw in (8) that dwb(n) = dw(b(n)). But for w = b, dw = 0. Hence, we see
inductively that dby = 0, for all y ≥ 1. Therefore, by Theorem 8, we get

by(n) = Uβ
y−1a(n) + (Uβ

y − Uβ
y−1)b(n).

Both Uβ
y−1 and Uβ

y −Uβ
y−1 are linear recurrences with characteristic polynomial x2−(r+2)x+r,

the minimal polynomial of β, and their initial conditions are those indicated. For y = 0,
by(n) = n and

Uβ
y−1a(n) + (Uβ

y − Uβ
y−1)b(n) = Uβ

−1

(

a(n)− b(n)
)

= −r−1(−rn) = n.

Corollary 13. Given n ≥ 1, the sequence (by(n))y is linear recurrent with characteristic
polynomial the minimal polynomial of β, namely x2 − (r+2)x+ r. In particular, (by(1))y =
vy+1, where the sequence (vy) was defined in the statement of Corollary 12.

Proof. By Corollary 12, once n is fixed, by(n) is a linear combination of uy and vy. Moreover,
by(1) = a(1)uy + b(1)vy = ⌊α⌋uy + ⌊β⌋vy = uy + (r + 1)vy = vy+1, since α ∈ (1, 2) implies
β ∈ (r + 1, r + 2).

For future reference, we give a direct proof of Corollary 13.

Proof. Put νy = by(n). Then

νy+2 = ⌊β2νy − β{βνy}⌋ = ⌊(r + 2)βνy − rνy − β{βνy}⌋
= (r + 2)νy+1 − rνy + ⌊(r + 2− β){βνy}⌋ = (r + 2)νy+1 − rνy,

since, as β ∈ (r + 1, r + 2), it follows that r + 2− β is in (0, 1).

4 The Narayana case

Here we consider a(n) := ⌊αn⌋ and b(n) := ⌊α3n⌋, where α
.
= 1.46557 is the dominant zero

of x3 − x2 − 1. Note that we do have 1/α + 1/α3 = 1.

The Narayana sequence (Nk)k≥0 is the fundamental recurrence with characteristic poly-
nomial x3−x2−1, i.e., with initial values 0, 0, 1. This sequence was used in the 14th century
to model the population growth of a herd of cows [1]. Its OEIS number [17] is A078012.
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4.1 General results

Lemma 14. For all integers n ≥ 1, we have

a2(n) = b(n)− n− e1(n)

ba(n) = a(n) + b(n)− e2(n)

ab(n) = a(n) + b(n)− e3(n)

b2(n) = a(n) + 3b(n)− n− e4(n),

where the ranges of e1 and e2 are, respectively, {0, 1, 2} and {0, 1, 2, 3}, and the ranges of e3
and e4 are both {0, 1}.

Proof. Since α3 = α2 + 1, we see that

a2(n) = ⌊α⌊αn⌋⌋ = ⌊α2n− α{αn}⌋ = ⌊α3n− α{αn}⌋ − n

= ⌊⌊α3n⌋+ {α3n} − α{αn}⌋ − n = b(n)− n+ ⌊{α2n} − α{αn}⌋.

Clearly −2 < −α < −α{αn} < {α2n} − α{αn} < {α2n} < 1, which explains that e1(n) is
either 0, 1 or 2. Similarly, ba(n) = ⌊α3⌊αn⌋⌋ = ⌊α2⌊αn⌋+⌊αn⌋⌋ = a(n)+⌊α3n−α2{αn}⌋ =
a(n) + b(n) + ⌊{α3n} − α2{αn}⌋. Note that α2 > 2, so e2(n) is potentially equal to 3. Also,

ab(n) = ⌊α(α3n− {α3n})⌋ = ⌊(α3 + α)n− α{α3n}⌋
= a(n) + b(n) + ⌊{α3n}+ {αn} − α{α3n}⌋ = a(n) + b(n) + ⌊{αn}+ (1− α){α2n}⌋.

Noting that (1− α){α2n} ∈ (−1, 0) explains the range of e3. Finally, as α6 = 3α3 + α − 1,
we see that

b2(n) = ⌊α3(α3n− {α3n})⌋ = −n+ ⌊3α3n+ αn− α3{α3n}⌋
= a(n) + 3b(n)− n+ ⌊(3− α3){α3n}+ {αn}⌋.

Noting that (3− α3){α3n} ∈ (−1, 0) explains the range of e4.

It might be worth listing the exact expressions of the functions ei found in the above
proof. Namely,

e1(n) = ⌈α{αn} − {α2n}⌉
e2(n) = ⌈α2{αn} − {α2n}⌉
e3(n) = ⌈(α− 1){α2n} − {αn}⌉
e4(n) = ⌈(α3 − 3){α2n} − {αn}⌉.

