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Abstract

We study the sums of products of power sums of positive integers and their gener-

alizations, using the multiple products of their exponential generating functions. The

generalizations include a closed form expression for the sums of products of infinite

series of the form
∑∞

n=0 α
nnk, 0 < |α| < 1, k ∈ N0 and the related Abel sum, which

define, in a unified way, the sums of products of the power sums for all integers k and

connect them with the zeta function.

1 Background

The discrete power sum of a positive integer n is defined as Sk(n) = 1k+2k+· · ·+nk, k ∈ N0.
The power sums are not new and have been studied since Pascal (1654) who obtained the
following expression for Sk(n) in terms of Sk−1(n), . . . , S0(n)

(n+ 1)k+1 − 1 =
k

∑

m=0

(

k + 1

m

)

Sm(n), (1)

which shows that Sk(n) is a polynomial of degree k+1 in n. Properties of these polynomials
were observed by Faulhaber (1631). Since then, the power sums have remained fascinating
even today in one or the other way. So, the literature is vast in context of different approaches
and generalizations of the power sums. However, for a quick review of power sums, the reader
may refer to a relatively new work in [1, 2, 3, 4, 5, 6].
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As an extension of the discrete power-sum, the polynomial Sk(x) for k ∈ N0 and complex
number x is defined via its exponential generating function (hereafter referred to as egf) [8]

e(1+x)t − et

et − 1
=

∞
∑

k=0

Sk(x)
tk

k!
, |t| < 2π. (2)

For fixed k, Sk(x) is given by the classical Faulhaber formula

Sk(x) =
1

k + 1

k
∑

m=0

(

k + 1

m

)

(−1)mBmx
k+1−m, (3)

where the rational sequence {Bk}k∈N0
is generated by the egf

t

et − 1
, |t| < 2π, (4)

such that Bk is the k-th Bernoulli number.
For N ∈ N, the sum of products of Bernoulli numbers denoted BN

k is generated by the
multiple product of the egf (4) in the ring of egfs over Q. The study has attracted the
attention of researchers for several number theoretical aspects such as in evaluation of the
sums of products of Riemann zeta functions. Srivastava and Todorov [9] have obtained a
closed form expression for BN

k .
Dilcher [10] has also evaluated BN

k in closed form as the following expression:

BN
k = N

(

k

N

) N
∑

i=0

(−1)N−1−is(N,N − j)
Bk−i

k − i
, k > N, (5)

where s(N,N − j) is the Stirling number of first kind.
In a short paper, Petojević and Srivastava [11] have computed the Dilcher sums of prod-

ucts of Bernoulli numbers in an elegant way. More generally, Kamano [12] has investigated
sums of products of hypergeometric Bernoulli numbers and used them to study multiple
hypergeometric zeta function.

On the other hand, Kim [13] has obtained sums of products of Bernoulli numbers, using
an analytic continuation of the multiple hypergeometric zeta function. The work has been
used by Kim and Hu [14] to describe the sums of products of Apostol-Bernoulli polynomials.

In the review of the sums of products, the author did not find any work on the sums of
products of the power sums and their connection with the Riemann zeta function except for
some work on the sum of products of the power sums of ϕ(n) integers in Singh [7], where
ϕ denotes the Euler’s phi function. One may argue that the power sum is defined via its
Bernoulli polynomial up to a constant, so all the properties of Sk(x) and its sums of products
are contained in the study of the Bernoulli polynomial Bk(x). However, the power sums are
fundamental, and the study of the multiple products of their egfs is important in its own
right. The present work is an attempt to consider multiple products of egfs of the power
sums and their generalizations in a very natural way via a considerably simple theory.
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The paper is outlined as follows. The sums of products of power sums via the multiple
product of their egfs are discussed in Section 2. Section 3 and 4 are devoted to explore the
properties of the higher order α-Euler numbers [8] (a variant of the Apostol-Bernoulli num-
bers), their connection with the higher order Bernoulli numbers, and the sums of products
of the alternating power sums. The related sums of products of the Abel sum of alternating
infinite series are obtained in Section 4. In Section 5, the sums of products of the power sums
are generalized to negative integer values, and their connection with the sum of products of
zeta function is established.

