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Abstract

We investigate paths in Bernoulli’s triangles, and derive several relations linking
the partial sums of binomial coefficients to the Fibonacci numbers.

1 Introduction

Binomial coefficients appear in many identities, some of which are closely connected to
the Fibonacci sequence [1, 2]. Pascal’s triangle has been explored for links to the Fibonacci
sequence as well as to generalized sequences [3]. The partial sums of the binomial coefficients
are less well known, although a number of identities have been found regarding sums of their
powers [4, 5] and polynomials [6]. To add to the existing corpus, we review Bernoulli’s second
and third-order triangles for relations pertaining to sums of the binomial coefficients. We
contribute several relations that link the Fibonacci numbers to binomial partial sums.

2 Notation, definitions and preliminary lemma

We let N∗ denote the positive natural numbers, i.e., {1, 2, . . .} and we let N0 refer to N
∗∪{0}.

For p, q ∈ Z, p 6 q, we let Jp, qK denote the integers between p and q, i.e., Jp, qK = {k ∈ Z |
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p 6 k 6 q}. For p ∈ Z we also let p+ denote 1
2
(p+ |p|).

We let (Fn)n∈N0 denote the Fibonacci numbers (A000045 [7]).

Definition 1. Let Bn,k denote the sum of the first k binomial coefficients, i.e.,

∀n, k ∈ N0, Bn,k =
k∑

q=0

(
n

q

)

.

Definition 1 implies that ∀n ∈ N0, ∀k > 1, Bn,k = Bn,k−1 +

(
n

k

)

and ∀k > n, Bn,k = 2n.

We can therefore derive the following recurrence relation:

∀n, k > 1, Bn,k =
k∑

q=0

(
n

q

)

=
k∑

q=0

(
n− 1

q

)

+
k∑

q=0

(
n− 1

q − 1

)

=
k∑

q=0

(
n− 1

q

)

+
k−1∑

q=0

(
n− 1

q

)

,

Bn,k = Bn−1,k + Bn−1,k−1. (1)

We recognize the structure of Pascal’s rule for the binomial coefficients with the boundary

values Bn,0 = 1 and Bn,n =
n∑

q=0

(
n

q

)

= 2n.

Definition 2. Let Bernoulli’s triangle denote the triangle formed by (Bn,k)n∈N0,k∈J0,nK.
Bernoulli’s triangle is illustrated by Figure 1.

Definition 3. For n, k ∈ N0, let B
[1]
n,k =

(
n

k

)

. Then for every m > 1 we define

∀n, k ∈ N0, B
[m+1]
n,k =

k∑

q=0

B[m]
n,q .

For m > 1, let Bernoulli’s mth-order triangle B[m] denote the triangle formed by the family(

B
[m]
n,k

)

n∈N0,k∈J0,nK
.

The first and second-order triangles B[1] and B[2] correspond respectively to Pascal’s
triangle and Bernoulli’s triangle. For m > 1, the elements of B[m] verify the following
recurrence relation:

∀n > 2, ∀k ∈ J1, n− 1K, B
[m]
n,k = B

[m]
n−1,k + B

[m]
n−1,k−1. (2)
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The proof of Relation (2) is the same as that of Relation (1). The corresponding boundary

values are ∀n ∈ N0, ∀m > 1, B
[m]
n,0 = 1 and ∀m > 2, B

[m]
n,n =

n∑

q=0

B[m−1]
n,q .

Definition 4. In Bernoulli’s mth-order triangle B[m], for c, l ∈ Z, n0 ∈ N0, k0 ∈ J0, n0K,

let the path following direction (c, l) from (n0, k0) denote the sequence
(

B
[m]
n0+kl,k0−kc

)

k∈N0

(where l > 0 corresponds to increasing row numbers from n0, and c < 0 to increasing column

numbers from k0). For a given pair (n0, k0),
(

B
[m]
n0+kl,k0−kc

)

k∈N0

contains a finite number of

elements when either l 6 0, or l > 0 and c /∈ J−l, 0K.

In this work, we focus our attention on sums of elements along the two types of paths
defined below.

Definition 5. Let m ∈ N∗, n ∈ N0.

(i) Let S
[m]
n (c, l) denote the sum over the path following direction (c, l) (c > 0, l < 0) from

(n, n), i.e.,

S[m]
n (c, l) =

⌊n/c⌋
∑

k=0

B
[m]
n+kl,n−kc.

We shall also use

S̄[m]
n (c, l) = 2B[m]

n,n − S[m]
n (c, l) = B[m]

n,n −

⌊n/c⌋
∑

k=1

B
[m]
n+kl,n−kc.

k 0 1 2 3 4 5 6 7 8 9

n

0 1

1 1 2

2 1 3 4

3 1 4 7 8

4 1 5 11 15 16

5 1 6 16 26 31 32

6 1 7 22 42 57 63 64

7 1 8 29 64 99 120 127 128

8 1 9 37 93 163 219 247 255 256

9 1 10 46 130 256 382 466 502 511 512

Figure 1: Bernoulli’s triangle (A008949 [7]): the element in row n and column k corresponds to
Bn,k.
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(ii) Let T
[m]
n (c, l) denote the sum over the path following direction (c, l) (c < 0, l < 0) from

(n, 0), i.e.,

T [m]
n (c, l) =

⌊−n/(c+l)⌋
∑

k=0

B
[m]
n+kl,−kc.