We observe that all values in the various ranges of the ei’s are attained for some n. For
instance, e2(n) takes on the value 3, though only three times in the interval [1, 500].
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Theorem 15. Let w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓs, (s ≥ 1), where each ℓi is either a or b. Assume x
and y are, respectively, the number of a’s and the number of b’s in w. Then,

w(n) = Nx+3y−2 a(n) +Nx+3y b(n)−Nx+3y−3 n− ew(n), (9)

where ew is a nonnegative bounded integral function of n that depends on w and satisfies
ew ≤ 3pNp with p = x+ 3y.

Proof. The proof is by induction on ℓ ≥ 1 and analogous to that of Theorem 26, albeit
less demanding, and also subsumed by the proof presented in Theorem 32. We only outline
the bounds on ew that Theorems 26, or 32, do not address. Assume w(n) satisfies (9) with
p = x+ 3y. Computing w(a(n)) with the expressions of a2(n) and b(a(n)) from Lemma 14,
we find

w(a(n)) = N(p+1)−2a(n) +Np+1b(n)−N(p+1)−3n− ewa(n),

where ewa(n) = Np−2e1(n)+Npe2(n)+ ew(a(n)). Since 0 ≤ e1 ≤ 2 and 0 ≤ e2 ≤ 3 according
to Lemma 14, we deduce, with the inductive hypothesis, that

0 ≤ ewa(n) ≤ 2Np−2 +3Np +3pNp ≤ Np +2Np+1 +3pNp ≤ 3Np+1 +3pNp+1 = 3(p+1)Np+1.

Similarly, ewb(n) = e4(n)Np−2 + e3(n)Np + ew(b(n)). Clearly ewb(n) ≤ Np+1 + 3pNp ≤
3(p+3)Np+3. Note that N−1 = 1 so ewa and ewb are both nonnegative even when p = 1.

The upper bound on the function ew(n) can be substantially reduced for some subfamilies
of sequences as the corollary below shows.

Corollary 16. We have by(n) = N3y−2a(n)+N3yb(n)−N3y−3n−e(y)(n) where 0 ≤ e(y)(n) ≤
N3y−2.

Proof. Theorem 15 gives that by(n) = N3y−2a(n) + N3yb(n) − N3y−3n − e(y)(n) for some
nonnegative bounded function e(y). Thus,

by+1(n) = by(b(n)) = N3y−2a(b(n)) +N3yb
2(n)−N3y−3b(n)− e(y)(b(n)),

which, using Lemma 14 and the Narayana recursion Nn + Nn−2 = Nn+1, yields by+1(n) =
N3y+1a(n)+N3y+3b(n)−N3yn−N3ye4(n)−e(y)(b(n)). On the other hand, we have by+1(n) =
N3y+1a(n)+N3y+3b(n)−N3yn−e(y+1)(n). Therefore, e(y+1)(n) = N3ye4(n)+e(y)(b(n)). Thus,
e(y+1)(n)− e(y)(b(n)) ≤ N3y. Hence,

e(y)(b(n))− e(y−1)(b
2(n)) ≤ N3y−3, . . . , e(2)(b

y−1(n))− e(1)(b
y(n)) ≤ N3.

But e(1) = 0, so adding those inequalities yields e(y+1)(n) ≤ ∑y
t=1N3t. An easy induction

shows
∑y

t=1N3t = N3y+1, which terminates our proof.
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We are curious to know whether the sequences (by(n))y, for fixed n, are linear recurrences
as Corollaries 12 and 13 showed it is the case when β is of the form β = α+ r, r an integer.
Clearly, this will hold iff the sequences (e(y)(n))y of Corollary 16 are linear recurrences. The
next subsection proves this is true when n = 1. However, before jumping to this next
subsection, we fix an n ≥ 1, set τy := by(n) and mimic the second proof of Corollary 13 to
establish that (τy), if not a linear recurrence, is nearly one, and with characteristic polynomial
the minimal polynomial x3 − 4x2 + 3x− 1 of A := α3. (See Lemma 18.)

Lemma 17. The sequence (τy)y≥0 satisfies the relation

τy+3 − 4τy+2 + 3τy+1 − τy = ξy, where ξy = ⌊(4− A){Aτy+1} − A−1{Aτy}⌋, (y ≥ 0).

Proof. Using A3 − 4A2 + 3A− 1 = 0, we find that

τy+3 = ⌊Aτy+2⌋ = ⌊4τy+2 + (A− 4)⌊Aτy+1⌋⌋
= 4τy+2 + ⌊(A− 4)Aτy+1 + (4− A){Aτy+1}⌋.

But A2 − 4A = −3 +A−1 so τy+3 = 4τy+2 − 3τy+1 + ⌊A−1(Aτy − {Aτy}) + (4−A){Aτy+1}⌋,
which leads to the relation the lemma claims.

We see that ξy is either 0 or −1 because 4 − A
.
= 0.8521 and A−1 .

= 0.3176, and seems
more likely to be 0 than −1.

