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Abstract

Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and
even parts are unrestricted). We find some new interesting congruences for pod(n)
modulo 3, 5 and 9.

1 Introduction and Main Results

Let ¥(q) be one of Ramanujan’s theta functions, namely
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We let pod(n) (see A006950) denote the number of partitions of n wherein the odd parts
are distinct (and even parts are unrestricted). For example, pod(4) = 3 since there are 3
different partitions of 3 such that the odd parts are distinct, namely 4 =3+ 1 =2+ 2. The
generating function of pod(n) is given by
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The arithmetic properties of pod(n) were first studied by Hirschhorn and Sellers [4] in
2010. They obtained some interesting congruences involving the following infinite family of
Ramanujan-type congruences: for any integers o > 0 and n > 0,

23 x 3202 11
8

pod <32a+3n + ) =0 (mod 3).

Later on Radu and Sellers [7] obtained other deep congruences for pod(n) modulo 5 and
7, such as

pod(135n + 8) = pod(135n + 107) = pod(135n 4+ 116) =0 (mod 5), and

pod(567n 4 260) = pod(567n +449) =0 (mod 7).

For nonnegative integers n and k, let ri(n) (resp., tx(n)) denote the number of represen-
tations of n as sum of k squares (resp., triangular numbers). In 2011, based on the generating
function of pod(3n + 2) found in [4], Lovejoy and Osburn [6] discovered the following arith-
metic relation:

pod(3n+2) = (—=1)"r5(8n +5) (mod 3). (2)

Following their steps, we will present some new congruences modulo 5 and 9 for pod(n).
Firstly, we find that (2) can be improved to a congruence modulo 9.

Theorem 1. For any integer n > 0, we have
pod(3n +2) = 2(—=1)"'r5(8n +5)  (mod 9).

The following result will be a consequence of Theorem 1 upon invoking some properties

of r5(n).

Theorem 2. Let p > 3 be a prime, and N be a positive integer such that pN =5 (mod 8).
Let a be any nonnegative integer.

(1) If p=1 (mod 3), then

6o¢+5N 1
pod(%) =0 (mod 3),
and 3p18a+17N +1
pod( 3 ) =0 (mod?9).
(2) If p =2 (mod 3), then
3pAOIN 4+ 1y
pod<T> =0 (mod?9).

Secondly, with the same method used in proving Theorem 1, we can establish a similar
congruence for pod(n) modulo 5.



Theorem 3. For any integer n > 0, we have
pod(bn +2) =2(—1)"r3(8n +3) (mod 5).
Some miscellaneous congruences can be deduced from this theorem.

Theorem 4. For any integers n > 0 and o > 1, we have

11 - 52a+1 1
pod (520‘+2n - %) =0 (mod 5),

and 19 - 5%+t 41
pod (520‘“71 + T—i_) =0 (mod 5).

Theorem 5. Let p = 4 (mod 5) be a prime, and N be a positive integer which is coprime
to p such that pN = 3 (mod 8). We have

SN +1
Od<5p 8+

For example, let p = 19 and N = 8n + 1 where n > 0 and n #Z 7 (mod 19). We have

) =0 (mod b).

pod(34295n 4 4287) =0 (mod 5).

Theorem 6. Let p > 3 be a prime, and N be a positive integer which is not divisible by p
such that pN = 3 (mod 8). Let o be any nonnegative integer.
(1) If p=1 (mod 5), we have

10a+9N 1
pod(%) =0 (modb5).
(2) If p = 2,3,4 (mod 5), we have
8a+7N 1
p0d<5pT+> =0 (mod 5).

2 Preliminaries

Lemma 7. (Cf. [7, Lemma 1.2].) Let p be a prime and « be a positive integer. Then
(@ 0)% = (" )5

Lemma 8. For any prime p > 3, we have

1

(mod p®).

ty (pn + p%l> =t,(n) (modp), ts(pn+p—1)=ts(n) (mod p?).



Proof. By [2, Theorem 3.6.3|, we know #4(n) = o(2n + 1). For any positive integer N, we

have
o(N) = Z d+ Z d= Z d (mod p).

d|N, pld d|N, ptd d|N, ptd

Let N =2n+1and N = p(2n + 1), respectively. It is easy to deduce that o(p(2n + 1))
o(2n + 1) (mod p). This clearly implies the first congruence.
From [2, Eq.(3.8.3), page 81], we know

w= (")

d|(n+1)
dodd

By a similar argument we can prove the second congruence. L]

Lemma 9. (Cf. [1].) For 1 <k <7, we have

(80 + k) = 2’f(1 + %(Z))MW

Lemma 10. (Cf. [3].) Let p > 3 be a prime and n be a positive integer such that p* { n.
For any integer o > 0, we have

3a+3 3a
o P —1 n\p’* —1
rs(p*n) = (—p3 — (%) )w),

p/ pP—1

where () denotes the Legendre symbol.

Lemma 11. (Cf. [5].) Let p > 3 be a prime. For any integers n > 1 and o > 0, we have

ralp*n) = (p—‘l -(FHE=S 1>r3<n> oL /)

p—1 p/ p—1 p—1

where we take r3(n/p?) = 0 unless p*|n .