Lemma 6. Let u ∈ ZN0 and ∀n ∈ N∗, vn = un − 2un−1.

Then ∀n ∈ N0, un = 2nu0 +
n∑

k=1

2n−kvk.

Proof. From the definition of (vn)n∈N∗ , we have

n∑

k=1

2n−kvk =
n∑

k=1

2n−k(uk − 2uk−1)

=
n∑

k=1

2n−kuk −
n∑

k=1

2n−k+1uk−1

=
n∑

k=1

2n−kuk −

n−1∑

k=0

2n−kuk

= un − 2nu0.

Applying Lemma 6 to un = Fn+2 (i.e., vn = −Fn−1) or un = F2n+4 (i.e., vn = F2n+1)
yields the following relations for n ∈ N0:

Fn+2 = 2n −
n∑

k=1

2n−kFk−1, (3)

F2n+4 = 3 · 2n +
n∑

k=1

2n−kF2k+1. (4)

Note that Benjamin and Quinn have reported Relation (3) [8, Id. 10].

3 Bernoulli’s second-order triangle

3.1 The path following direction (2,−1) from (n, n)

We first consider the path following direction (2,−1) from (n, n) in Bernoulli’s triangle B[2].

As illustrated by Figure 2, the sequence
(

S̄
[2]
n (2,−1)

)

n∈N0

can be related to the Fibonacci

sequence by S̄
[2]
n (2,−1) = Fn+2. Given that S̄

[2]
n (2,−1) = 2Bn,n − S

[2]
n (2,−1), we find that

S
[2]
n (2,−1) = 2n+1 − Fn+2, which we formally express as Theorem 7 below.

4



1 1 = 1

1 2 2 = 2

1 3 4 3 = 4− 1

1 4 7 8 5 = 8− 3

1 5 11 15 16 8 = 16− 7− 1

1 6 16 26 31 32 13 = 32− 15− 4

1 7 22 42 57 63 64 21 = 64− 31− 11− 1

1 8 29 64 99 120 127 128 34 = 128− 63− 26− 5

1 9 37 93 163 219 247 255 256 55 = 256− 127− 57− 16− 1

1 10 46 130 256 382 466 502 511 512 89 = 512− 255− 120− 42− 6

Figure 2: Four instances of the path following direction (2,−1) from (n, n) in Bernoulli’s triangle

are highlighted in distinct colors. Each term of S̄
[2]
n (2,−1) corresponds to a Fibonacci number.

Theorem 7.

∀n ∈ N0,

⌊n/2⌋
∑

k=0

n−2k∑

q=0

(
n− k

q

)

= 2n+1 − Fn+2. (5)

Proof. We seek to prove that

∀n ∈ N0, S
[2]
n (2,−1) = 2n+1 − Fn+2.

We have S
[2]
0 (2,−1) = 1 = 20+1 − F0+2, so the formula is valid for n = 0.

Let n ∈ N∗. Then S
[2]
n (2,−1)− 2S

[2]
n−1 (2,−1) =

⌊n/2⌋
∑

k=0

Bn−k,n−2k − 2

⌊(n−1)/2⌋
∑

k=0

Bn−1−k,n−1−2k.

Assume an even n, e.g., n = 2s. Then

S[2]
n (2,−1)− 2S

[2]
n−1 (2,−1) =

s∑

k=0

B2s−k,2s−2k − 2
s−1∑

k=0

B2s−1−k,2s−1−2k

= Bs,0 +
s−1∑

k=0

(B2s−k,2s−2k − 2B2s−1−k,2s−1−2k).

From Relation (1) and Definition 1, we have

∀p, q > 1, Bp,q − 2Bp−1,q−1 = Bp−1,q −Bp−1,q−1 =

(
p− 1

q

)

. (6)
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Therefore

S[2]
n (2,−1)− 2S

[2]
n−1 (2,−1) = 1 +

s−1∑

k=0

(
2s− k − 1

2s− 2k

)

= 1 +
s−1∑

k=0

(
2s− k − 1

k − 1

)

=
s−1∑

k=0

(
2s− k − 2

k

)

.

Given that ∀n ∈ N0,

⌊n/2⌋
∑

k=0

(
n− k

k

)

= Fn+1 [8, Id. 4], we have

S[2]
n (2,−1)− 2S

[2]
n−1 (2,−1) = F(2s−2)+1 = Fn−1.

The above relation, illustrated by Figure 3, can be proven for odd values of n using the
same method. Applying Lemma 6 to un = S

[2]
n (2,−1) and using Relation (3), we obtain

∀n ∈ N0, S
[2]
n (2,−1) = 2n +

n∑

k=1

2n−kFk−1 = 2n+1 − Fn+2.