4.2 The sequence (by(1))y = ⌊α3⌊α3⌊· · · ⌊α3⌋ · · ·⌋⌋⌋
In this subsection, we write τy for by(1), A for α3 and we define σy as the function

σy := N3y+3 −
⌊(3y−14)/12⌋

∑

k=0

N3y−14−12k. (10)

We intend to prove that σy is a linear recurrence with characteristic polynomial equal
to x4 − 1 times the minimal polynomial of A. This will give us a closed form for σy from
which we can see that σy+1 = ⌊α3σy⌋ for y ≥ 20. Induction will then yield the equality of
the sequences (σy) and (τy). The expression in (10) was found experimentally to match the
first values of τy. Using PARI, we then had checked the coincidence of τy and σy for all y,
0 ≤ y ≤ 199.

Lemma 18. For any fixed integer t, the sequence (N3y+t)y is a third-order recurrence with
characteristic polynomial x3 − 4x2 + 3x− 1.

Proof. It suffices to verify that x3 − 4x2 + 3x − 1 = (x − α3)(x − β3)(x − γ3), where β
and γ are, besides α, the two other zeros of x3 − x2 − 1. Note that α + β + γ = 1,
αβ + αγ + βγ = 0 and αβγ = 1. Thus, putting Vn = αn + βn + γn, we find that V0 = 3,
V1 = 1, V2 = V 2

1 − 2(αβ + αγ + βγ) = 1. Hence, V3 = V2 + V0 = 4. Now writing
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Wn for (αβ)n + (αγ)n + (βγ)n, we see that (Wn)’s characteristic polynomial is x3 − 0x2 +
αβγ(α + β + γ)x − 1 = x3 + x − 1. Therefore, W3 = −W1 + W0 = 3 and, consequently,
(x− α3)(x− β3)(x− γ3) = x3 − V3x

2 +W3x− 1 = x3 − 4x2 + 3x− 1, as we claimed.

Lemma 19. The sequence (σy)y≥0 satisfies the recursion

σy+3 − 4σy+2 + 3σy+1 − σy = εy, where εy =

{

0, if y ≡ 0, 1 or 2 (mod 4);

−1, if y ≡ 3 (mod 4).

In particular, (σy) is a seventh-order recurrence with characteristic polynomial (x4− 1)(x3−
4x2 + 3x− 1).

Proof. Define Vy as σy+3 − 4σy+2 +3σy+1 − σy for all y. By (10) and Lemma 18, we see that

−Vy =

⌊(3y−5)/12⌋
∑

k=0

N3y−5−12k − 4

⌊(3y−8)/12⌋
∑

k=0

N3y−8−12k

+3

⌊(3y−11)/12⌋
∑

k=0

N3y−11−12k −
⌊(3y−14)/12⌋

∑

k=0

N3y−14−12k.

(11)

By Lemma 18, if all four sums in the expression of −Vy above have the same number of
terms, then Vy = 0. If I designates the set of all intervals J such that J ⊂ [m,m + 1), for
some integer m, then those four sums will all have 1 + ⌊(3y − 14)/12⌋ terms iff the interval
[(3y − 14)/12, (3y − 5)/12] ∈ I. Putting y = 4ℓ+ r, 0 ≤ r ≤ 3, we see that

[(3y − 14)/12, (3y − 5)/12] ∈ I iff [(3r − 14)/12, (3r − 5)/12] ∈ I,

which occurs iff r = 1. Suppose y = 4ℓ. Then ⌊(3y − 5)/12⌋ = ⌊(3y − 8)/12⌋ = ⌊(3y −
11)/12⌋ = ℓ − 1 and ⌊(3y − 14)/12⌋ = ℓ − 2. Thus, using Lemma 18, we obtain that
−Vy = N3y−5−12(ℓ−1) − 4N3y−8−12(ℓ−1) + 3N3y−11−12(ℓ−1) = N7 − 4N4 + 3N1 = 4 − 4 + 0 = 0.

Thus, V4ℓ = 0 as well. Assume now y = 4ℓ+2. Then the first sum, i.e.,
∑⌊(3y−5)/12⌋

k=0 N3y−5−12k

in (11), contains one more term than the three others. Hence, as ⌊(3y − 5)/12⌋ = ℓ, we see
that −Vy = N3y−5−12ℓ = N1 = 0. Finally, suppose y = 4ℓ + 3. Then ⌊(3y − 5)/12⌋ =
⌊(3y− 8)/12⌋ = ℓ, while ⌊(3y− 11)/12⌋ = ⌊(3y− 14)/12⌋ = ℓ− 1. Thus, −Vy = N3y−5−12ℓ −
4N3y−8−12ℓ = N4 − 4N1 = 1. Hence, V4ℓ+3 = −1, which ends the proof.

Since (σy) is a seventh-order recurrence with the zeros of its characteristic polynomial all
identified, namely α3, β3, γ3 and all complex fourth roots of unity, we solved a 7× 7 linear
system and got a closed-form expression for σy. We found σy = Iy + ry, where

Iy :=
1

117

(

2N3y + 103N3y+1 + 100N3y+2

)

,

ry :=
1

4
− (−1)y

36
− 3i+ 2

52
iy +

3i− 2

52
(−i)y,

(12)

13



and i =
√
−1.

