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Abstract

We obtain here a number of results associated with an infinite matrix arising from

a family of iterated self-compositions. This matrix exhibits a rich structure, and our

results include an intricate property of its rows, a characterization of its entries in terms

of their Zeckendorf representations, and a link between its columns and a mathematical

object known as the Fibonacci word.

1 Introduction and initial definitions

Fraenkel [5] defines the notion of an iterated floor function, and derives identities involving
sums of such functions. Applications of these iterated floor functions to discrete dynamical
systems and to other other areas of mathematics are then exhibited. The purpose of our
paper is to use the iterated floor function in order to generate an infinite matrix M, as
defined below, and then to study certain aspects of its rich structure.

In order to construct M, we utilize both the floor function and the golden ratio. The
former, written ⌊x⌋, gives the largest integer not exceeding x, while the latter is given by

α =
1 +

√
5

2
.
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k g1(k) g2(k) g3(k) g4(k) g5(k) g6(k) g7(k) g8(k)

1 1 1 1 1 1 1 1 1

2 3 4 6 9 14 22 35 56

3 4 6 9 14 22 35 56 90

4 6 9 14 22 35 56 90 145

5 8 12 19 30 48 77 124 200

6 9 14 22 35 56 90 145 234

7 11 17 27 43 69 111 179 289

8 12 19 30 48 77 124 200 323

Table 1: The top left-hand corner 8× 8 sub-matrix of the infinite matrix M.

Let N denote the set of positive integers. For each k ∈ N, gj(k) is defined by way of
g1(k) = ⌊kα⌋ and, for j ≥ 2, gj(k) = g1(gj−1(k)). Then M is defined to be the infinite
matrix having entries gj(k), where k and j denote the row and column numbers, respectively.

The 8× 8 matrix comprising the top left-hand corner sub-matrix of M is shown in Table
1. The first column of M is a particular Beatty sequence [2, 3] known as the lower Wythoff

sequence, and given by B(α) = (⌊nα⌋)n≥1. This appears as sequence A000201 in the On-

line Encyclopedia of Integer Sequences [16]. The second, third and fourth columns of M
arise as sequences A003622, A134859, and A151915, respectively, but none of the further
columns appear in the OEIS. Shifted versions of some of the rows of M are also to be
found in the OEIS. For example, A001588, A001611, and A001612 are related to rows seven,
two and five, respectively, by way of shifts. Some of the rows have interesting combinatorial
interpretations, such as the 13th row, the terms of which, via an appropriate shift, enumerate
the binary strings of length n with no substrings equal to 0001, 1000, or 1001 (A164485).

Although the upper Wythoff sequence (A001950), B(α2) = (⌊nα2⌋)n≥1, does not appear
as a row or a column in M, it does play a role here in the proof of some of the lemmas
and theorems. We will make use of the fact that, as a pair of complementary sequences,
B(α) and B(α2) satisfy both B(α) ∩ B(α2) = ∅ and B(α) ∪ B(α2) = N. The upper Wythoff
sequence does, however, appear as the second column of a matrix known as the Wythoff

array [9]. There are similarities between M and the Wythoff array, although there is also a
major difference; the former contains repeated entries but not every positive integer, while
the latter contains every positive integer precisely once.

Both the Fibonacci and Lucas numbers feature in some of our proofs and results. The
Fibonacci sequence (Fn)n≥0 is defined by setting F0 = 0 and F1 = 1 and then Fn = Fn−1 +
Fn−2 for n ≥ 2. The Lucas sequence (Ln)n≥0 is defined by setting L0 = 2 and L1 = 1 and
then Ln = Ln−1 + Ln−2 for n ≥ 2.
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In the following sections we prove a number of results concerning the structure of M.
In Section 2 some introductory results are given. Then, in Section 3, we demonstrate a
characterization of the entries of M in terms of their Zeckendorf representations. A link
between the columns of M and a mathematical object known as the Fibonacci word is
shown in Section 4. Our final theorems, involving a property of the rows of M, highlight
very clearly the close relationship between the Fibonacci and Lucas numbers.