2 Sums of products

Definition 1. In the ring of formal power series over a field F, where F is one of the fields,
Q,R, and C; an element f is said to be an exponential generating function (egf) if f is equal

to the formal power series
∑∞

k=0 ak
tk

k!
, where each ak ∈ F. The set of all egfs is also a ring

with the component-wise addition (+) and multiplication (·), such that for f =
∑∞

k=0 ak
tk

k!

and g =
∑∞

k=0 bk
tk

k!
, ak, bk ∈ F,

f + g =
∞
∑

k=0

(ak + bk)
tk

k!
; f · g =

∞
∑

k=0

k
∑

m=0

(

k

m

)

ambk−m

tk

k!
, (6)

where the sequence defined by ck =
(

k

m

)

ambk−m, k ∈ N0 in F is the Cauchy type product
[15] of the sequences (ak)k∈N0

and (bk)k∈N0
.

For a detailed introduction to the ring of formal power series and the ring of egfs, the
reader may refer to the review by Wilf [16].

Definition 2. Let N ∈ N, and let fi is the egf of the sequence (aik)k∈N0
, for each i =

1, 2, . . . , N , where aik ∈ F. In the multiple product of egfs, i.e., f1 · · · fN =
∑∞

k=0 ck
tk

k!
, the

sequence defined by ck =
∑

k1+···+kN=k

(

k

k1,...,kN

)

a1k1 · · · aNkN in F is called the sum of products

of the sequences (a1k)k∈N0
, . . . , (aNk)k∈N0

.

Definition 3. For x ∈ C, let TN
k (x) denotes the sum of products of the power sums, which

is generated by the egf

H(x, t, N) =
(e(1+x)t − et

et − 1

)N

=
∞
∑

k=0

TN
k (x)

tk

k!
, |t| < 2π, N ∈ N0. (7)

Remark 4. Observe from (7) that T 0
0 (x) = 1; T 0

k (x) = 0 for all k ∈ N; TN
k (1) = Nk and

T 1
k (x) = Sk(x).

Remark 5. Since for each k ∈ N0, Sk(x) is a polynomial in x of degree k + 1 over Q with
coefficient of the leading term (k + 1)−1 (see (3)), it follows that for each fixed N ∈ N and
partition {k1, . . . , kN} of k, the product Sk1(x) · · ·SkN (x) is a polynomial in x over Q of
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degree
∑N

i=1(ki + 1) = k +N with leading coefficient
N
∏

i=1

(ki + 1)−1 > 0. Also, as Ski(0) = 0

for all i = 1, . . . , kN , x
N is always a factor of the polynomial Sk1(x) · · ·SkN (x). Thus, T

N
k (x)

is a polynomial in x of degree k + N over Q since coefficient of xk+N in TN
k (x) is equal

to the N -fold product of the egf of (k + 1)−1. Therefore, TN
k (x) is a linear combination of

{xN , xN+1, . . . , xN+k} over Q. In particular, the coefficient of xi, i = 0, 1, . . . , N −1, N > 0,
in the expansion of TN

k (x) in powers of x, is always zero. Also, note that TN
k (−1) = 0 for all

k ∈ N. Thus, xN(x+ 1) is always a factor of TN
k (x).

Proposition 6. For N ∈ N0 and x ∈ R,

(1) TN
0 (x) = xN ; TN

k (x) = Nk

∫ x

0

TN
k−1(t) dt+N

k
∑

m=0

(

k

m

)

(−1)mBm

∫ x

0

TN−1
k−m (x), k ∈ N.

(2) TN
k (x) = (−1)k+N

∑N

n=0

(

N

n

)

T n
k (−1− x) for all k ∈ N0.