We may observe that α3Iy − Iy+1 can be made arbitrarily small, for all large enough y’s.
Indeed, for t a fixed integer, N3y+t is a linear combination of α3y, β3y and γ3y. But, as the
absolute values of β and γ are smaller than one, α3N3y+t −N3y+3+t tends to 0 as y tends to
infinity. The next lemma quantifies this observation.

Lemma 20. We have |Ey| < 6 · 10−5 for all y ≥ 20, where Ey := α3Iy − Iy+1.

Proof. For all n ≥ 0, we have the closed-form expression

Nn =
αn

f ′(α)
+ 2Re

(

βn

f ′(β)

)

,

where f ′ is the derivative of f(x) = x3 − x2 − 1 and Re(z) stands for the real part of a
complex z. Therefore, for t = 0, 1 or 2,

|α3N3y+t −N3y+3+t| ≤
∣

∣2α3Re

(

β3y+t

f ′(β)

)

− 2Re

(

β3y+3+t

f ′(β)

)

∣

∣ ≤ 3α3 |β|3y
|f ′(β)| .

Hence,

|α3Iy − Iy+1| ≤
2 + 103 + 100

117
· 3α3

|f ′(β)| · |β|
3y < 5.6× |β|3y.

Since |β| < 1 and 5.6× |β|60 .
= 0.0000581 · · · , the lemma follows.

We are ready to prove that the two sequences are identical.

Theorem 21. For all y ≥ 0, τy = σy.

Proof. It is easy to check that ry defined in (12) is of period 4 and that

ry =
1

117
×



















17, if y ≡ 0 (mod 4);

46, if y ≡ 1 (mod 4);

35, if y ≡ 2 (mod 4);

19, if y ≡ 3 (mod 4).

(Thus, ry + ry+1 + ry+2 + ry+3 = 1 for all y ≥ 0.)
We will need the differences Ary−ry+1 for all y’s so we compute them to three significant

digits

Ary − ry+1 = 117−1



















17A− 46

46A− 35

35A− 19

19A− 17

.
=



















0.064, if y ≡ 0 (mod 4);

0.938, if y ≡ 1 (mod 4);

0.779, if y ≡ 2 (mod 4);

0.366, if y ≡ 3 (mod 4).

(13)
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Let y ≥ 20 be an integer. We suppose that τk = σk for all k’s, 0 ≤ k ≤ y, and proceed
by induction. Thus, we need to show that τy+1 = σy+1. Using our inductive hypothesis,
we see that Aτy = Aσy = AIy + Ary = Iy+1 + Ey + Ary = (σy+1 − ry+1) + Ey + Ary.
That is, Aτy = σy+1 + (Ary − ry+1 + Ey). By Lemma 20, |Ey| < 6 · 10−5 and, by (13),
6 · 10−5 < Ary − ry+1 < 1− 6 · 10−5. Therefore, 0 < Ary − ry+1 +Ey < 1 and ⌊Aτy⌋ = σy+1.
Since, by definition, τy+1 = ⌊Aτy⌋, the inductive step is proved. As mentioned earlier the
induction is well grounded as we checked that τk = σk, for all k, 0 ≤ k ≤ 199.

Remark 22. The four values of α3ry − ry+1 in (13) are the limit values, rounded to three
decimals, of the fractional parts of α3τy, as y increases. In fact, we found that for y = 20, 21,
22 and 23, those values are already, to three significant digits, equal to 0.064, 0.938, 0.779
and 0.366, respectively.

With ξy and εy, respectively, defined in Lemmas 17 and 19, we obtain the corollary

Corollary 23. For all y ≥ 0, we find that ξy = εy, i.e.,

⌊(4− α3){α3τy+1} − α−3{α3τy}⌋ =
{

0, if y ≡ 0, 1 or 2 (mod 4);

−1, if y ≡ 3 (mod 4).

And, in return, we also have an expression for the remainder function e(y)(1) of Corollary
16.

Corollary 24. For all y ≥ 0,

e(y)(1) =

⌊(3y−14)/12⌋
∑

k=0

N3y−14−12k.

Proof. From Corollary 16, by(1) = a(1)N3y−2 + b(1)N3y −N3y−3 − e(y)(1). But a(1)N3y−2 +
b(1)N3y − N3y−3 = N3y−2 + 3N3y − N3y−3 = N3y+1 + N3y + N3y−1 = N3y+2 + N3y = N3y+3.
Comparing with the expression of σy in (10) yields the corollary since σy = τy = by(1).

5 The (α, α4) case with α4 − α3 − 1 = 0, α > 1

Here α is the dominant zero of x4 − x3 − 1. We find that α
.
= 1.38028. Thus, a(n) = ⌊nα⌋

and b(n) = ⌊nα4⌋. We denote the fundamental sequence associated with x4 − x3 − 1 as
H = (Hk)k≥0. That is, H0 = H1 = H2 = 0 and H3 = 1 with Hn+4 = Hn+3 + Hn, for all
integers n. This is sequence A017898 in the OEIS [17].