2 Some initial results associated with M
First, we obtain a formula for the entry gj(k) of M and a straightforward corollary of this
result. Note that use will be made of the equality α2 = α + 1 and its many rearrangements
throughout this paper.

Theorem 1. The entry in the kth row and jth column of M is given by

gj(k) = Fj

⌊

k

α

⌋

+ (k − 1)Fj+1 + 1.

Proof. Once more, we proceed by induction on j. First, when j = 1, we have

F1

⌊

k

α

⌋

+ (k − 1)F2 + 1 =

⌊

k

α

⌋

+ k

=

⌊

k(1 + α)

α

⌋

= ⌊kα⌋
= g1(k).

The statement of the theorem is thus true for all k ∈ N when j = 1.
Let us now assume that it is true for all k ∈ N for some j ∈ N. We then have

gj+1(k) =

⌊

α

(

Fj

⌊

k

α

⌋

+ (k − 1)Fj+1 + 1

)⌋

(1)

for each k ∈ N. In order to complete the proof of the theorem, it would suffice to show that
(1) is equal to

Fj+1

⌊

k

α

⌋

+ (k − 1)Fj+2 + 1 (2)

for all k ∈ N. To this end, let us consider d(j, k), the difference between (1) and (2). Using
Binet’s formula [4, 8, 10], it is a simple matter to show that

αFj+1 − Fj+2 =
(−1)j

αj+1
. (3)
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We may then obtain

d(j, k) =

⌊

α

(

Fj

⌊

k

α

⌋

+ (k − 1)Fj+1 + 1

)⌋

−
(

Fj+1

⌊

k

α

⌋

+ (k − 1)Fj+2 + 1

)

=

⌊⌊

k

α

⌋

(αFj − Fj+1) + (k − 1) (αFj+1 − Fj+2) + (α− 1)

⌋

=

⌊

(−1)j−1

αj

(⌊

k

α

⌋

− k − 1

α

)

+
1

α

⌋

, (4)

where (3) has been utilized in going from the second to the third line above.
Now note that for all k ∈ N,

∣

∣

∣

∣

⌊

k

α

⌋

− k − 1

α

∣

∣

∣

∣

=

∣

∣

∣

∣

1

α
−

(

k

α
−
⌊

k

α

⌋)∣

∣

∣

∣

=

∣

∣

∣

∣

1

α
−

{

k

α

}∣

∣

∣

∣

<
1

α
, (5)

where {x} = x− ⌊x⌋, the fractional part of x. From (5) it follows that

− 1

αj+1
+

1

α
<

(−1)j−1

αj

(⌊

k

α

⌋

− k − 1

α

)

+
1

α
<

1

αj+1
+

1

α
,

which, since

0 < − 1

αj+1
+

1

α
and

1

αj+1
+

1

α
< 1,

implies via (4) that d(j, k) = 0, as required.

Corollary 2. For all j, k ∈ N we have

gj(k) + gj+1(k) = gj+2(k) + 1.

Proof. From Theorem 1 we have

gj(k) + gj+1(k) = Fj

⌊

k

α

⌋

+ (k − 1)Fj+1 + 1 + Fj+1

⌊

k

α

⌋

+ (k − 1)Fj+2 + 1

= Fj+2

⌊

k

α

⌋

+ (k − 1)Fj+3 + 2

= gj+2(k) + 1.

By way of Corollary 2 we have g1(k) + g2(k) = g3(k) + 1 and g2(k) + g3(k) = g4(k) + 1,
from which it follows that g1(k) − 2g3(k) + g4(k) = 0. Since this is valid for any k ∈ N, it
is the case that for any n ≥ 4, the columns of the top left-hand n× n sub-matrix of M are
not linearly independent. This in turn implies that the top left-hand n×n sub-matrix of M
has determinant 0 when n ≥ 4.

