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Abstract

We present a parametric family of Riordan arrays, which are obtained by multiply-
ing any Riordan array with a generalized Pascal array. In particular, we focus on some
interesting properties of one-parameter Catalan triangles. We obtain several combina-
torial identities that involve two special Catalan matrices, the Chebyshev polynomials
of the second kind, some periodic sequences, and the Fibonacci numbers.
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1 Introduction

There are two infinite lower triangular matrices in the mathematical literature, that are
both called Catalan triangles. Let us denote them by C and B, respectively. By way of
illustration, their first rows are shown below:

C =



























1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
132 132 90 48 20 6 1
...

...
...

...
...

...
...

. . .



























, B =



























1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
132 165 110 44 10 1
429 572 429 208 65 12 1
...

...
...

...
...

...
...

. . .



























.

Note that the 0th column of C is given by the sequence of Catalan numbers (Cn)n≥0,
where Cn = 1

n+1

(

2n
n

)

. In turn, the 0th column of B is given by (Cn+1)n≥0. This similarity
explains why they are called Catalan triangles.

According to the online encyclopedia of integer sequences (OEIS) [11], the non-zero
entries of C (sequence A033184) are given by the formula Cn,k =

k+1
n+1

(

2n−k

n

)

, for n ≥ k ≥ 0.
They are known as the (ordinary) ballot numbers. Aigner [2] used these numbers (and
generalizations of them) to enumerate various combinatorial instances. Furthermore, Ferrari
and Pinzani [8] gave an interpretation of C, using the ECO method, and a suitable change
of basis in the vector space of one-variable polynomials. On the other hand, the non-zero
entries of B (A039598) are given by the formula Bn,k = k+1

n+1

(

2n+2
n−k

)

, for n ≥ k ≥ 0. The
numbers Bn,k first appeared in the work of Shapiro [17, 19], in problems connected with
non-intersecting paths, random walks, Eulerian numbers, runs, slides, and moments.3 We
will refer from now on to C as the Aigner array, and to B as the Shapiro array.

The aim of this paper is to discuss some interesting features regarding the product matrix
R(r) = RP (r), whereR is a given Riordan array, and the parameter r is any real or complex
number. The notation P (r) stands for a generalized Pascal array, such that P (0) = I is the
identity matrix, and P (1) = P is the classical Pascal array of binomial numbers, that comes
arranged as a lower triangular matrix. We elaborate, in particular, on the product matrix
C(r) = CP (r). Clearly, we have C(0) = C. It turns out that C(1) = B. The factorization
B = CP resembles Barry’s definition [3, see Sections 6.3 and 6.5] of the generalized ballot
array given by Bal = Cat ·Bin; where Bin = P , and Cat = diag(1,C).

Recently, Yang [23] introduced a generalized Catalan matrix, given by

C[a, b; r] =

(

(1−
√
1− 4rz

2rz

)a

, z
(1−

√
1− 4rz

2rz

)b
)

,

3Actually, Shapiro used the formula Bn,k = k
n

(

2n

n+k

)

, for n, k ≥ 1. His formula is just a shifted version of
the formula shown previously for Bn,k.
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where a, b are integer numbers, and r is an arbitrary parameter. Such a generalization
provides a unified way of presenting the matrices C and B, along with many other matrices
related to Catalan numbers. One can check that the 0th column of C[a, b; r] forms a sequence
of degree n monomials in r, whose coefficients are polynomials in a and b, that have rational
coefficients. The one-parameter Catalan triangles that we will study are instead given by

C(r) =

(

1− 2rz −
√
1− 4z

2z(1− r + r2z)
,
1− 2rz −

√
1− 4z

2(1− r + r2z)

)

.

We shall show explicitly that the 0th column of C(r) forms a sequence (C(r)n,0)n≥0 of degree
n monic polynomials in r. These polynomials have positive integer coefficients. In particular,
the constant term of C(r)n,0 is the Catalan number Cn. For this reason, we shall refer to
C(r) as a Catalan triangle too.