Proof. (1) Observe that TN
0 (x) = lim

t→0
H(x, t, N) = xN . The recurrence follows from the

following
∂H

∂x
= NtH(x, t, N) +NH(x, t, N − 1)

tet

et − 1
. (8)

(2) Follows from the following symmetry of H

(−1)NH(x, t, N) =
(e(1−1−x)(−t) − e−t

e−t − 1
+ 1

)N

=
N
∑

n=0

(

N

n

)

H(−1− x,−t, n) (9)

Definition 7. Higher order Bernoulli polynomial BN
k (x), x ∈ C is defined by the following

egf:
tNext

(et − 1)N
=

∞
∑

k=0

BN
k (x)

tk

k!
, N ∈ N0, |t| < 2π. (10)

Definition 8. Higher order Bernoulli number is defined by BN
k = BN

k (0).

Remark 9. Note that B1
k(x) = Bk(x) is the k-th Bernoulli polynomial and B1

k(0) = Bk.
Now the following recurrences are immediate: B0

0(x) = 1, B0
k(x) = xk for k ∈ N, and

BN
k (x) =

∑k

m=0

(

k

m

)

Bm(x)B
N−1
k−m, which, for N = 1, reduces to the usual identity of the

Bernoulli polynomials. Also,

BN+1
0 = 1; BN+1

k =
(

1−
k

N

)

BN
k − kBN

k−1, k ∈ N, (11)

which can be used to evaluate BN
k for N = 2, 3, . . ..

4



Remark 10. It is not hard to see that TN
k (x) can be expressed in terms of BN

k (x) by

TN
k (x) =

k!

(N + k)!

N
∑

n=0

(

N

n

)

(−1)N−nBN
N+k(N + (1 + x)n). (12)

Proposition 11. Let N, k ∈ N0, and let x ∈ C. Then

TN
k (x) =

k!

(k +N)!

k
∑

m=0

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)k+N−m. (13)

The case N = 1 recovers the classical Faulhaber formula.

Proof. Consider the following computational steps:
∞
∑

k=0

TN
k (x)

tk

k!
=

(e(1+x)t − et

et − 1

)N

=
1

tN

( t

et − 1

)N

(e(1+x)t − et)N

=
∞
∑

m=0

BN
m

tm−N

m!

N
∑

n=0

(

N

n

)

(−1)N−ne(N+nx)t

=
∞
∑

m=0

BN
m

tm−N

m!

N
∑

n=0

(

N

n

)

(−1)N−n

∞
∑

s=0

(N + nx)s
ts

s!

=
∞
∑

m=0

∞
∑

s=0

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)s
ts+m−N

s!m!

=
∞
∑

k=0

k
∑

m=0

(

k

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)k−m tk−N

k!
,

(14)

which on comparing the like powers of t gives

k
∑

m=0

(

k

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)k−m = 0, (15)

for each k = 0, 1, . . . , N − 1, and

TN
k (x) =

k!

(k +N)!

k+N
∑

m=0

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)k+N−m. (16)

As remarked earlier, TN
k (x) is a linear combination of xN , . . . , xN+k, and for N ∈ N, the

coefficient of xi for i = 0, 1, . . . , N − 1, k +N + 1, . . . vanishes in (16). So, we have

k+N
∑

m=k+1

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n(N + nx)k+N−m = 0. (17)

Therefore, (16) reduces through (17) to (13).
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Corollary 12. For k and N ∈ N0,

TN
k (x) =

k
∑

m=0

(

k

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

k−m
∑

s=0

(

k −m

s

)

s!(nx)N+sNk−m−s

(N + s)!
(18)

Proof. For N = 0, (13) gives T 0
k (x) =

∑k

m=0

(

k

m

)

B0
m(1+x)k−m, which takes value 1 for k = 0

and vanishes otherwise. Thus the case N = 0 follows. Now let N ∈ N, and observe that for
each i = 0, 1, . . . , N − 1,

k
∑

m=0

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

(

k +N −m

i

)

(nx)iNk+N−m−i = 0. (19)

Using (19) in (13), we get

TN
k (x) =

k
∑

m=0

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

k+N−m
∑

i=N

(

k +N −m

i

)

k!(nx)iNk+N−m−i

(k +N)!

