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Abstract

Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and
even parts are unrestricted). We find some new interesting congruences for pod(n)
modulo 3, 5 and 9.

1 Introduction and Main Results

Let ψ(q) be one of Ramanujan’s theta functions, namely

ψ(q) =
∞
∑

n=0

qn(n+1)/2 =
(q2; q2)2∞
(q; q)∞

.

We let pod(n) (see A006950) denote the number of partitions of n wherein the odd parts
are distinct (and even parts are unrestricted). For example, pod(4) = 3 since there are 3
different partitions of 3 such that the odd parts are distinct, namely 4 = 3+ 1 = 2+ 2. The
generating function of pod(n) is given by

∞
∑

n=0

pod(n)qn =
(−q; q2)∞
(q2; q2)∞

=
1

ψ(−q)
. (1)
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The arithmetic properties of pod(n) were first studied by Hirschhorn and Sellers [4] in
2010. They obtained some interesting congruences involving the following infinite family of
Ramanujan-type congruences: for any integers α ≥ 0 and n ≥ 0,

pod
(

32α+3n+
23× 32α+2 + 1

8

)

≡ 0 (mod 3).

Later on Radu and Sellers [7] obtained other deep congruences for pod(n) modulo 5 and
7, such as

pod(135n+ 8) ≡ pod(135n+ 107) ≡ pod(135n+ 116) ≡ 0 (mod 5), and

pod(567n+ 260) ≡ pod(567n+ 449) ≡ 0 (mod 7).

For nonnegative integers n and k, let rk(n) (resp., tk(n)) denote the number of represen-
tations of n as sum of k squares (resp., triangular numbers). In 2011, based on the generating
function of pod(3n+ 2) found in [4], Lovejoy and Osburn [6] discovered the following arith-
metic relation:

pod(3n+ 2) ≡ (−1)nr5(8n+ 5) (mod 3). (2)

Following their steps, we will present some new congruences modulo 5 and 9 for pod(n).
Firstly, we find that (2) can be improved to a congruence modulo 9.

Theorem 1. For any integer n ≥ 0, we have

pod(3n+ 2) ≡ 2(−1)n+1r5(8n+ 5) (mod 9).

The following result will be a consequence of Theorem 1 upon invoking some properties
of r5(n).

Theorem 2. Let p ≥ 3 be a prime, and N be a positive integer such that pN ≡ 5 (mod 8).
Let α be any nonnegative integer.
(1) If p ≡ 1 (mod 3), then

pod
(3p6α+5N + 1

8

)

≡ 0 (mod 3),

and

pod
(3p18α+17N + 1

8

)

≡ 0 (mod 9).

(2) If p ≡ 2 (mod 3), then

pod
(3p4α+3N + 1

8

)

≡ 0 (mod 9).

Secondly, with the same method used in proving Theorem 1, we can establish a similar
congruence for pod(n) modulo 5.
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Theorem 3. For any integer n ≥ 0, we have

pod(5n+ 2) ≡ 2(−1)nr3(8n+ 3) (mod 5).

Some miscellaneous congruences can be deduced from this theorem.

Theorem 4. For any integers n ≥ 0 and α ≥ 1, we have

pod
(

52α+2n+
11 · 52α+1 + 1

8

)

≡ 0 (mod 5),

and

pod
(

52α+2n+
19 · 52α+1 + 1

8

)

≡ 0 (mod 5).

Theorem 5. Let p ≡ 4 (mod 5) be a prime, and N be a positive integer which is coprime
to p such that pN ≡ 3 (mod 8). We have

pod
(5p3N + 1

8

)

≡ 0 (mod 5).

For example, let p = 19 and N = 8n+ 1 where n ≥ 0 and n 6≡ 7 (mod 19). We have

pod(34295n+ 4287) ≡ 0 (mod 5).

Theorem 6. Let p ≥ 3 be a prime, and N be a positive integer which is not divisible by p
such that pN ≡ 3 (mod 8). Let α be any nonnegative integer.
(1) If p ≡ 1 (mod 5), we have

pod
(5p10α+9N + 1

8

)

≡ 0 (mod 5).

(2) If p ≡ 2, 3, 4 (mod 5), we have

pod
(5p8α+7N + 1

8

)

≡ 0 (mod 5).