It is also worth mentioning that He [9] introduced recently, a family of Catalan triangles
which depend on two parameters. His (c, r)-Catalan triangles are based on the sequence
characterization of Bell-type Riordan arrays. We emphasize that they are also different from
the Catalan triangles C(r). One way to see this difference is to compare, once again, the 0th

column of both types of matrices. On the one hand, one can check that the 0th column of
a (c, r)-Catalan triangle forms a sequence of degree n homogeneous polynomials in c and r,
whose coefficients are the well-known Narayana numbers. On the other hand, the 0th column
of a Catalan triangle C(r) forms a sequence of one-variable polynomials of degree n, whose
coefficients are the ordinary ballot numbers. Recall that both the Narayana and the ballot
numbers are known to refine the Catalan numbers.

The fundamental theorem of Riordan arrays, and the isomorphism between Riordan
arrays and Sheffer polynomials (the former being the coefficient matrices for the latter),
allow us to interpret C(r) as a change of basis matrix in the space of polynomials in one
variable. Thus, for instance, the Shapiro array B is seen as the change of basis between the
Chebyshev polynomials of the second kind, and the standard polynomial sequence of powers
of one variable. In this way, by specifying values for the one-variable of the corresponding
polynomials, several formulas related to periodic sequences, the sequence of natural numbers,
and the sequence of Fibonacci numbers, can be stated and generalized.

2 General setting

The literature on Riordan arrays is vast and constantly growing (see, for instance, [1, 4,
5, 7, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22]). In this section we recall the fundamental
theorem of Riordan arrays, and discuss some general facts regarding the generalized Sheffer
polynomial sequence associated with any Riordan array. Then we define a one-parameter
family of Riordan arrays, and focus our attention on Catalan arrays in Section 3.
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2.1 Riordan Arrays

Let d(z) = d0 + d1z + d2z
2 + · · · , and let h(z) = h0 + h1z + h2z

2 + · · · be two formal
power series in z with coefficients in a given integral domain R, with unit 1. Assume that
d0 = d(0) 6= 0, and h0 = h(0) = 0. A Riordan array R is an infinite lower triangular matrix,
whose entries are given by

Rn,k = [zn]d(z)h(z)k. (1)

The operator [zn] acts on a formal power series f(z) =
∑

k≥0
fkz

k by extracting its nth

coefficient; that is, we have [zn]f(z) = fn. It is customary to denote R = (d(z), h(z)).
In addition, the set of Riordan arrays for which h′(0) 6= 0, and that is equipped with the
multiplication given by

(d1(z), h1(z))(d2(z), h2(z)) = (d1(z)d2(h1(z)), h2(h1(z))), (2)

forms a group. We denote this group by Rio. The group identity is the usual identity matrix
I = (1, z). Furthermore, for any R ∈ Rio, its inverse is given by R

−1

= (1/d(h̄(z)), h̄(z)),
where h̄(z) denotes the compositional inverse of h(z).

The order of a formal power series g(z) =
∑

k≥0 gkz
k is the minimal index k such that

gk 6= 0. Since R[[z]] denotes the ring of formal power series in z with coefficients in R,
we will write Rr[[z]] to denote the set of formal power series of order r. Therefore, if
R = (d(z), h(z)) ∈ Rio, then d(z) ∈ R0[[z]], and h(z) ∈ R1[[z]]. For simplicity, and without
loss of generality, we further assume that d0 = 1, and h1 = h′(0) = 1, so that Rn,n = hn

1 = 1,
for all n ≥ 0.

Now, let us define an action ∗ of the group Rio on R0[[z]] by

(d(z), h(z)) ∗ g(z) = d(z)g(h(z)). (3)

Formula (3) represents the traditional matrix-column multiplication. Therefore, it is also
equivalent to saying that, for any n ≥ 0, the following identity holds

n
∑

k=0

Rn,kgk = [zn]d(z)g(h(z)). (4)

Equation (4) is known as the fundamental theorem of Riordan arrays. It is usually used to
deal with sums and combinatorial identities. In particular, let g(z) = 1 + xz + x2z2 + · · · =

1
1−xz

. We write

pRn (x) =
n

∑

k=0

Rn,kx
k = [zn]

d(z)

1− xh(z)
. (5)

We call (pRn (x))n≥0 the Sheffer polynomial sequence associated with R. Formula (5) implies
that the generating function of pRn (x) is given by

∑

n≥0

pRn (x)z
n =

d(z)

1− xh(z)
. (6)
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Likewise, the generating function for the Sheffer polynomial associated with the inverse array
R