=
k

∑

m=0

(

k +N

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

k−m
∑

s=0

(

k +N −m

N + s

)

k!(nx)N+sNk−m−s

(k +N)!

=
k

∑

m=0

(

k

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

k−m
∑

s=0

(

k +N −m

N + s

)

(k −m)!(nx)N+sNk−m−s

(k +N −m)!

=
k

∑

m=0

(

k

m

)

BN
m

N
∑

n=0

(

N

n

)

(−1)N−n

k−m
∑

s=0

(

k −m

s

)

s!(nx)N+sNk−m−s

(N + s)!

as required.

3 Apostol-Bernoulli numbers

Definition 13. For α ∈ C, the Apostol-Bernoulli number βk(α) is defined by the following
egf:

t

αet − 1
=

∞
∑

k=0

βk(α)
tk

k!
, k ∈ N0, α 6= 1, |t| < | logα|. (20)

Remark 14. Singh [8] introduced the number Ek(α) via the following egf:

α

αet − 1
=

∞
∑

k=0

Ek(α)
tk

k!
, α 6= 1, |t| < | logα|; Ek(1) =

Ek(−1)

1− 2k+1
, k ∈ N0, (21)

which is related to the Apostol-Bernoulli number by

Ek(α)

α
=

βk+1(α)

k + 1
, (22)
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and is known to satisfy the following beautiful identities

α−1Ek+1(α) = α
∂

∂α
(α−1Ek(α)), α−1Ek(α) = (−1)k+1αEk(α

−1). (23)

for all α 6= 0, 1.

Remark 15. The Apostol-Bernoulli numbers and hence Ek(α)’s are used to express the power
sums of the type

Sk(α, x) = α + α22k + · · ·+ αxxk, x ∈ N0, (24)

and their generalizations. In fact, we have the following

lim
x→∞

Sk(α) = −α−1Ek(α) for 0 < |α| < 1. (25)

Definition 16. Consider for h ∈ R and f : R → R, the operators defined by Eh(f)(x) =
f(x + h), ∆h(f)(x) = (Eh − I)(f)(x) = f(x + h) − f(x), where I = E0 is the identity
operator. The map Eh is called the shift operator and ∆h is called the difference operator.
For a nonnegative integer n, the n-th difference for f at x is defined as ∆n

h(f(x)) = (Eh −
I)n(f(x)) =

∑n

m=0

(

n

m

)

(−1)n−mEm
h (f(x)).

Note that Em
h (f)(x) = f(x+mh). In particular, if we take f(x) = xk then

∆n
h(x

k) =
n

∑

m=0

(

n

m

)

(−1)n−m(x+mh)k. (26)

The closed form expressions for Ek(α) and EN
k (α) are given by the next result.

Proposition 17. For α 6= 0, 1 and k ∈ N,

Ek(α) =
k

∑

n=1

( α

α− 1

)n+1
n

∑

m=1

(

n

m

)

(−1)mmk, (27)

EN+1
k (α) = −

α2

N

∂

∂α
EN

k (α), N ∈ N, (28)

and

EN+1
k (α) =

k
∑

n=1

(

N + n

N

)

( α

α− 1

)n+N+1
n

∑

m=1

(

n

m

)

(−1)mmk, N ∈ N0. (29)

Proof. Consider the geometric power series G(α, t) =
α

αet − 1
= −

∑∞

n=0 α
n+1ent which is

7



valid for all 0 < |t| < | logα|. Then for each k ∈ N, we have

Ek(α) = lim
t→0−

∂k

∂tk
(G(α, t)) = −α lim

t→0−

∞
∑

n=0

αnnkent

= −α lim
t→0−

(

∞
∑

n=0

αnEn
1

)

tk

= α lim
t→0−

(αE1 − I)−1tk

= α lim
t→0−

(α(I +∆1)− I)−1tk

=
α

α− 1
lim
t→0−

(

1 +
α

α− 1
∆1

)−1

tk

=
α

α− 1

k
∑

i=1

( α

1− α

)i

lim
t→0

∆i
1(t

k)

=
α

α− 1

k
∑

i=1

( α

α− 1

)i
i

∑

j=1

(

i

j

)

(−1)jjk

where we have used the fact that ∆i
1(t

k) = 0 for i > k and (26).
Equation (28) follows from the following for α and N as before

∂

∂α

(

G(α, t)
)N

= −
N

α2

(

G(α, t)N+1
)

, (30)

and (29) can be proved using induction on N .