3 Proofs of the Theorems

Proof of Theorem 1. Let p = 3 in Lemma 8. We deduce that tg(3n + 2) = t5(n) (mod 9).
By (1) we have

U(g)’ Y pod(n)(—q)" = (g)" =D ts(n)g".
By Lemma 7 we obtain 1(¢)” = 1(¢*)° (mod 9). Hence
¥(g*)" Y pod(n)(=q)" = ts(n)g"  (mod 9).

4



3In+2

If we extract those terms of the form ¢ on both sides, we obtain

¢*)’ > pod(3n+2)(=q)"** =Y ts(3n +2)¢""**  (mod 9).
=0 n=0
Dividing both sides by ¢?, then replacing ¢* by ¢, we get

Zpod3n+2 Zts 3n+2)q" —Ztg n)¢" = ¥(¢)® (mod 9).

n=0

Hence

Zpod 3n+2)(—q Zt5 q¢"  (mod9).
Comparing the coefficients of ¢" on both sides, we deduce that pod(3n + 2) = (—1)"t5(n)
(mod 9).

Let k£ = 5 in Lemma 9. We obtain t5(n) = r5(8n + 5)/112, and from this the theorem
follows. H

Proof of Theorem 2. (1) Let n = pN in Lemma 10, and then we replace a by 3cv + 2. Since

pooto
5 =14+p°+--+p%D =0 (mod 3),
p>—1
we deduce that r5(p5*™>N) = 0 (mod 3).

Let n = ’% in Theorem 1. We deduce that pod(%) =0 (mod 3).

Similarly, let n = pN in Lemma 10 and we replace o by 9 + 8. Since p = 1 (mod 3)
implies p> = 1 (mod 9), we have
P2l _

. =14+p*+- -+ =0 (mod 9).
p>—1
Hence r5(p*** ™" N) = 0 (mod 9).

Let n = w in Theorem 1. We deduce that pod(%) =0 (mod 9).

(2) Let n = pN in Lemma 10, and then we replace a by 2a + 1. Note that p = 2 (mod
3) implies p® = —1 (mod 9). Since p®*6 =1 (mod 9), we have r5(p***3N) =0 (mod 9).

Let n = % in Theorem 1. We complete our proof. O]

Proof of Theorem 3. Let p =5 in Lemma 8. We deduce that t4(5n + 2) = t4(n) (mod 5).
By (1) we have

U(g) > pod(n)(—=)" = (q)* = ta(n)g



By Lemma 7 we obtain ()’ = (¢°) (mod 5). Hence

o0 e}

W) Y _pod(n)(=q)" =) tu(n)q"  (mod 5).

n=0 n=0

5n—+2

If we extract those terms of the form ¢ on both sides, we obtain

P(¢°) > pod(5n +2)(—q)™"* = (50 + 2)¢"" ™ (mod 5).

Dividing both sides by ¢?, and then replacing ¢° by ¢, we get

o0 [e.9] o0

Y(g) Y pod(Bn+2)(—q)" => t(Bn+2)q" =Y ti(n)g" =v(g)" (mod 5).

Hence we have

> pod(5n +2)(—q)" = ¢(g)° =Y ts(n)g"  (mod 5).

Comparing the coefficients of ¢" on both sides, we deduce that pod(5n + 2) = (—1)"t3(n)

(mod 5).
Let £ = 3 in Lemma 9. We obtain t3(n) = r3(8n + 3)/8, from which the theorem
follows. 0

Proof of Theorem j. Let p=>5and n =5m+r (r € {1,4}) in Lemma 11. Since (’?’”) =1,
we deduce that 73(5%%(5m + 7)) = 0 (mod 5) for any integer o > 1.

Let n = 52"(40m+)*3 (a € {11,19}). By Theorem 3, we have

r3(8n + 3) = r3(5**(40m +a)) =0 (mod 5).

Hence
pod (52°‘+2m + %) =pod(bn +2) =2(—1)"r3(8n+3) =0 (mod 5).

O

Proof of Theorem 5. Let « =1 and n = p/N in Lemma 11. We have

r3(p°N) = (1+p)rs(pN) =0 (mod 5).
Let n = 4’% in Theorem 3. We have
od(%) =pod(5n +2) = 2(—1)"r3(8n + 3) = 2(=1)"r3(p°N) =0 (mod 5).

O



Proof of Theorem 6. (1) Let n = pN in Lemma 11, and then we replace o by 5 + 4. We

have
p5a+5_1 4
=1+p+---+p™M =0 (mod5).

p—1
lOa+9N_3

Hence r3(p'***'N) = 0 (mod 5). Let n = E— in Theorem 3. We have

5p10a+9N + 1

pOd( 8

) = pod(5n + 2) = 2(—1)"r5(p'°***N) =0 (mod 5).

(2) Let n = pN in Lemma 11, and then replace o by 4a + 3. Since p’®™ =1 (mod 5),

we deduce that 73(p***"N) =0 (mod 5). Let n = p8a+;N_3 in Theorem 3. We have

5p8a+7N + 1

p0d< 8

> =pod(5n +2) = 2(—1)"r3(p** " N) =0 (mod 5).
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