Lemma 25. For all integers n ≥ 1, we have

a2(n) = b(n)− n− ⌊n
α
⌋ − e1(n)

ba(n) = a(n) + b(n)− e2(n)

ab(n) = a(n) + b(n)− e3(n)

b2(n) = a(n) + 4b(n)− 2n− ⌊n
α
⌋+ e4(n),

15
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where the four ei’s are bounded integral functions of n with ranges {0, 1, 2, 3} for e1 and e2,
{0, 1} for e3 and {−1, 0, 1} for e4.

In fact,

e1(n) = ⌈{n
α
}+ α{αn} − {α3n}⌉

e2(n) = ⌈α3{αn} − {α3n}⌉,
e3(n) = ⌈(α− 1){α3n} − {αn}⌉
e4(n) = ⌊(4− α4){α3n}+ {αn} − {n

α
}⌋.

The least value of n for which e1(n) = 3 is 113. The least n with e4(n) = 1 is 47.
We omit the proof of Lemma 25 as it is similar in spirit to that of Lemma 14.

Theorem 26. Let w = ℓ1 ◦ ℓ2 ◦ · · · ◦ ℓs, (s ≥ 1), where each ℓi is either a or b. Assume x
and y are, respectively, the number of a’s and the number of b’s in w. Then w(n) equals

Hx+4y−2a(n) +Hx+4y+1b(n)− (Hx+4y−3 +Hx+4y−4)n−Hx+4y−3

⌊

n

α

⌋

+ e(n),

where e is a bounded integral function of n.

Proof. We carry out an inductive proof on the number of letters ℓ in the word w. By running
the recursion defining the sequence H backwards, we find that H−3 = H−2 = 0 and H−1 = 1.
Thus we easily check the result when ℓ = 1 and, using Lemma 25, for ℓ = 2. Assuming w is
a word with ℓ ≥ 2 letters and the theorem holds for such words, we show the theorem still
holds for wa and wb.

The inductive hypothesis gives that

wa(n) = Hx+4y−2 a
2(n) +Hx+4y+1 ba(n)

− (Hx+4y−3 +Hx+4y−4)a(n)−Hx+4y−3

⌊

a(n)

α

⌋

+ e
(

a(n)
)

.

Note that
⌊

a(n)
α

⌋

=
⌊

n− {αn}
α

⌋

= n− 1. So using Lemma 25 and regrouping terms we obtain

wa(n) = (Hx+4y+1 −Hx+4y−3 −Hx+4y−4) a(n) + (Hx+4y−2 +Hx+4y+1) b(n)

− (Hx+4y−2 +Hx+4y−3)n−Hx+4y−2

⌊

n

α

⌋

+ e′(n),

where e′(n) = Hx+4y−3 −Hx+4y−2e1(n) +Hx+4y+1e2(n) + e
(

a(n)
)

.
But Hx+4y+1 − Hx+4y−3 − Hx+4y−4 = Hx+4y − Hx+4y−4 = Hx+4y−1 = H(x+1)+4y−2 and

Hx+4y−2 +Hx+4y+1 = Hx+4y+2 = H(x+1)+4y+1. Therefore, wa(n) has the form claimed in the
theorem.
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Also by the inductive hypothesis,

wb(n) = Hx+4y−2 ab(n) +Hx+4y+1 b
2(n)

− (Hx+4y−3 +Hx+4y−4) b(n)−Hx+4y−3

⌊

b(n)

α

⌋

+ e(b(n)).

Note that
⌊

b(n)

α

⌋

=

⌊

(α5 − α)n− {α4n}
α

⌋

= b(n)− n+

⌊(

1− 1

α

)

{α4n}
⌋

.

But (1− 1/α){α4n} ∈ (0, 1) so ⌊b(n)/α⌋ = b(n)− n.
Using Lemma 25, the identity ⌊b(n)/α⌋ = b(n)−n, and regrouping like-terms, we obtain

wb(n) = (Hx+4y−2 +Hx+4y+1)a(n)

+ (Hx+4y−2 + 4Hx+4y+1 − 2Hx+4y−3 −Hx+4y−4)b(n)

− (2Hx+4y+1 −Hx+4y−3)n−Hx+4y+1

⌊

n

α

⌋

+ e′′(n),

where e′′(n) = Hx+4y−2e2(n)+Hx+4y+1e4(n)+e
(

b(n)
)

is an integral and bounded function of
n. Using the recursion for H, we obtain the expected coefficients for a(n), b(n), n and

⌊

n
α

⌋

.
For the coefficient of b(n), put t = x + 4y + 1. Then we check that Ht+4 = 4Ht + Ht−3 −
2Ht−4 −Ht−5. It holds iff Ht+3 = 3Ht +Ht−3 − 2Ht−4 −Ht−5. But

Ht+3 = Ht+2 +Ht−1 = Ht+1 +Ht−1 +Ht−2 = Ht +Ht−1 +Ht−2 +Ht−3.