1 1 = 1

1 2 2 = 2 = 2 · 1 + F0

1 3 4 5 = 4 + 1 = 2 · 2 + F1

1 4 7 8 11 = 8 + 3 = 2 · 5 + F2

1 5 11 15 16 24 = 16 + 7 + 1 = 2 · 11 + F3

1 6 16 26 31 32 51 = 32 + 15 + 4 = 2 · 24 + F4

1 7 22 42 57 63 64 107 = 64 + 31 + 11 + 1 = 2 · 51 + F5

1 8 29 64 99 120 127 128 222 = 128 + 63 + 26 + 5 = 2 · 107 + F6

Figure 3: Fibonacci numbers resulting from S
[2]
n (2,−1)− 2S

[2]
n−1 (2,−1), forming A027934 [7].
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3.2 The path following direction (c, 1− c) from (n, n)

Definition 8. For c > 2, n > 1, let λn(c) = S
[2]
n (c, 1− c)− 2S

[2]
n−1 (c, 1− c).

The sequence (λn(c))n∈N∗ corresponds to A000930 for c = 3 (see Figure 4), A003269 for
c = 4 and A003520 for c = 5 [7]. We observe that (λn(c))n∈N∗ satisfies the following linear
recurrence relation.

Theorem 9.

∀n ∈ J1, c− 1K, λn(c) = 0; λc(c) = 1 and ∀n > c, λn(c) = λn−1(c) + λn−c(c).

The sequence (λn(c))n∈N∗ is a generalization the Fibonacci sequence, which corresponds
to the c = 2 case (as shown above, ∀n ∈ N∗, λn(2) = Fn−1).

Proof. Let c > 2, n > 1. From Definition 5, we have

λn(c) =

⌊n/c⌋
∑

k=0

Bn+k(1−c),n−kc − 2

⌊(n−1)/c⌋
∑

k=0

Bn−1+k(1−c),n−1−kc.

We first ascertain the initial values of (λn(c))n∈N∗ . For n < c, ⌊n/c⌋ = ⌊(n − 1)/c⌋ = 0
and λn(c) = Bn,n−2Bn−1,n−1 = 2n−2 ·2n−1 = 0. For n = c, λc(c) = Bc,c+B1,0−2Bc−1,c−1 =
2c + 1− 2 · 2c−1 = 1.

We then prove the recurrence relation for n > c. We have

λn−1(c) =

⌊(n−1)/c⌋
∑

k=0

Bn−1+k(1−c),n−1−kc − 2

⌊(n−2)/c⌋
∑

k=0

Bn−2+k(1−c),n−2−kc

1 1 = 1

1 2 2 = 2 = 2 · 1 + 0

1 3 4 4 = 4 = 2 · 2 + 0

1 4 7 8 9 = 8 + 1 = 2 · 4 + 1

1 5 11 15 16 19 = 16 + 3 = 2 · 9 + 1

1 6 16 26 31 32 39 = 32 + 7 = 2 · 19 + 1

1 7 22 42 57 63 64 80 = 64 + 15 + 1 = 2 · 39 + 2

1 8 29 64 99 120 127 128 163 = 128 + 31 + 4 = 2 · 80 + 3

Figure 4: Instances of S
[2]
n (3,−2) in B[2] form A099568 [7] and the difference S

[2]
n (3,−2) −

2S
[2]
n−1 (3,−2) yields the terms of (λn(3))n∈N∗ , corresponding to A000930 [7].
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and

λn−c(c) =

⌊(n−c)/c⌋
∑

k=0

Bn−c+k(1−c),n−c−kc − 2

⌊(n−c−1)/c⌋
∑

k=0

Bn−c−1+k(1−c),n−c−1−kc.

The summation upper bounds of λn(c), λn−1(c) and λn−c(c) depend on the remainder of the
Euclidean division of n by c. Let n = cq + r > c with q = ⌊n/c⌋ ∈ N∗, r ∈ J0, c− 1K. There
are three cases to consider, which are shown in Table 1.

⌊n/c⌋ ⌊(n− 1)/c⌋ ⌊(n− 2)/c⌋ ⌊(n− c)/c⌋ ⌊(n− c− 1)/c⌋
r = 0 q q − 1 q − 1 q − 1 q − 2
r = 1 q q q − 1 q − 1 q − 1

1 < r < c q q q q − 1 q − 1

Table 1: Summation upper bounds for the various values of r = n− c ⌊n/c⌋.

For r = 0, we have

λn(c) =

q
∑

k=0

Bcq+k(1−c),cq−kc − 2

q−1
∑

k=0

Bcq−1+k(1−c),cq−1−kc

= Bcq+q(1−c),cq−qc +

q−1
∑

k=0

(
Bcq+k(1−c),cq−kc − 2Bcq−1+k(1−c),cq−1−kc

)
,

and Relation (6) yields

λn(c) = Bq,0 +

q−1
∑

k=0

(
cq − 1 + k(1− c)

cq − kc

)

= 1 +

q−1
∑

k=0

(
cq − 1 + k(1− c)

k − 1

)

= 1 +

q−1
∑

k=1

(
cq − 1 + k(1− c)

k − 1

)

.