−1

= (1/d(h̄(z)), h̄(z)) is

∑

n≥0

pR
−1

n (x)zn =
1

d(h̄(z))

1

1− xh̄(z)
. (7)

Since R is invertible, and the sequence (xn)n≥0 is a basis for the linear space C[x], the
sequence (pRn (x))n≥0 is also a basis for C[x]. Therefore, any R ∈ Rio can be interpreted as
the change of basis matrix between the standard basis (xn)n≥0, and the basis of polynomials
(pRn (x))n≥0. Hence, we have

n
∑

k=0

Rn,kp
R

−1

k (x) = xn. (8)

We will use Equation (8) in Section 4 to deduce some interesting combinatorial identities
involving the Riordan arrays C and B.

2.2 One-parameter Riordan arrays

The classical Pascal array P of binomial numbers
(

n

k

)

is a Riordan array, since we can
write P = (p(z), zp(z)), where p(z) = 1

1−z
. Given any real number r, the Riordan array

P (r) =
(

p(rz), zp(rz)
)

=
(

1
1−rz

, z
1−rz

)

is known as the generalized Pascal array of parameter

r. Its entries are given by P (r)n,k =
(

n

k

)

rn−k.

Definition 1. Let R be in Rio. The r-Riordan array R(r) is defined by R(r) = RP (r).

Set R = (d(z), h(z)). Then, by Equation (2), we have R(r) =
(

d(z)
1−rh(z)

, h(z)
1−rh(z)

)

. Using

Equation (1), it is easy to check that the entries of R(r) are given by

R(r)n,k =
[

zn
] d(z)

1− rh(z)

(

h(z)

1− rh(z)

)k

=
[

zn
] d(z)h(z)k
(

1− rh(z)
)k+1

.

Lemma 2. For any real number r, the Sheffer polynomial sequence (p
R(r)
n (x))n≥0 satisfies

the identity

pR(r)
n (x) = pRn (x+ r).

Proof. By Equation (5), we have

pR(r)
n (x) =

n
∑

k=0

R(r)n,kx
k =

[

zn
]

d(z)

1− rh(z)

1− x
h(z)

1− rh(z)

=
[

zn
] d(z)

1− (x+ r)h(z)
= pRn (x+ r).
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Corollary 3. Let n be a non-negative integer. The constant term and the sum of coefficients

of p
R(r)
n (x) are given by

pR(r)
n (0) = R(r)n,0 =

n
∑

k=0

Rn,kr
k. (9)

pR(r)
n (1) =

n
∑

k=0

R(r)n,k = R(r + 1)n,0. (10)

3 r-Catalan triangles

Let us recall that the generating function for the well-known Catalan numbers Cn = 1
n+1

(

2n
n

)

is c(z) = 1−
√
1−4z
2z

. We apply Definition 1 to the Riordan array C =
(

c(z), zc(z)
)

.

Definition 4. The r-Catalan triangle C(r) is given by C(r) = CP (r). Then

C(r) =

(

c(z)

1− rzc(z)
,

zc(z)

1− rzc(z)

)

=

(

1− 2rz −
√
1− 4z

2z(1− r + r2z)
,
1− 2rz −

√
1− 4z

2(1− r + r2z)

)

. (11)

In particular, we have C(0) = C. Moreover, since the identity c(z) = 1 + zc(z)2 holds,

it follows that C(1) = CP (1) =
(

c(z)
1−zc(z)

, zc(z)
1−zc(z)

)

=
(

c(z)2, zc(z)2
)

= B.
The next formula follows from Definition 4.

Lemma 5. The entries of C(r) are given by

C(r)n,k =
[

zn−k
]

(

c(z)

1− rzc(z)

)k+1

=
n−k
∑

i=0

i+ k + 1

n+ 1

(

2n− i− k

n

)(

i+ k

k

)

ri. (12)

The matrix C(r) is an array of polynomials in r. By way of illustration, the first entries
of C(r) are

C(r) =



















1
1 + r 1

2 + 2r + r2 2 + 2r 1
5 + 5r + 3r2 + r3 5 + 6r + 3r2 3 + 3r 1

14 + 14r + 9r2 + 4r3 + r4 14 + 18r + 12r2 + 4r3 9 + 12r + 6r2 4 + 4r 1
...