Another way of representing EN
k (α) is the following.

Theorem 18. For each N ∈ N, k ∈ N0, and α 6= 1,

EN
0 (α) =

αN

(α− 1)N
; EN

k (α) =
(−α)N−1

(N − 1)!
(∆1 + 2I)N−3Ek(α), k ∈ N, (31)

where ∆1(Ek(α)) = Ek+1(α)−Ek(α) and (∆1+2I)N−3 = (∆1+2I)(∆1+3I) · · · (∆1+NI).

Proof. Observe that EN
0 (α) = lim

t→0

( α

αet − 1

)N

=
αN

(α− 1)N
. Also,

∂

∂t

( α

αet − 1

)N

= −N
( α

αet − 1

)N

−
N

α

( α

αet − 1

)N+1

, (32)
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which gives

EN+1
k (α) = −

α

N
(EN

k+1(α) +NEN
k (α))

= −
α

N
(EN

k+1(α)− EN
k (α) + (N + 1)EN

k (α))

= −
α

N
(∆1 + (N + 1)I)EN

k (α)

=
(−α)2

N(N − 1)
(∆1 + (N + 1)I)(∆1 +NI)EN−1

k (α)

...

=
(−α)N

N !
(∆1 + (N + 1)I) · · · (∆1 + 2I)Ek(α).

(33)

The last expression in (33) is valid for N → 0 in addition to N = 1, 2, . . .. The result follows
on changing N to N − 1 in (33).

Lemma 19. For k, α, N as before,

EN
k (α) =

αN−1

(N − 1)!

N
∑

i=0

(−1)i−1s(N, i)Ek+i−1(α) (34)

where s(n,m) is the Stirling number of first kind.

Proof. For n,m ∈ N0, the Stirling number of first kind s(n,m) is defined by x(x−1) · · · (x−
n + 1) =

∑n

m=0 s(n,m)xm which on changing x to −x gives x(x + 1) · · · (x + n − 1) =
∑n

m=0(−1)n−ms(n,m)xm. Replacing the symbol x in the generating function for s(n,m)
above by the shift operator E1 = ∆1 + I, we have

(∆1 + 2I) · · · (∆1 + (N − 1)I)Ek(α) = E1(E1 + I) · · · (E1 + (N − 1)I)Ek−1(α)

=
N
∑

i=0

(−1)N−is(N, i)Ei
1(Ek−1)(α)

=
N
∑

i=0

(−1)N−is(N, i)Ek+i−1(α).

(35)

Substituting for (∆1 + 2I) · · · (∆1 + (N − 1)I)Ek(α) from (35) in (31), we get (34).

Remark 20. The expression (34) is special in a sense that, it connects BN
k+N with EN

k (1).
More precisely, we have the next result.

Theorem 21. For all k, N ∈ N,

BN
k+N =

(k +N)!

k!
EN

k (1). (36)
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Proof. Using Ek(1) =
Bk+1

k + 1
for α = 1 in (34), we get

(k +N)

k!
EN

k (1) =
(k +N)

k!

1

(N − 1)!

N
∑

i=0

(−1)i−1s(N, i)
Bk+i

k + i

= N

(

k +N

N

) N
∑

i=0

(−1)N−i−1s(N,N − i)
Bk+N−i

k +N − i

= BN
k+N .

where the last step has been obtained using (5).