Similarly,

λn−1(c) =

q−1
∑

k=0

Bcq−1+k(1−c),cq−1−kc − 2

q−1
∑

k=0

Bcq−2+k(1−c),cq−2−kc

=

q−1
∑

k=0

(
cq − 2 + k(1− c)

k − 1

)

,
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and

λn−c(c) =

q−1
∑

k=0

Bcq−c+k(1−c),cq−c−kc − 2

q−2
∑

k=0

Bcq−c−1+k(1−c),cq−c−1−kc

= Bcq−c+(q−1)(1−c),cq−c−(q−1)c
︸ ︷︷ ︸

Bq−1,0

+

q−2
∑

k=0

(Bcq−c+k(1−c),cq−c−kc − 2Bcq−c−1+k(1−c),cq−c−1−kc
︸ ︷︷ ︸

(cq−c−1+k(1−c)
cq−c−kc )

)

= 1 +

q−2
∑

k=0

(
cq − c− 1 + k(1− c)

k − 1

)

= 1 +

q−1
∑

k=1

(
cq − 2 + k(1− c)

k − 2

)

.

Therefore we have

λn−1(c) + λn−c(c) = 0 +

q−1
∑

k=1

(
cq − 2 + k(1− c)

k − 1

)

+

q−1
∑

k=1

(
cq − 2 + k(1− c)

k − 2

)

+ 1

=

q−1
∑

k=1

(
cq − 1 + k(1− c)

k − 1

)

+ 1

= λn(c).

This proves Theorem 9 for the r = 0 case. We can use the same method for r = 1 or
r > 1, since only the summation upper bounds are modified in those cases.

We can write the explicit expression of λn(c) as λn(c) =

⌊(n−c)/(c−1)⌋
∑

i=0

(
n− c+ i(1− c)

i

)

.

We obtain, using Lemma 6, S
[2]
n (c, 1− c) = 2n +

n∑

k=1

2n−kλk(c), which leads to the following

relation.

Corollary 10.

⌊n/c⌋
∑

k=0

n−kc∑

q=0

(
n− (c− 1)k

q

)

= 2n +
n∑

k=1

2n−k

⌊(k−c)/(c−1)⌋
∑

i=0

(
k − c− (c− 1)i

i

)

.

3.3 The path following direction (−1,−1) from (n, 0)

The path following direction (−1,−1) from (n, 0) has a connection to the Fibonacci sequence

that appears in the difference between successive terms of T
[2]
n (−1,−1), as illustrated by

Figure 5. Not only do we notice that

∀p > 1, T
[2]
2p (−1,−1) = T

[2]
2p−1(−1,−1) + F2p+1,
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but also that
∀p > 1, T

[2]
2p+1(−1,−1) = T

[2]
2p (−1,−1) + T

[2]
2p−1(−1,−1).

Proof. To prove these two recurrence relations, we rely on Relation (1). For odd indices, we
have

∀p > 1, T
[2]
2p+1(−1,−1) =

p
∑

k=0

B2p+1−k,k

= B2p+1,0 +

p
∑

k=1

(B2p−k,k−1 + B2p−k,k)

= B2p,0 +

p
∑

k=1

B2p−k,k +

p−1
∑

k=0

B2p−1−k,k

=

p
∑

k=0

B2p−k,k +

p−1
∑

k=0

B2p−1−k,k

= T
[2]
2p (−1,−1) + T

[2]
2p−1(−1,−1).

For even indices,

∀p > 1, T
[2]
2p (−1,−1) =

p
∑

k=0

B2p−k,k

=

p
∑

k=0

k∑

q=0

(
2p− k

q

)

=

p
∑

k=0

(
k−1∑

q=0

(
2p− k

q

)

+

(
2p− k

k

))

=

p−1
∑

k=0

k∑

q=0

(
2p− 1− k

q

)

+

p
∑

k=0

(
2p− k

k

)

.

Since ∀n ∈ N0,

⌊n/2⌋
∑

k=0

(
n− k

k

)

= Fn+1 [8, Id. 4], we have

p
∑

k=0

(
2p− k

k

)

= F2p+1. Hence,

∀p > 1, T
[2]
2p (−1,−1) = T

[2]
2p−1(−1,−1) + F2p+1.

These two relations make it possible to derive a recurrence relation that pertains only to
the odd subsequence:

∀p > 1, T
[2]
2p+1(−1,−1)− 2T

[2]
2p−1(−1,−1) = F2p+1.

10



1 1 = 1

1 2 1 = 1

1 3 4 3 = 1 + 2 = 1 + F3

1 4 7 8 4 = 1 + 3 = 3 + 1

1 5 11 15 16 9 = 1 + 4 + 4 = 4 + F5

1 6 16 26 31 32 13 = 1 + 5 + 7 = 9 + 4

1 7 22 42 57 63 64 26 = 1 + 6 + 11 + 8 = 13 + F7

1 8 29 64 99 120 127 128 39 = 1 + 7 + 16 + 15 = 26 + 13

1 9 37 93 163 219 247 255 256 73 = 1 + 8 + 22 + 26 + 16 = 39 + F9

Figure 5: Instances of T
[2]
n (−1,−1) in Bernoulli’s triangle and differences from the preceding terms.

Therefore, using Lemma 6 and Relation (4), we have

∀p > 1, T
[2]
2p+1(−1,−1) = 2p T

[2]
1 (−1,−1)
︸ ︷︷ ︸

1

+

p
∑

k=1

2p−kF2k+1

= 2p + F2p+4 − 3 · 2p

= F2p+4 − 2p+1.