...
...

...
...

. . .



















.

For every k ≥ 1, column k of C(r) is the (k + 1)-fold convolution of column 0. Thus, for
example, the first columns of C(2) are given by the following sequences:

C(2) =
(

A001700 A008549 A045720 A045894 A035330 · · ·
)

.
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The 0th column of C(r) forms a sequence (C(r)n,0)n≥0 of monic polynomials, which are
given by the matrix-column product C[1, r, r2, . . .]T, as observed in Equation (9). We can
obtain some known sequences by assigning values to the parameter r. For instance, we have
(C(3)n,0)n≥0 = A049027 and (C(4)n,0)n≥0 = A076025. Observe that, by Equation (12),
the constant term of each polynomial in the sequence (C(r)n,0)n≥0 is equal to the Catalan
number Cn. Moreover, we also have

Cn+1 =
1

n+ 2

(

2n+ 2

n+ 1

)

=
1

n+ 1

(

2n+ 2

n

)

= Bn,0 = C(1)n,0 =
n
∑

i=0

i+ 1

n+ 1

(

2n− i

n

)

=
n
∑

k=0

Cn,k.

This is a well-known result. In this sense, we say that the polynomial sequence (C(r)n,0)n≥0

is a refinement of the shifted Catalan sequence (Cn+1)n≥0.
Now, set h(z) = zc(z). We have z = h̄(z)c(h̄(z)). It is easy to check that h̄(z) = z − z2.

Hence, we have C
−1

=
(

1/c(zc(z)), zc(z)
)

= (1 − z, z − z2). Since C(r)
−1

= P (r)
−1

C
−1

, it
follows that

C(r)
−1

=

(

1

1 + rz
,

z

1 + rz

)

(

1− z, z − z2
)

=

(

1 + (r − 1)z

(1 + rz)2
,
z + (r − 1)z2

(1 + rz)2

)

. (13)

Lemma 6. The entries of C(r)
−1

are given by

C(r)
−1

n,k =
[

zn−k
]

(

1 + (r − 1)z

(1 + rz)2

)k+1

= (−1)n−k

n−k
∑

i=0

(

i+ k + 1

n− i− k

)(

i+ k

k

)

ri. (14)

Lemma 5 and Lemma 6 show that both C(r)n,k and (−1)n−k
C(r)

−1

n,k are polynomials in
r with positive integer coefficients. In addition, note that the polynomial C(r)n+1,1 is of
degree n, has constant term Cn+1, and its leading coefficient is n + 1. Both lemmas are
useful to deduce several formulas and combinatorial identities. For instance, letting r = 0 in
Equation (14), we obtain

C
−1

n,k =
[

zn−k
]

(1− z)k+1 =

(

n− 2k − 2

n− k

)

= (−1)n−k

(

k + 1

n− k

)

.

Similarly, letting r = 1 in Equation (14), we get

B
−1

n,k =
[

zn−k
]

(

1
(1+z)2

)k+1

= (−1)n−k

(

n+ k + 1

n− k

)

= (−1)n−k

n−k
∑

i=0

(

i+ k + 1

n− i− k

)(

i+ k

k

)

.

(15)

Thus, the following formula is immediate.

Lemma 7.
(

n+ k + 1

n− k

)

=
n−k
∑

i=0

(

i+ k + 1

n− i− k

)(

i+ k

k

)

.
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The next non-trivial combinatorial identity follows directly from Equation (10) and Equa-
tion (12).

Lemma 8.

n
∑

k=0

n−k
∑

i=0

i+ k + 1

n+ 1

(

2n− i− k

n

)(

i+ k

k

)

ri =
n

∑

i=0

i+ 1

n+ 1

(

2n− i

n

)

(r + 1)i.

As for the generating functions for the Sheffer polynomials associated with C(r) and
C(r)

−1

, the next formulas are straightforward consequences of Equation (6) and Equation
(7), using Formula (11) and Formula (13), respectively.

Proposition 9.

∑

n≥0

pC(r)
n (x)zn =

c(z)

1− (x+ r)zc(z)

∑

n≥0

pC(r)
−1

n (x)zn =
1 + (r − 1)z

1 + (2r − x)z + (r2 − (r − 1)x)z2
(16)

In Section 4, we will use Proposition 9 to obtain more combinatorial identities.