4 Alternating power sums

Singh [8] defined for any α ∈ C, k-th α-power sum Sk(α, x) by egf

αx+1e(x+1)t − αet

αet − 1
=

∞
∑

k=0

Sk(α, x)
tk

k!
, α 6= 1, |t| < | logα|. (37)

Remark 22. The following closed form expression for Sk(α, x) is obtainable:

Sk(α, x) =

{

∑k

m=0

(

k

m

)

Em(α){α
x(1 + x)k−m − 1}, if α 6= 1;

Sk(x), if α = 1.
(38)

Remark 23. Note that limα→1 Sk(α, x) 6= Sk(x) even when x is a positive integer. However,
for x ∈ N, Sk(α, x) = α + α22k + · · ·αxxk. Further, if 0 < |α| < 1 then limx→∞ Sk(α, x)
exists and is equal to −α−1Ek(α) for all k ∈ N, where for k = 0, the limit is −E0(α). In
particular, the Abel sum for the divergent series η(−k) =

∑∞

n=0(−1)nnk can be obtained in
closed form as the one sided limit at α = −1, i.e.,

η(−k) = lim
α→−1+

( lim
x→∞

Sk(α, x)) = −Ek(−1) = −

k
∑

i=1

1

2i+1

i
∑

j=1

(

i

j

)

(−1)jjk. (39)

We now consider sums of products of α-power sums and the related Abel sums.

Definition 24. For N ∈ N0 and complex number x, sum of products of α-power sums
TN
k (α, x) is defined via the following egf:

G(α, x,N, t) =
(αx+1e(x+1)t − αet

αet − 1

)N

=
∞
∑

k=0

TN
k (α, x)

tk

k!
, α 6= 1, |t| < | logα|. (40)

It is immediate to see that TN
k (α, 0) = 0 and T 1

k (α, x) = Sk(α, x).
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Remark 25. For 0 < |α| < 1, αx → 0 as x → ∞. If this is the case then from (38), we have

lim
x→∞

TN
k (α, x) = (−1)N

k
∑

m=0

(

k

m

)

EN
m(α)Nk−m, 0 < |α| < 1, (41)

which in particular gives the Abel sum of products

ηN(−k) = (−1)N
k

∑

m=0

(

k

m

)

EN
m(−1)Nk−m. (42)

Theorem 26. For N ∈ N, k ∈ N0, x ∈ C, and α 6= 0, 1,

TN
k (α, x) =

k
∑

n=0

(

k

m

)

EN
m(α)

N
∑

n=0

(

N

n

)

(−1)N−nαnx(N + nx)k−m. (43)

Proof. Follows from following computational steps:

∞
∑

k=0

TN
k (α, x)

tk

k!
=

( α

αet − 1

)N

(αxext − et)N

=
∞
∑

m=0

Em(α)
tm

m!

N
∑

i=0

(

N

i

)

(−1)N−iαixe(N+ix)t

=
∞
∑

m=0

Em(α)
tm

m!

N
∑

i=0

(

N

i

)

(−1)N−iαix

∞
∑

n=0

(N + ix)n
tn

n!

=
∞
∑

m=0

∞
∑

n=0

Em(α)
N
∑

i=0

(

N

i

)

(−1)N−iαix(N + ix)n
tm+n

m!n!

=
∞
∑

k=0

k
∑

m=0

(

k

m

)

Em(α)
N
∑

i=0

(

N

i

)

(−1)N−iαix(N + ix)k−m tk

k!

from which the result can be obtained on comparing the like powers of t.

5 Further extensions

The sequence of functions
(

TN
k (α, x)

)

k∈N0
, x, α ∈ C, α 6= 0, 1 satisfies simple recurrence

relation from which its terms can be obtained successively. Here is the special one, which
we state as the following.

Proposition 27. For k,N ∈ N0, x ∈ C, and α 6= 0, 1,

TN
0 (α, x) = αN

(αx − 1

α− 1

)N

, TN
k (α, x) = α

∂

∂α
TN
k−1(α, x), k ∈ N. (44)

11



Proof. Expression for TN
0 is trivially true. It is also easy to see that (44) holds for N = 0.

For N ∈ N, the proof follows from ∂
∂t
G(α, x,N, t) = α ∂

∂α
G(α, x,N, t), where G(α, x,N, t) is

as in (40).

The recurrence (44) can be used to extend the definition of the sum of products of the
power sums to negative integer values of k.