We feed back the odd subsequence into the expression for the even subsequence as follows:

∀p > 1, T
[2]
2p (−1,−1) = T

[2]
2p−1(−1,−1) + F2p+1

= F2p+2 − 2p + F2p+1

= F2p+3 − 2p.

We have thus proven that ∀n ∈ N0, T
[2]
n (−1,−1) = Fn+3 − 2⌊(n+1)/2⌋, which we can

rewrite as the following theorem.

Theorem 11.

∀n ∈ N0,

⌊n/2⌋
∑

k=0

k∑

q=0

(
n− k

q

)

= Fn+3 − 2⌊(n+1)/2⌋.

Remark 12. Among the paths of Bernoulli’s triangle following other directions, one can

find other sequences that follow linear recurrence relations. For example,
(

S̄
[2]
n (3,−1)

)

n∈N0

corresponds to A005251 [7] and
(

S̄
[2]
n (4,−1)

)

n∈N0

to A138653 [7]. We believe that further

sequences related to partial sums of binomial coefficients are yet to be uncovered in B[2].
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4 Bernoulli’s third-order triangle

We now consider Bernoulli’s third-order triangle B[3] (see Figure 6). From Definition 3,

∀n ∈ N0, k ∈ J0, nK, B
[3]
n,k =

k∑

q=0

Bn,q =
k∑

q=0

q
∑

r=0

(
n

r

)

.

Recall that B
[3]
n,0 = 1 and ∀n > 2, ∀k ∈ J1, n − 1K, B

[3]
n,k = B

[3]
n−1,k + B

[3]
n−1,k−1. Furthermore,

B
[3]
n,n = (n+ 2)2n−1.

k 0 1 2 3 4 5 6 7 8 9

n

0 1

1 1 3

2 1 4 8

3 1 5 12 20

4 1 6 17 32 48

5 1 7 23 49 80 112

6 1 8 30 72 129 192 256

7 1 9 38 102 201 321 448 576

8 1 10 47 140 303 522 769 1024 1280

9 1 11 57 187 443 825 1291 1793 2304 2816

Figure 6: Bernoulli’s third-order triangle (A193605 [7]): the element in row n and column k

corresponds to B
[3]
n,k.

4.1 The path following direction (2,−1) from (n, n)

Definition 5 states that S̄
[3]
n (2,−1) = B

[3]
n,n −

⌊n/2⌋
∑

k=1

B
[3]
n−k,n−2k. Figure 7 suggests the following

recurrence relation:
S̄[3]
n (2,−1)− 2S̄

[3]
n−1 (2,−1) = Fn. (7)

Proof. Let n ∈ N∗. We have

S̄[3]
n (2,−1)− 2S̄

[3]
n−1 (2,−1) = B[3]

n,n −

⌊n/2⌋
∑

k=1

B
[3]
n−k,n−2k − 2B

[3]
n−1,n−1 + 2

⌊(n−1)/2⌋
∑

k=1

B
[3]
n−1−k,n−1−2k.

12
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1 1 = 1

1 3 3 = 3 = 2 · 1 + F1

1 4 8 7 = 8− 1 = 2 · 3 + F2

1 5 12 20 16 = 20− 4 = 2 · 7 + F3

1 6 17 32 48 35 = 48− 12− 1 = 2 · 16 + F4

1 7 23 49 80 112 75 = 112− 32− 5 = 2 · 35 + F5

1 8 30 72 129 192 256 158 = 256− 80− 17− 1 = 2 · 75 + F6

1 9 38 102 201 321 448 576 329 = 576− 192− 49− 6 = 2 · 158 + F7

Figure 7: Instances of S̄
[3]
n (2,−1) in B[3] that illustrate Relation (7).

Firstly, B
[3]
n,n − 2B

[3]
n−1,n−1 = (n+ 2)2n−1 − 2(n+ 1)2n−2 = 2n−1.

Let us assume that n is even, e.g., n = 2s (the method is the same for odd values of n).
We have

S̄[3]
n (2,−1)− 2S̄

[3]
n−1 (2,−1) = 22s−1 −

s∑

k=1

B
[3]
2s−k,2s−2k + 2

s−1∑

k=1

B
[3]
2s−1−k,2s−1−2k

= 22s−1 − B
[3]
s,0

︸︷︷︸

1

−

s−1∑

k=1

(

B
[3]
2s−k,2s−2k − 2B

[3]
2s−1−k,2s−1−2k

)

.

From Definition 3 and Relation (2), we have, for m > 2,

∀p, q > 1, B[m]
p,q − 2B

[m]
p−1,q−1 = B

[m]
p−1,q − B

[m]
p−1,q−1 = B

[m−1]
p−1,q ,

hence,

S̄[3]
n (2,−1)− 2S̄

[3]
n−1 (2,−1) = 22s−1 − 1−

s−1∑

k=1

B2s−1−k,2s−2k.