2 Preliminaries

Lemma 7. (Cf. [7, Lemma 1.2].) Let p be a prime and α be a positive integer. Then

(q; q)p
α

∞ ≡ (qp; qp)p
α−1

∞ (mod pα).

Lemma 8. For any prime p ≥ 3, we have

t4

(

pn+
p− 1

2

)

≡ t4(n) (mod p), t8(pn+ p− 1) ≡ t8(n) (mod p3).
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Proof. By [2, Theorem 3.6.3], we know t4(n) = σ(2n + 1). For any positive integer N , we
have

σ(N) =
∑

d|N, p|d

d+
∑

d|N, p∤d

d ≡
∑

d|N, p∤d

d (mod p).

Let N = 2n + 1 and N = p(2n + 1), respectively. It is easy to deduce that σ(p(2n + 1)) ≡
σ(2n+ 1) (mod p). This clearly implies the first congruence.

From [2, Eq.(3.8.3), page 81], we know

t8(n) =
∑

d|(n+1)
d odd

(n+ 1

d

)3

.

By a similar argument we can prove the second congruence.

Lemma 9. (Cf. [1].) For 1 ≤ k ≤ 7, we have

rk(8n+ k) = 2k
(

1 +
1

2

(

k

4

)

)

tk(n).

Lemma 10. (Cf. [3].) Let p ≥ 3 be a prime and n be a positive integer such that p2 ∤ n.
For any integer α ≥ 0, we have

r5(p
2αn) =

(

p3α+3 − 1

p3 − 1
− p
(n

p

)p3α − 1

p3 − 1

)

r5(n),

where ( ·
p
) denotes the Legendre symbol.

Lemma 11. (Cf. [5].) Let p ≥ 3 be a prime. For any integers n ≥ 1 and α ≥ 0, we have

r3(p
2αn) =

(

pα+1 − 1

p− 1
−
(−n

p

)pα − 1

p− 1

)

r3(n)− p
pα − 1

p− 1
r3(n/p

2),

where we take r3(n/p
2) = 0 unless p2|n .

3 Proofs of the Theorems

Proof of Theorem 1. Let p = 3 in Lemma 8. We deduce that t8(3n + 2) ≡ t8(n) (mod 9).
By (1) we have

ψ(q)9
∞
∑

n=0

pod(n)(−q)n = ψ(q)8 =
∞
∑

n=0

t8(n)q
n.

By Lemma 7 we obtain ψ(q)9 ≡ ψ(q3)
3
(mod 9). Hence

ψ(q3)
3

∞
∑

n=0

pod(n)(−q)n ≡

∞
∑

n=0

t8(n)q
n (mod 9).
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If we extract those terms of the form q3n+2 on both sides, we obtain

ψ(q3)
3

∞
∑

n=0

pod(3n+ 2)(−q)3n+2 ≡
∞
∑

n=0

t8(3n+ 2)q3n+2 (mod 9).

Dividing both sides by q2, then replacing q3 by q, we get

ψ(q)3
∞
∑

n=0

pod(3n+ 2)(−q)n ≡
∞
∑

n=0

t8(3n+ 2)qn ≡
∞
∑

n=0

t8(n)q
n = ψ(q)8 (mod 9).

Hence
∞
∑

n=0

pod(3n+ 2)(−q)n ≡ ψ(q)5 ≡
∞
∑

n=0

t5(n)q
n (mod 9).

Comparing the coefficients of qn on both sides, we deduce that pod(3n + 2) ≡ (−1)nt5(n)
(mod 9).

Let k = 5 in Lemma 9. We obtain t5(n) = r5(8n + 5)/112, and from this the theorem
follows.

Proof of Theorem 2. (1) Let n = pN in Lemma 10, and then we replace α by 3α+ 2. Since

p9α+9 − 1

p3 − 1
= 1 + p3 + · · ·+ p3(3α+2) ≡ 0 (mod 3),

we deduce that r5(p
6α+5N) ≡ 0 (mod 3).

Let n = p6α+5N−5
8

in Theorem 1. We deduce that pod(3p
6α+5N+1

8
) ≡ 0 (mod 3).

Similarly, let n = pN in Lemma 10 and we replace α by 9α + 8. Since p ≡ 1 (mod 3)
implies p3 ≡ 1 (mod 9), we have

p27α+27 − 1

p3 − 1
= 1 + p3 + · · ·+ p3(9α+8) ≡ 0 (mod 9).