Definition 28. The sum of products TN
k (α, x) for a complex number N and real α 6= 0, 1

is defined successively by

TN
0 (α, x) = αN

(αx − 1

α− 1

)N

; TN
−k(α, x) =

∫ α

0

TN
−k+1(θ, x)

θ
dθ, k ∈ N, α 6= 0, 1. (45)

Definition 29. For 0 < |α| < 1, define

TN
k (α,∞) = lim

x→∞
TN
k (α, x). (46)

From (45), we have

TN
−1(α,∞) =

∫ α

0

θN−1(1− θ)−Ndθ. (47)

For N = 1, Singh [8] proved the following result:

T 1
−i(α,∞) =















− log |1− α|, if i = 1;

(−1)i−1

(i− 1)!

∫ α

0

(log(t))i−1

1− t
dt−

i−1
∑

β=1

(− log |α|)β

β!
T−i+β(α,∞), if i ≥ 2.

(48)

Observe from (48) that

lim
α→1−

T 1
−k(α,∞) = ζ(k), lim

α→−1+
T 1
−k(α,∞) = −η(k), (49)

for all k ∈ N.
In the next result, we generalize the formula (48) for the underlying sums of products,

i.e., for all positive integers N 6= 1. So, we have the following main result.

Theorem 30. For all k ∈ N0, N = 2, 3, . . ., and 0 < |α| < 1,

TN
−k(α,∞) =

N−1
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

( α

1− α

)ik (−1)N−k−ik

i1 · · · ik

+
k−1
∑

i=1

s(N, k + 1− i)

(N − 1)!
T 1
−i(α,∞) + (−1)N−1T 1

−k(α,∞).

(50)
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Proof. From (45) and (47), we have

TN
−1(α,∞) =

N−1
∑

i=1

(−1)N−1−iT
i
0(α,∞)

i
+ (−1)N−1T 1

−1(α,∞), (51)

for N = 2, 3, . . .. Similarly,

TN
−2(α,∞) =

N−1
∑

i=1

i−1
∑

j=1

(−1)N−2−j T
j
0 (α,∞)

ij
+ (−1)N−1T 1

−1

N−1
∑

i=1

1

i
+ (−1)N−1T 1

−2, (52)

which inductively leads to the following:

TN
−k(α,∞) =

N−1
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

( α

1− α

)ik (−1)N−k−ik

i1 · · · ik

+
N−1
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−2−1
∑

ik−1=1

(−1)N−k

i1 · · · ik−1

T 1
−1(α,∞)

+ · · ·

+
N
∑

i1=1

(−1)N−1

i1
T 1
−k+1(α,∞) + (−1)N−1T 1

−k(α,∞),

(53)

where we have used (48) and the fact that T i
0(α,∞) =

(

α
1−α

)i
for all i ∈ N.

On substituting for the following expression of the Stirling numbers of the first kind [18]
in (53)

s(n+ 1,m+ 1) = (−1)n+mn!
n

∑

ℓ=1

ℓ1−1
∑

ℓ2=1

· · ·

ℓm−1−1
∑

ℓm=1

1

ℓ1ℓ2 · · · ℓm
, (54)

we obtain (50).

Corollary 31. Let k, N ∈ N, such that N = 2, 3, . . .. Then

lim
α→1−

TN
−k(α,∞) =

1

(N − 1)!

k−1
∑

i=2

s(N, k + 1− i)ζ(i) + (−1)N−1ζ(k) for N < k, (55)

and

lim
α→−1+

TN
−k(α,∞) =

N−1
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1
∑

ik=1

(1

2

)ik (−1)N−k−ik

i1 · · · ik

+
k−1
∑

i=1

s(N, k + 1− i)η(i)

(N − 1)!
+ (−1)N−1η(k).

(56)
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Remark 32. For a positive integerN and 0 < |α| < 1, we have
(−α)NeNt

(αet − 1)N
=

∞
∑

k=0

TN
k (α,∞)

tk

k!
,

from which, it follows that

lim
α→1−

TN
−k(α,∞) = (−1)N lim

t1→0

(

∫ t1

−∞

· · ·

∫ tk

−∞

eNtk+1

(etk+1 − 1)N
dtk+1 · · · dt2

)

=
1

(N − 1)!

k
∑

i=k+1−N

s(N, k + 1− i)ζ(i) if N < k.