13



Moreover,

s−1∑

k=1

B2s−1−k,2s−2k =
s∑

k=2

B2s−k,2s−2k+2

=
s∑

k=2

(

B2s−k,2s−2k +

(
2s− k

2s− 2k + 1

)

+

(
2s− k

2s− 2k + 2

))

=
s∑

k=2

B2s−k,2s−2k +
s∑

k=2

(
2s− k + 1

2s− 2k + 2

)

= S
[2]
2s (2,−1)−B2s,2s

︸ ︷︷ ︸

22s

−B2s−1,2s−2 +
s∑

k=2

(
2s− k + 1

k − 1

)

.

Theorem 7 states that S
[2]
2s (2,−1) = 22s+1 − F2s+2.

We also have B2s−1,2s−2 = B2s−1,2s−1 −

(
2s− 1

2s− 1

)

= 22s−1 − 1. Furthermore,

s∑

k=2

(
2s+ 1− k

k − 1

)

=
s∑

k=1

(
2s− k + 1

k − 1

)

−

(
2s

0

)

=
s−1∑

k=0

(
2s− k

k

)

− 1

=
s∑

k=0

(
2s− k

k

)

−

(
s

s

)

− 1

= F2s+1 − 2.

Finally,

S̄[3]
n (2,−1)− 2S̄

[3]
n−1 (2,−1) = 22s−1 − 1−

(
22s+1 − F2s+2 − 22s − (22s−1 − 1) + F2s+1 − 2

)

= F2s+2 − F2s+1

= F2s

= Fn.

14



Lemma 6 and Relation (3) lead to an explicit expression of S̄
[3]
n (2,−1), as follows:

S̄[3]
n (2,−1) = 2nS̄

[3]
0 (2,−1) +

n∑

k=1

2n−kFk

= 2n +
n+1∑

k=1

2n+1−kFk−1

= 2n +
(
2n+1 − Fn+3

)

= 3 · 2n − Fn+3.

From the explicit form of S̄
[3]
n (2,−1), we deduce that S

[3]
n (2,−1) = 2B

[3]
n,n + Fn+3 − 3 · 2n

and obtain the following theorem.

Theorem 13.
⌊n/2⌋
∑

k=0

n−2k∑

q=0

q
∑

r=0

(
n− k

r

)

= Fn+3 + (n− 1)2n.

4.2 The path following direction (−1,−1) from (n, 0)

In B[3], the path following direction (−1,−1) from (n, 0) does not appear at first glance
to have any obvious connection to the Fibonacci sequence; however, the differences of con-
secutive terms of T

[3]
n (−1,−1) follow a pattern similar to T

[2]
n (−1,−1). Indeed, the odd

subsequence of the difference sequence has the same behavior as in B[2], while the even
subsequence has a connection to the T

[2]
n (−1,−1) numbers of even n (see Figure 8).

More precisely, we notice that ∀p > 1, T
[3]
2p (−1,−1) = T

[3]
2p−1(−1,−1) + T

[2]
2p (−1,−1) and

T
[3]
2p+1(−1,−1) = T

[3]
2p (−1,−1) + T

[3]
2p−1(−1,−1).

Proof. We prove these two relations directly at order m, using Relation (2) and proceeding
as in the derivation of Theorem 11 (section 3.3). For odd terms, we have

∀m > 2, ∀p > 1, T
[m]
2p+1(−1,−1) =

p
∑

k=0

B
[m]
2p+1−k,k

= B
[m]
2p+1,0 +

p
∑

k=1

(

B
[m]
2p−k,k−1 + B

[m]
2p−k,k

)

= B
[m]
2p,0 +

p
∑

k=1

B
[m]
2p−k,k +

p−1
∑

k=0

B
[m]
2p−1−k,k

=

p
∑

k=0

B
[m]
2p−k,k +

p−1
∑

k=0

B
[m]
2p−1−k,k,

T
[m]
2p+1(−1,−1) = T

[m]
2p (−1,−1) + T

[m]
2p−1(−1,−1). (8)
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1 1 = 1

1 3 1 = 1

1 4 8 4 = 1 + 3 = 1 + T
[2]
2 (−1,−1)

1 5 12 20 5 = 1 + 4 = 4 + 1

1 6 17 32 48 14 = 1 + 5 + 8 = 5 + T
[2]
4 (−1,−1)

1 7 23 49 80 112 19 = 1 + 6 + 12 = 14 + 5

1 8 30 72 129 192 256 45 = 1 + 7 + 17 + 20 = 19 + T
[2]
6 (−1,−1)

1 9 38 102 201 321 448 576 64 = 1 + 8 + 23 + 32 = 45 + 19

Figure 8: Differences between successive terms of T
[3]
n (−1,−1) in Bernoulli’s third-order triangle.

For even terms,

∀m > 2, ∀p > 1, T
[m]
2p (−1,−1) =

p
∑

k=0

B
[m]
2p−k,k

=

p
∑

k=0

k∑

q=0

B
[m−1]
2p−k,q

=

p
∑

k=0

(
k−1∑

q=0

B
[m−1]
2p−k,q + B

[m−1]
2p−k,k

)

=

p−1
∑

k=0

k∑

q=0

B
[m−1]
2p−1−k,q +

p
∑

k=0

B
[m−1]
2p−k,k

=

p−1
∑

k=0

B
[m]
2p−1−k,k + T

[m−1]
2p (−1,−1),

T
[m]
2p (−1,−1) = T

[m]
2p−1(−1,−1) + T

[m−1]
2p (−1,−1). (9)

From Relations (8) and (9), we derive a general expression of T
[3]
n (−1,−1) for n ∈ N0.