On looking at Table 1 it becomes apparent that, for each pair (j, k) such that 1 ≤ j ≤ 7
and 1 ≤ k ≤ 7, the expression gj+1(k) − gj(k + 1) is equal to Fm or −Fm for some non-
negative integer m (noting that F0 = 0). However, on extending the table it may be seen
that this property does not hold in general. For example, g2(9)− g1(10) = 6.
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3 A characterization via Zeckendorf representations

Silber [15] obtains various results concerning the lower Wythoff sequence, including a prop-
erty of the Zeckendorf representations of the terms in this sequence. As will be explained, it
follows from this property that the entries in M may be characterized in a very straightfor-
ward manner by way of their Zeckendorf representations.

To this end, let F = {F2, F3, F4, . . .} be the set of Fibonacci numbers with subscripts at
least 2. It is well-known that any positive integer n can be expressed as a sum of distinct
elements from M in at least one way. We term

Fc1 + Fc2 + · · ·+ Fck

an F -representation for n if n = Fc1 + Fc2 + · · ·+ Fck , where (c1, c2, . . . , ck) is an increasing
sequence such that c1 ≥ 2.

Zeckendorf’s theorem provides conditions under which each positive integer may be rep-
resented in a unique way as a sum of distinct Fibonacci numbers. Specifically, it states that,
for any n ∈ N, there is exactly one way in which n can be expressed as a sum of distinct
Fibonacci numbers such that the sum does not include any two consecutive Fibonacci num-
bers. This gives the Zeckendorf representation of n. A more formal statement of Zeckendorf’s
theorem is as follows:

Theorem 3. For any n ∈ N there exists a unique increasing sequence of positive integers,

(c1, c2, . . . , ck) say, such that c1 ≥ 2, ci ≥ ci−1 + 2 for i = 2, 3, . . . , k, and

n =
k

∑

i=1

Fci .

Lekkerkerker [11] and Zeckendorf [17] both supply proofs of this result. We note here that
Zeckendorf representation is a special case of Ostrowski representation [1, 14], the latter of
which gives a general method of integer representation utilizing continued fraction represen-
tations of irrational numbers.

Silber [15] shows that the smallest term in the Zeckendorf representation of n is of the
form F2m if, and only if, n = ⌊qα⌋ for some q ∈ N. By definition, the first column of M
contains every integer of the form ⌊qα⌋. Furthermore, by the construction of M, every entry
will be of this form. It follows from this that the integer n appears as an entry in M if,
and only if, the smallest term in its Zeckendorf representation is of the form F2m for some
m ∈ N, thereby providing a way of characterizing the entries of M via a property of their
Zeckendorf representations.

4 A result associated with the Fibonacci word

Let W be some infinite word over a binary alphabet, where, without loss of generality, the
alphabet is given by {0, 1}. Then W is a Sturmian word if it possesses exactly n+ 1 factors
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of length n for each n ≥ 0. Equivalently, a word W over the alphabet {0, 1} is a Sturmian
word if, and only if, there exist a, b ∈ R, with a irrational, such that the nth letter of W
corresponds to the integer ⌊a(n+ 1) + b⌋ − ⌊an+ b⌋ − ⌊a⌋ for each n ∈ N [1, 12].

The special case that results on setting a = α and b = 0 is known as the Fibonacci

word [1, 12, 13]. This mathematical object S∞ = 0100101001001 . . . is defined [10] to be the
infinite string of 0s and 1s constructed recursively as follows. Let S1 = 1 and S2 = 0, and
then, for k ≥ 3, Sk = Sk−1 · Sk−2, the concatenation of the strings Sk−1 and Sk−2. Thus

S3 = S2 · S1 = 0 · 1 = 01,

S4 = S3 · S2 = 01 · 0 = 010,

S5 = S4 · S3 = 010 · 01 = 01001,

and so on. The Fibonacci word is the unique infinite string S∞ such that for all k ≥ 2, Sk

is a prefix of S∞.
As will be shown in the following theorem, the matrix M is intimately related to the Fi-

bonacci word. In particular, the structure of each column of M mirrors that of the Fibonacci
word.