Thus, the identity to prove holds iff Ht−1 + Ht−2 = 2Ht − 2Ht−4 − Ht−5. But the latter is
true as Ht −Ht−4 = Ht−1 and 2Ht−1 −Ht−5 = Ht−1 +Ht−2.

6 The general case (α, αq), (q ≥ 2)

Let q ≥ 2 be an integer. The polynomial f(x) := xq − xq−1 − 1 possesses a simple dominant
real zero α > 1 [2, Lemma 3]. Here, a(n) = ⌊nα⌋ and b(n) = ⌊nαq⌋. We denote the
fundamental sequence associated with f(x) as G = (Gk)k≥0. That is, G0 = G1 = · · · =
Gq−2 = 0 and Gq−1 = Gq = · · · = G2q−2 = 1 as Gt+q = Gt+q−1 +Gt.

Lemma 27. Let θ be a zero of xq − xq−1 − 1. Then, for all integers n ≥ m, we find that

n
∑

i=m

θi = θn+q − θm+q−1.

Proof. Summing the geometric series
∑n

i=m θi yields the expression θn+1−θm

θ−1
. But θn+1 =

θn+q+1 − θn+q = θn+q(θ − 1) and θm = θm+q−1(θ − 1).
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Lemma 28. For all integers n ≥ 1, we have

a2(n) = b(n)− n−
⌊

n

α

⌋

− · · · −
⌊

n

αq−3

⌋

+O(1),

ba(n) = a(n) + b(n) +O(1),

ab(n) = a(n) + b(n) +O(1),

b2(n) = a(n) + q b(n)− (q − 2)n− (q − 3)

⌊

n

α

⌋

− · · · −
⌊

n

αq−3

⌋

+O(1).

Proof. By Lemma 27,
∑q−3

i=0 α
−i =

∑0
i=3−q α

i = αq − α2. Hence,

a2(n) = ⌊α2n− α{αn}⌋ = ⌊αqn−
q−3
∑

i=0

n

αi
− α{αn}⌋

= b(n)−
q−3
∑

i=0

⌊ n
αi

⌋+O(1).

Now ab(n) = ⌊αq⌊αn⌋⌋ = ⌊(αq−1+1)(αn−{αn})⌋ = a(n)+b(n)+O(1). A similar expansion
also yields our claim for ba(n). The expression for b2(n) will hold if α2q = α+qαq−∑q−3

i=0 α
−i−

∑q−2
i=0 α

−i − · · · − α−0. That is, if α2q = α+ qαq −∑q−3
j=0

∑0
i=3+j−q α

i. Now, using Lemma 27
twice, we obtain

α + qαq −
q−3
∑

j=0

0
∑

i=3+j−q

αi = α + qαq −
q−3
∑

j=0

(αq − α2+j)

= α + 2αq + (α2q−1 − αq+1) = −(αq+1 − αq − α) + (αq + α2q−1)

= 0 + α2q.

Remark 29. The third bounded function O(1) in the identity ab(n) = a(n) + b(n) +O(1) is
⌊(1− α){αqn}+ {αn}⌋, so it is either 0 or −1.

Lemma 30. Let n ≥ m be integers. Then

n
∑

i=m

Gi = Gn+q −Gm+q−1.

Proof. The derivative of f(x) only has 0 and (q−1)/q as zeros. Since neither 0, nor (q−1)/q
is a zero of f , the zeros θ1, . . . , θq of f(x) are simple. Thus, Gi is a linear combination of the
θit, t = 1, . . . , q. Hence, the lemma is a direct consequence of Lemma 27.
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Corollary 31. Let p ≥ 1, q ≥ 3 and 0 ≤ j ≤ q − 3 be integers. Then

∑

3≤i≤q−j

Gp−i = Gp+q−3 −Gp+j−1.

Proof. We note that
∑

3≤i≤q−j Gp−i =
∑p−3

i=p+j−q Gi and apply Lemma 30.

Theorem 32. Let w be a composite function of some a’s and b’s. Putting p = x+ qy, where
x and y are, respectively, the number of a’s and the number of b’s in w, we find that, for all
n ≥ 1,

w(n) = Gp−2 a(n) +Gp+q−3 b(n)−
∑

0≤j≤q−3

cj

⌊

n

αj

⌋

+O(1), (14)

where cj =
∑

3≤i≤q−j Gp−i, or alternatively cj = Gp+q−3 −Gp+j−1.

Proof. Note that for q = 2, the sum
∑

0≤j≤q−3 cj⌊n/αj⌋ is empty and equals 0 by convention.
Hence, in that case, the theorem is implied by Theorem 2. Thus, assume q ≥ 3. Observe
that, by Corollary 31,

∑

3≤i≤q−j Gp−i = Gp+q−3 −Gp+j−1. We may proceed by induction on
x+ y as was done in Theorems 2, 5, 15 and 26. One checks the result for x+ y = 1 directly.
For instance, if w = a, then taking the function O(1) to be the null function and noting that
G−1 = 1 and G−i = 0, 2 ≤ i ≤ q − 1, we find that all coefficients cj of (14) are zero so that
G−1a(n) +Gq−2b(n)− 0 + 0 is indeed a(n).