Isolating the odd subsequence leads to

∀p > 1, T
[3]
2p+1(−1,−1)− 2T

[3]
2p−1(−1,−1) = T

[2]
2p (−1,−1).

16



Therefore, using Lemma 6 and Relation (4), we obtain

∀p > 1, T
[3]
2p+1(−1,−1) = 2p T

[3]
1 (−1,−1)
︸ ︷︷ ︸

1

+

p
∑

k=1

2p−k T
[2]
2k (−1,−1)
︸ ︷︷ ︸

F2k+3−2k

= 2p +

p
∑

k=1

2p−kF2k+3 −

p
∑

k=1

2p

= 2p + F2p+6 − 2p+3 − p2p

= F2p+6 − (p+ 7)2p.

Hence,

∀p > 1, T
[3]
2p (−1,−1) = T

[3]
2p−1(−1,−1) + T

[2]
2p (−1,−1)

= F2p+4 − (p+ 6)2p−1 + F2p+3 − 2p

= F2p+5 − (p+ 8)2p−1.

Finally, we reach the following relation:

∀n ∈ N0, T
[3]
n (−1,−1) = Fn+5 − 2⌊(n+1)/2⌋

(
1

2
⌊(n+ 1)/2⌋+

7

2
+

(−1)n

2

)

.

Theorem 14.

∀n ∈ N0,

⌊n/2⌋
∑

k=0

k∑

q=0

q
∑

r=0

(
n− k

r

)

= Fn+5 − 2p
(
1

2
p+

7

2
+

(−1)n

2

)

,

where p = ⌊(n+ 1)/2⌋.

Remark 15. Paths in B[3] following other directions yield interesting sequences in a simi-

lar manner to those in B[2]. For example,
(

S̄
[3]
n (3,−1)− 2S̄

[3]
n−1(3,−1)

)

n∈N∗

corresponds to

A005314 [7]. Further work should be able to uncover additional sequences by following other
paths in B[3].

5 Higher-order triangles

5.1 The path following direction (−1,−1) from (n, 0)

Using Relations (8) and (9) for m = 4 and m = 5, we proceed as we did for T
[3]
n (−1,−1) to

determine the sums over the path following direction (−1,−1) from (n, 0) in B[4] and B[5].

17

http://oeis.org/A005314


We obtain the following identities:

∀n ∈ N0,

⌊n/2⌋
∑

k=0

k∑

q=0

q
∑

r=0

r∑

s=0

(
n− k

s

)

= Fn+7 − 2p
(
1

8
p2 +

17

8
p+ 10 + (−1)n

(
1

4
p+ 2

))

,

and

⌊n/2⌋
∑

k=0

k∑

q=0

q
∑

r=0

r∑

s=0

s∑

t=0

(
n− k

t

)

=

Fn+9 − 2p
(

1

48
p3 +

5

8
p2 +

317

48
p+ 27 + (−1)n

(
1

16
p2 +

19

16
p+ 6

))

,

where p =
⌊
n+1
2

⌋
.

The expressions of T
[m]
n (−1,−1) for m ∈ J2, 5K contain a Fibonacci term and a second

term composed of the product of a power of 2 by a polynomial, which suggests a general
connection between T

[m]
n (−1,−1) and the Fibonacci sequence. We write a general expression

of T
[m]
n (−1,−1) in the following theorem.

Theorem 16.

∀m ∈ N∗, ∀n ∈ N0,

⌊n/2⌋
∑

i1=0

i1∑

i2=0

· · ·

im−1∑

im=0

(
n− i1
im

)

= Fn+2m−1 − 2p
(
Q[m] (p) + (−1)nR[m] (p)

)
,

where p =
⌊
n+1
2

⌋
, Q[m] and R[m] are polynomials with coefficients in Q and of degree (m−2)+

and (m− 3)+ respectively.

Proof. We seek to prove that ∀m > 1,

∀n ∈ N0, T
[m]
n (−1,−1) = Fn+2m−1 − 2p

(
Q[m] (p) + (−1)nR[m] (p)

)
,

where p =
⌊
n+1
2

⌋
, Q[m] and R[m] are polynomials with coefficients in Q and of degree (m−2)+

and (m− 3)+ respectively.
We proceed by induction on m. For m = 1, we have [8, Id. 4]

∀n ∈ N0, T
[1]
n (−1,−1) =

⌊n/2⌋
∑

k=0

(
n− k

k

)

= Fn+1,

which is in line with the above formulation with Q[1] = R[1] = 0.
Similarly, we already have the result for m = 2 with Q[2] = 1 and R[2] = 0 from Theo-

rem 11:
∀n ∈ N0, T

[2]
n (−1,−1) = Fn+3 − 2⌊(n+1)/2⌋.