Theorem 4. Let lk denote the kth digit of the Fibonacci word S∞, so l1 = 0, l2 = 1, and so

on. Then

gj(k + 1)− gj(k) =

{

Fj+1, if lk = 1;

Fj+2, if lk = 0.

Proof. From Theorem 1 we have

gj(k + 1)− gj(k) = Fj

⌊

k + 1

α

⌋

+ kFj+1 + 1− Fj

⌊

k

α

⌋

− (k − 1)Fj+1 − 1

= Fj (⌊(k + 1)(α− 1)⌋ − ⌊k(α− 1)⌋) + Fj+1

= Fj (⌊(k + 1)α⌋ − (k + 1)− ⌊kα⌋+ k) + Fj+1

= Fj (⌊(k + 1)α⌋ − ⌊kα⌋ − 1) + Fj+1. (6)

If we now use the well-known result

⌊(k + 1)α⌋ − ⌊kα⌋ =
{

2, if k ∈ B(α);
1, if k ∈ B (α2)

in conjunction with (6), it follows that

gj(k + 1)− gj(k) = Fj + Fj+1 = Fj+2

if, and only if, k ∈ B(α), and
gj(k + 1)− gj(k) = Fj+1

if, and only if, k ∈ B(α2). Finally, Griffiths [6] shows that lk = 0 if, and only if, k is of the
form ⌊nα⌋ for some n ∈ N, thereby proving the theorem.
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5 A result concerning the rows

Finally, by proving the pair of theorems below, we demonstrate some of the intricate structure
possessed by the rows of M whilst simultaneously highlighting an aspect of the association
between the Fibonacci and Lucas numbers.

Theorem 5. Let

f(n) = 2
⌊n

2

⌋

− 1.

For each n ≥ 2, the sequences comprising the

(Fn + 1) th row, (2Fn + 1) th row, (3Fn + 1) th row, . . . , and
(

Lf(n)Fn + 1
)

th row

of M have jth terms given by

Fj+n + 1, 2Fj+n + 1, 3Fj+n + 1, . . . , and Lf(n)Fj+n + 1,

respectively. Furthermore, this property does not extend to the
((

Lf(n) + 1
)

Fn + 1
)

th row.

Proof. From Theorem 1 we know that the jth entry in the (qFn + 1)th row is

Fj

⌊

qFn + 1

α

⌋

+ qFnFj+1 + 1.

Furthermore, Hansen [7] shows that

Fk−1Fm−1 + FkFm = Fk+m−1

for any n,m ∈ Z. If follows, on setting k = j + 1 and m = n, that, in order to complete the
proof of the theorem, it would suffice to show that the first Lf(n) terms of the sequence

(⌊

qFn + 1

α

⌋)

q≥1

comprise the finite arithmetic progression Fn−1, 2Fn−1, 3Fn−1, . . . , Lf(n)Fn−1, while the next
term is either

(

Lf(n) + 1
)

Fn−1 + 1 or
(

Lf(n) + 1
)

Fn−1 − 1.
It is straightforward to prove, using Binet’s formula, that

Fn

α
= Fn−1 +

(−1)n−1

αn
.

Now consider the sequence
(

qFn + 1

α

)

q≥0

.

The difference between successive terms is given by

(r + 1)Fn + 1

α
− rFn + 1

α
=

Fn

α
= Fn−1 +

(−1)n−1

αn
.
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Let us suppose first that n is even, in which case this difference is

Fn

α
= Fn−1 −

1

αn

and we are looking for the largest value of m ∈ N such that

1

α
− m

αn
> 0.