Now suppose (14) holds for some w with x+ y ≥ 1 letters. Replacing n by a(n) in (14),
using Lemma 28 to express a2(n) and ba(n) and filling in some constant terms into the O(1)
term, we find that

wa(n) = Gp−2

(

b(n)−
∑

0≤j≤q−3

⌊

n

αj

⌋)

+Gp+q−3

(

a(n) + b(n)
)

−
∑

0≤j≤q−3

(

Gp+q−3 −Gp+j−1

)

⌊

a(n)

αj

⌋

+O(1).

(15)

The coefficient of b(n) is Gp−2 + Gp+q−3 = Gp+q−2 = G(p+1)+q−3, while that of a(n) is
Gp+q−3 − (Gp+q−3 −Gp−1) = G(p+1)−2, as expected. Since ⌊n/αj−1⌋ − ⌊a(n)/αj⌋ is 0 or 1 for
all j ≥ 1, the remaining terms are

−Gp−2

∑

0≤j≤q−3

⌊

n

αj

⌋

−
∑

1≤j≤q−3

(

Gp+q−3 −Gp+j−1

)

⌊

n

αj−1

⌋

+O(1).

But
∑

1≤j≤q−3

(

Gp+q−3 − Gp+j−1

)

⌊n/αj−1⌋ =
∑

0≤j≤q−4

(

Gp+q−3 − Gp+j

)

⌊n/αj⌋, so we see

that the coefficient cj(wa) of −⌊n/αj⌋ in wa(n) is, for 0 ≤ j ≤ q − 4, equal to

(Gp−2 +Gp+q−3)−Gp+j = Gp+q−2 −Gp+j = G(p+1)+q−3 −G(p+1)+j−1,
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while cq−3(wa) = Gp−2 = G(p+1)−3, as expected.

Similarly, we expand wb(n), expressing ab(n) and b2(n) with Lemma 28, to find that
wb(n) may be written as

Gp−2

(

a(n) + b(n)
)

+Gp+q−3

(

a(n) + q b(n)−
∑

0≤i≤q−3

(q − 2− i)

⌊

n

αi

⌋)

−
∑

0≤j≤q−3

(

Gp+q−3 −Gp+j−1

)

⌊

b(n)

αj

⌋

+O(1). (16)

The coefficient of a(n), Gp−2 + Gp+q−3, is, as expected, equal to G(p+q)−2. Given j between
1 and q − 3, and noting that

αqn = (αq+1 − α)n = (αq+2 − α2 − α)n = · · · = (αq+j − αj − αj−1 − · · · − α)n,

we see that, for all j ≥ 0,

⌊

b(n)

αj

⌋

= b(n)−
∑

0≤k≤j−1

⌊

n

αk

⌋

+O(1). (17)

Therefore the (natural) coefficient of b(n) in wb(n) is

Gp−2 + q Gp+q−3 −
∑

0≤j≤q−3

(

Gp+q−3 −Gp+j−1

)

= Gp−2 + 2Gp+q−3 +
∑

0≤j≤q−3

Gp−1+j

= Gp−2 + 2Gp+q−3 + (Gp−1+2q−3 −Gp+q−2) (18)

= 2Gp+q−3 +Gp+2q−4 − (Gp+q−2 −Gp−2)

= Gp+q−3 +Gp+2q−3 −Gp+q−3 = Gp+2q−3,

as expected, where in (18) we used Corollary 31.

By (16) and (17), the coefficient ck(wb) is

(q − 2− k)Gp+q−3 −
∑

k+1≤j≤q−3

(Gp+q−3 −Gp+j−1)

=
(

q − 2− k − (q − 3− k)
)

Gp+q−3 +

q−3
∑

j=k+1

Gp−1+j

= (Gp+q−3 +Gp+2q−4)−Gp+q+k−1 (19)

= G(p+q)+q−3 −G(p+q)+k−1,

which is what we intended to prove. Again, in (19), we used Corollary 31.
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Remark 33. The basis functions a(n), b(n), and the ⌊ n
αj ⌋, used to express w(n) in Theorem

32, are all integral, and so are their coefficients, but there is no uniqueness in this property.
Other choices could have been made. For instance, in Lemma 28, we could have chosen to
express a2(n) as a(n)+ ⌊ n

αq−2 ⌋− e(n), where e(n) = ⌈(α−1){αn}−{n/αq−2}⌉ ∈ {0, 1}. Had
we made this choice for a2(n), the general expression of by(n), when q = 3, in Corollary 16,
would have taken the form by(n) = (N3y−1 +N3y−6)a(n) +N3y−1b(n) +N3y−3⌊n/α⌋+O(1).

7 Problems for future research

We provide some ideas for further investigation. These ideas only reflect how we see things
at the moment and are probably more a measure of our ignorance than anything else.