(57)

Example 33. Table 1 below shows the values of lim
α→1−

TN
−k(α,∞) for few values of k and N .

The computations were done in Mathematica with reference to (55).

Table 1: lim
α→1−

TN
−k(α,∞) for some values of k and N

k \N 2 3 4

3
π2

6
− ζ(3)

4 −
π4

90
+ ζ(3)

π2

12
+

π4

90
− 3

ζ(3)

2

5
π4

90
− ζ(5) −

π4

60
+

ζ(3)

2
+ ζ(5)

π2

36
+

11π4

540
− ζ(3)− ζ(5)

6 −
π6

945
+ ζ(5)

π4

180
+

π6

945
−

3ζ(5)

2
−
π4

90
−

π6

945
+

ζ(3)

6
+

11ζ(5)

6

Remark 34. The preceding Example 33, together with (57), establishes that

lim
α→1−

TN
−k(α,∞) =

k
∑

∑
N

i=1
ki=k, 0≤ki≤k, ki 6=1

(

k

k1, . . . , kN

)

ζ(k1) · · · ζ(kN), (58)

for N < k, where the right hand side is the sum of product of Riemann zeta functions.

The classical Euler’s formula is given by

∫ 1

2

0

log(1− t)

t
dt = −T 1

−2

(1

2
,∞

)

=
(log(2))2

2
−

ζ(2)

2
. (59)

The next result generalize the formula (59) to the sums of products.
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Theorem 35. For N = 2, 3, . . ., the generalized Euler’s formula is given by

(−1)NTN
−2

(1

2
,∞

)

=
N−1
∑

i=1

i−1
∑

j=1

(−1)j

ij
+ log(2)

N−1
∑

i=1

1

i
+

(log(2))2

2
−

ζ(2)

2
. (60)

Proof. First observe that for α = 1
2
, TN

−2(α,∞) = TN
−2(1− α,∞). Along with this, if we use

the following identity due to Singh [8]

−

∫ 1−α

0

log(1− t)

t
dt = − log(α) log(1− α) +

∫ 1

0

log(t)

1− t
dt+

∫ α

0

log(1− t)

t
dt, (61)

and the fact that TN
0 (1

2
) = 1 for all N , we obtain (60) by taking α = 1

2
in (52), where

∫ 1

0

log(t)

1− t
dt = ζ(2).

6 Acknowledgments

The author is thankful to the referee for the valuable suggestions regarding improvement in
the presentation of the paper.

References

[1] B. L. Burrows and R. F. Talbot, Sums of powers of integers, Amer. Math. Monthly, 91
(1984), 394–403.

[2] A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly, 93 (1986),
451–455.

[3] H. K. Krishnapriyan, Eulerian polynomials and Faulhaber result on sums of powers of
integers, College Math. J., 26 (1995), 118–123.

[4] A. F. Beardon, Sums of powers of integers, Amer. Math. Monthly, 3 (1996), 201–213.

[5] S. A. Shirali, On sums of powers of integers, Resonance, 7 (2007), 27–43.

[6] D. S. Kim and K. H. Park, Identities of symmetry for Bernoulli polynomials arising
from quotients of Volkenborn integrals invariant under S3, preprint, 2010. Available at
http://arxiv.org/abs/1003.3296.

[7] J. Singh, Sums of products involving power sums of ϕ(n) integers, J. Numbers, (2014),
Article ID 158351.

[8] J. Singh, Defining power sums of n and ϕ(n) integers, Int. J. Number Theory, 5 (2009),
41–53.

15

http://arxiv.org/abs/1003.3296


[9] H. Srivastava and P. G. Todorov, An explicit formula for generalized Bernoulli polyno-
mials, J. Math. Anal. Appl., 130 (1988), 509–513.

[10] K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory, 60 (1996),
23–41.
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