Assume that the result is true for a given m > 2, i.e., there exist two polynomials Q[m]

and R[m] with coefficients in Q and respectively of degree (m− 2)+ and (m− 3)+, such that

18



∀n ∈ N0, T
[m]
n (−1,−1) = Fn+2m−1 − 2p

(
Q[m] (p) + (−1)nR[m] (p)

)
, where p =

⌊
n+1
2

⌋
. We

will now prove the result for m+ 1.
First, from Relations (8) and (9) at order m+ 1, we have

∀s > 1, T
[m+1]
2s+1 (−1,−1) = 2T

[m+1]
2s−1 (−1,−1) + T

[m]
2s (−1,−1).

Using Lemma 6 applied to us = T
[m+1]
2s+1 (−1,−1) (i.e., vs = T

[m]
2s (−1,−1)), we obtain

∀s > 1, T
[m+1]
2s+1 (−1,−1) = 2s T

[m+1]
1 (−1,−1)
︸ ︷︷ ︸

1

+
s∑

k=1

2s−kT
[m]
2k (−1,−1).

Since T
[m]
1 (−1,−1) = 1, we may write that

∀s > 1, T
[m+1]
2s−1 (−1,−1) = 2s−1 +

s−1∑

k=1

2s−1−kT
[m]
2k (−1,−1).

Recall that ∀k ∈ N0, T
[m]
2k (−1,−1) = F2k+2m−1−2k

(
Q[m](k) +R[m](k)

)
. Lemma 6 applied

to us = F2s+2m+2 (i.e., vs = F2s+2m−1) yields
s∑

k=1

2s−kF2k+2m−1 = F2s+2m+2− 2sF2m+2, hence,

s−1∑

k=1

2s−1−kF2k+2m−1 =
1

2
(F2s+2m+2 − 2sF2m+2 − F2s+2m−1) = F2s+2m − 2s−1F2m+2.

Thus, we have

∀s > 1, T
[m+1]
2s−1 (−1,−1) = 2s−1 +

s−1∑

k=1

2s−1−k
(
F2k+2m−1 − 2k

(
Q[m](k) +R[m](k)

))

= 2s−1 + F2s+2m − 2s−1F2m+2 − 2s−1

s−1∑

k=1

(
Q[m](k) +R[m](k)

)
,

T
[m+1]
2s−1 (−1,−1) = F(2s−1)+2(m+1)−1 − 2s−1 (F2m+2 − 1 + A(s)) , (10)

where A(X) =
X−1∑

k=1

(
Q[m](k) +R[m](k)

)
. For any α ∈ N0, the polynomial

X−1∑

k=1

kα is of degree

α + 1 in X. Therefore, since Q[m] + R[m] is of degree (m − 2)+ and m > 2, A is of degree
(m− 1)+.

Relation (10) gives the expression of T
[m+1]
n (−1,−1) for all odd n. We may thus retrieve

the even subsequence from Relation (9) to obtain, for s > 1,

T
[m+1]
2s (−1,−1) = T

[m+1]
2s−1 (−1,−1) + T

[m]
2s (−1,−1)

= F(2s−1)+2(m+1)−1 − 2s−1 (F2m+2 − 1 + A(s))

+F2s+2m−1 − 2s
(
Q[m](s) +R[m](s)

)
,

T
[m+1]
2s (−1,−1) = F2s+2(m+1)−1 − 2s−1

(
F2m+2 − 1 + A(s) + 2Q[m](s) + 2R[m](s)

)
.(11)
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We introduce the polynomials Q[m+1], R[m+1] as follows:

Q[m+1] =
1

2

(
A+ F2m+2 − 1 +Q[m] +R[m]

)
and R[m+1] =

1

2

(
Q[m] +R[m]

)
.

It is clear that Q[m+1], R[m+1] ∈ Q[X]. In addition, Q[m+1] is of the same degree as A, i.e.,
(m− 1)+ and R[m+1] is of the same degree as Q[m], i.e., (m− 2)+.

Therefore, we can synthesize Relations (10) and (11) as follows:

T [m+1]
n = Fn+2(m+1)−1 − 2p

(
Q[m+1](p) + (−1)nR[m+1](p)

)
,

where p =
⌊
n+1
2

⌋
, Q[m+1] and R[m+1] are respectively ((m+ 1)− 2)+th and ((m+ 1)− 3)+th

degree polynomials with coefficients in Q. This concludes the proof by induction.

5.2 Towards additional formulae

The present work has reviewed Bernoulli’s second and third-order triangles and found multi-
ple connections to the Fibonacci sequence, expressed in Theorems 7 and 11 to 14. Theorem 16
generalizes Theorems 11 to 14 to higher orders. Furthermore, Theorem 9 uncovers a relation
between partial sums of binomial coefficients in Bernoulli’s triangle and sequences satisfying
an additive recurrence relation that generalizes the Fibonacci sequence.

The methodology followed in this article (i.e., the study of paths over Bernoulli’s trian-
gles) reveals sequences that are formed by the partial sums of binomial coefficients. More gen-
erally, these paths could yield further fruit by mapping various functions f over the elements

of Bernoulli’s triangles in order to study the corresponding sequences
∑

k

f(B
[m]
n0+kl,k0−kc).
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