This rearranges to m < αn−1. Since Ln−1 = αn−1 + βn−1 [8], where

β =
1−

√
5

2
= − 1

α
,

we know, remembering that n − 1 is odd in this case, that −1 < βn−1 < 0. It follows from
this that αn−1 − 1 < Ln−1 < αn−1, and hence that m = Ln−1.

On the other hand, if n is odd, then the difference between successive terms is

Fn

α
= Fn−1 +

1

αn
.

In this case we require the largest value of m ∈ N subject to

(

1− 1

α

)

− m

αn
> 0.

This rearranges to m < αn−2. Since n − 2 is odd, we have −1 < βn−2 < 0. It follows from
this that αn−2 − 1 < Ln−2 < αn−2, so that m = Ln−2.

Finally, on noting that the nth term of the sequence (a(n))n≥2 generated by

a(n) =

{

Ln−1, if n is even;

Ln−2, of n is odd,

is identical to Lf(n), where

f(n) = 2
⌊n

2

⌋

− 1,

the proof of the theorem has been completed.

Although the proof of Theorem 6 very much mirrors that of Theorem 5, we include it
here in its entirety for the sake both of completeness and of showing the interplay between
the Fibonacci and Lucas numbers.

Theorem 6. Let

g(n) = 2

⌊

n− 1

2

⌋

.
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For each n ≥ 3, the sequences comprising the

(Ln + 1) th row, (2Ln + 1) th row, (3Ln + 1) th row, . . . , and
(

Fg(n)Ln + 1
)

th row

of M have jth terms given by

Lj+n + 1, 2Lj+n + 1, 3Lj+n + 1, . . . , and Fg(n)Lj+n + 1,

respectively. The above property does not extend to the
((

Fg(n) + 1
)

Ln + 1
)

th row.

Proof. Using Theorem 1 once more, we know that the jth entry in the (qLn + 1)th row is

Fj

⌊

qLn + 1

α

⌋

+ qLnFj+1 + 1.

This time we just need to show that the first Fg(n) terms of the sequence

(⌊

qLn + 1

α

⌋)

q≥1

comprise the finite arithmetic progression Ln−1, 2Ln−1, 3Ln−1, . . . , Fg(n)Ln−1, while the next
term is either

(

Fg(n) + 1
)

Ln−1 + 1 or
(

Fg(n) + 1
)

Ln−1 − 1.
From Ln = αn + βn it follows that

Ln

α
= Ln−1 +

(−1)n
√
5

αn
.

The difference between successive terms of the sequence
(

qLn + 1

α

)

q≥0

is therefore given by

(r + 1)Ln + 1

α
− rLn + 1

α
=

Ln

α
= Ln−1 +

(−1)n
√
5

αn
.

If n is even, this difference is
Ln

α
= Ln−1 +

√
5

αn
.

In this case we are looking for the largest value of m ∈ N such that

(

1− 1

α

)

− m
√
5

αn
> 0.

This rearranges to

m <
αn−2

√
5
.
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Since n− 2 is even we have 0 < βn−2 < 1. Thus, since

Fn−2 =
1√
5

(

αn−2 − βn−2
)

,

we know that
αn−2

√
5

− 1 < Fn−2 <
αn−2

√
5
,

so that m = Fn−2.
However, if n is odd, then the difference between successive terms is

Ln

α
= Ln−1 −

√
5

αn
.

In this case we require the largest value of m ∈ N subject to

1

α
− m

√
5

αn
> 0.

This rearranges to m < αn−1
√
5. Since n− 1 is even, we have 0 < βn−1 < 1. It follows from

this that
αn−1

√
5

− 1 < Fn−1 <
αn−1

√
5
,

so that m = Fn−1.
This completes the proof of the theorem since the nth term of the sequence (b(n))n≥2

generated by

b(n) =

{

Fn−2, if n is even;

Fn−1, of n is odd,

is identical to Fg(n), where

g(n) = 2

⌊

n− 1

2

⌋

.
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