Problem 34. Find other pairs of complementary Beatty sequences, preferably infinite fam-
ilies of such pairs

(

as(n), bs(n)
)

, and discover theorems comparable to Theorems 8 and 32
that express a word in as and bs as nearly a linear combination of as and bs.

(The referee pointed out the polynomials xq−xq−1−x−1 for q ≥ 3. Each such polynomial
[2, Lemma 3] has a simple dominant zero α. In fact, for q = 3, α is a cubic Pisot number
that can play a fundamental role in the construction of Rauzy fractals [13].)

The secondary question tackled in this paper of whether the sequences (by(n))y are linear
recurrences leads to a simple fundamental problem.

Problem 35. Let α > 1 be, say, a real algebraic integer of minimal polynomial P . Put
f(n) := ⌊αn⌋. Fix an integer n ≥ 1 and define, for y a positive integer, uy as f y(n), where
f y is the y-fold composite function f ◦ · · · ◦ f .

1. Characterize those algebraic integers α for which the sequence (uy)y is a linear recur-
rence of characteristic polynomial P for all choices of n.

2. Characterize those algebraic integers α for which the sequence (uy)y is a linear recur-
rence for all choices of n. Is it necessarily true that the characteristic polynomial of (uy)
must be a multiple of P? Or that it must be of the form (xh − 1)P for some h ≥ 0?

3. Suppose (uy)y is a linear recurrence for n = 1. Does it follow that it is linear recurrent
for all choices of n? If so, would there always be an annihilating polynomial common to all
(uy) for all values of n ≥ 1? How often would that common polynomial turn out to be the
characteristic polynomial of (uy) when n = 1?

Given a pair of complementary Beatty sequences (a, b), write A and B for the respective
ranges of the functions a and b. For the Wythoff pair (a, b), we saw that by(1) = F2y+1.
Stolarsky [20, p. 441] observed that for all y ≥ 1, the pair Vy = (F2y, F2y+1) belongs to
A × B and that the vectors Vy satisfy the second-order recursion Vy+2 = 3Vy+1 − Vy. Note
that Vy = (⌊F2y−1α⌋, ⌊F2y−1α

2⌋) =
(

aby−1(1), by(1)
)

. More generally, the vectors Vy =
(

aby−1(1), by(1)
)

satisfy the same second-order recurrence as (by(1))y for all Beatty pairs of
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Section 3, where β = α + r, r ≥ 1. Indeed, by Corollary 13, (by(1))y is a second-order
recurrence, and one easily sees that aby−1(1) = by(1) − rby−1(1). In the Narayana case, we
saw that (by(1))y satisfies a 7th-order linear recurrence and it does seem experimentally that
the vectors

(

aby−1(1), by(1)
)

, all in A×B, satisfy the same 7th-order recursion. These various
instances of the same phenomenon raise another problem

Problem 36. Characterize pairs of complementary Beatty sequences (a, b) such that the
vectors Vy :=

(

aby−1(1), by(1)
)

satisfy a linear recurrence relation.

In the Wythoff context, Stolarsky [20] discovered a sequence of vectors in A × B which
satisfy a fourth-order linear recurrence with characteristic polynomial x4−10x3+16x2−5x−1
coprime to x2 − 3x + 1. Later, Ridley [15] found infinitely many sequences of Wythoff
pairs that satisfy fourth-order linear recurrences, one being a recurrence with characteristic
polynomial x4 − x3 − 5x2 + 7x− 1.

Problem 37. Given a pair of complementary Beatty sequences (a, b) with α algebraic, are
there general methods to generate sequences of vectors in A × B that satisfy higher-order
linear recurrences?

The referee suggested another problem, not unrelated to Problem 35, which he illustrated
with an example.

Problem 38. In §4, Lemma 17, we reach an identity of the form

m
∑

k=0

ckan+k = F (an, an+1),

where F is a floor function of a linear combination of fractional parts involving an and an+1

which can only take finitely many values. As turned out the an’s of §4 satisfy a homogeneous
linear recurrence, though of higher order. To be more specific, the characteristic polynomial
has an ‘additional factor’ of x4 − 1. Can any general results of this nature be obtained?

A simple example of such recurrences is the following ‘almost Fibonacci’ recurrence

an+2 = an+1 + an + ⌊k{an+1α}⌋,

where k is a fixed positive integer, α = (1 +
√
5)/2. Do the an’s satisfy homogeneous linear

recurrences? If so, 1. what are the corresponding characteristic polynomials and 2. is the
linear recurrence independent of the initial conditions? Computer experiments suggest that
(for example) for k = 11 both (x3−1)(x2−x−1) and (x8−1)(x2−x−1) are possible depending
upon the initial conditions. The same sort of thing seems true for k = 12 and 13 with possibly
different such recurrences for different initial conditions. Perhaps there is always a recurrence
whose characteristic polynomial has the form x2 − x − 1 or (x2 − x − 1)(xh − 1) for some
positive integer h?
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