Hence r5(p
18α+17N) ≡ 0 (mod 9).

Let n = p18α+17N−5
8

in Theorem 1. We deduce that pod(3p
18α+17N+1

8
) ≡ 0 (mod 9).

(2) Let n = pN in Lemma 10, and then we replace α by 2α + 1. Note that p ≡ 2 (mod
3) implies p3 ≡ −1 (mod 9). Since p6α+6 ≡ 1 (mod 9), we have r5(p

4α+3N) ≡ 0 (mod 9).

Let n = p4α+3N−5
8

in Theorem 1. We complete our proof.

Proof of Theorem 3. Let p = 5 in Lemma 8. We deduce that t4(5n+ 2) ≡ t4(n) (mod 5).
By (1) we have

ψ(q)5
∞
∑

n=0

pod(n)(−q)n = ψ(q)4 =
∞
∑

n=0

t4(n)q
n.
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By Lemma 7 we obtain ψ(q)5 ≡ ψ(q5) (mod 5). Hence

ψ(q5)
∞
∑

n=0

pod(n)(−q)n ≡

∞
∑

n=0

t4(n)q
n (mod 5).

If we extract those terms of the form q5n+2 on both sides, we obtain

ψ(q5)
∞
∑

n=0

pod(5n+ 2)(−q)5n+2 ≡

∞
∑

n=0

t4(5n+ 2)q5n+2 (mod 5).

Dividing both sides by q2, and then replacing q5 by q, we get

ψ(q)
∞
∑

n=−∞

pod(5n+ 2)(−q)n ≡
∞
∑

n=0

t4(5n+ 2)qn ≡
∞
∑

n=0

t4(n)q
n = ψ(q)4 (mod 5).

Hence we have
∞
∑

n=0

pod(5n+ 2)(−q)n ≡ ψ(q)3 =
∞
∑

n=0

t3(n)q
n (mod 5).

Comparing the coefficients of qn on both sides, we deduce that pod(5n + 2) ≡ (−1)nt3(n)
(mod 5).

Let k = 3 in Lemma 9. We obtain t3(n) = r3(8n + 3)/8, from which the theorem
follows.

Proof of Theorem 4. Let p = 5 and n = 5m + r (r ∈ {1, 4}) in Lemma 11. Since
(

−r
5

)

= 1,
we deduce that r3(5

2α(5m+ r)) ≡ 0 (mod 5) for any integer α ≥ 1.

Let n = 52α(40m+a)−3
8

(a ∈ {11, 19}). By Theorem 3, we have

r3(8n+ 3) = r3(5
2α(40m+ a)) ≡ 0 (mod 5).

Hence

pod
(

52α+2m+
a · 52α+1 + 1

8

)

= pod(5n+ 2) ≡ 2(−1)nr3(8n+ 3) ≡ 0 (mod 5).

Proof of Theorem 5. Let α = 1 and n = pN in Lemma 11. We have

r3(p
3N) = (1 + p)r3(pN) ≡ 0 (mod 5).

Let n = p3N−3
8

in Theorem 3. We have

pod
(5p3N + 1

8

)

= pod(5n+ 2) ≡ 2(−1)nr3(8n+ 3) = 2(−1)nr3(p
3N) ≡ 0 (mod 5).
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Proof of Theorem 6. (1) Let n = pN in Lemma 11, and then we replace α by 5α + 4. We
have

p5α+5 − 1

p− 1
= 1 + p+ · · ·+ p5α+4 ≡ 0 (mod 5).

Hence r3(p
10α+9N) ≡ 0 (mod 5). Let n = p10α+9N−3

8
in Theorem 3. We have

pod
(5p10α+9N + 1

8

)

= pod(5n+ 2) ≡ 2(−1)nr3(p
10α+9N) ≡ 0 (mod 5).

(2) Let n = pN in Lemma 11, and then replace α by 4α + 3. Since p4α+4 ≡ 1 (mod 5),

we deduce that r3(p
8α+7N) ≡ 0 (mod 5). Let n = p8α+7N−3

8
in Theorem 3. We have

pod
(5p8α+7N + 1

8

)

= pod(5n+ 2) ≡ 2(−1)nr3(p
8α+7N) ≡ 0 (mod 5).
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