4 Special identities

4.1 Identities involving the Aigner array

Set r = 0 and x = −1 in Equation (16). We obtain

1 +
∑

n≥1

pC
−1

n (−1)(−z)n =
1 + z

1− z − z2

= 1 + 2z + 3z2 + 5z3 + 8z4 + 13z5 + 21z6 + 34z7 + 55z8 + · · ·

= F2 + F3z + F4z
2 + F5z

3 + · · · ,
where Fn is the nth Fibonacci number, for n ≥ 2. Hence, for n ≥ 0, it holds that

(−1)npC
−1

n (−1) = Fn+2.

Since pC
−1

n (x) =
∑n

k=0C
−1

n,kx
k, we have

C
−1















1
−1
1
−1
...















=















F2

−F3

F4

−F5
...















, or equivalently, C















F2

−F3

F4

−F5
...















=















1
−1
1
−1
...















.
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Then
n

∑

k=0

(

k + 1

n− k

)

= Fn+2, and
n

∑

k=0

k + 1

n+ 1

(

2n− k

n

)

(−1)n−kFk+2 = 1.

4.2 Identities involving the Shapiro array

Set r = 1 in Equation (16). Shapiro, Woan, and Getu [19] observed that the Catalan triangle
B verified the following interesting identity:

B



















1
2
3
4
5
...



















=



















1
4
42

43

44

...



















. (17)

The problem of finding a matrix identity that extends the sequence (1, 4, 42, 43, . . .) to the
sequence (1, k, k2, k3, . . .) in Equation (17), was studied by Chen, Li, Shapiro and Yan [5].
They generalized the following known recurrence relation for B; namely,

Bn,k = Bn−1,k−1 + 2Bn−1,k +Bn−1,k+1,

by constructing a matrix M that satisfies the identity

M















1
1 + t

1 + t+ t2

1 + t+ t2 + t3

...















=















1
k
k2

k3

...















.

The first column ofM (that is, its 0th column) was then interpreted in terms of weighted par-
tial Motzkin paths. Here, we approach the problem of extending the sequence (1, 4, 42, 43, . . .)
to the sequence (1, k, k2, k3, . . .), by keeping C(1) = B fixed, and using Sheffer sequences.
More explicitly, by Equation (16), we have

1 +
∑

n≥1

pB
−1

n (x)zn =
1

1− (x− 2)z + z2
.

Furthermore, by Equation (8), we also have

B













1

pB
−1

1 (x)

pB
−1

2 (x)
...













=











1
x
x2

...











, or equivalently, B
−1











1
x
x2

...











=













1

pB
−1

1 (x)

pB
−1

2 (x)
...













. (18)
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By Identity (15), the polynomial pB
−1

n (x) is given by

pB
−1

n (x) =
n

∑

k=0

B
−1

n,kx
k =

n
∑

k=0

(−1)n−k

(

n+ k + 1

n− k

)

xk. (19)

Note that pB
−1

n (x) = Un

(

x−2
2

)

, where (Un(x))n≥0 denotes the sequence of Chebyshev

polynomials of the second kind [6]. Moreover, the sequence (pB
−1

n (x))n≥0 satisfies the three-
term recursion

pB
−1

n (x) = (x− 2)pB
−1

n−1(x)− pB
−1

n−2(x), n ≥ 2,

with initial values pB
−1

0 (x) = 1 and pB
−1

1 (x) = x−2. Whenever x ∈ Z, the polynomial sequence

(pB
−1

n (x))n≥0 reduces to an integer sequence. By specifying the values of x in Equation (18),
we obtain many interesting relations.

Example 10 (Periodic sequences). When x = 2, the recursion pB
−1

n (2) = −pB
−1

n−2(2), with

initial values pB
−1

0 (2) = 1 and pB
−1

1 (2) = 0, is solved by the period-4 sequence 1, 0,−1, 0.
Hence, we have



















1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
...

...
...

...
...

. . .





































1
0
−1
0
1
...



















=



















1
2
22

23

24

...



















.

When x = 3, the recursion pB
−1

n (3) = pB
−1

n−1(3) − pB
−1

n−2(3), satisfying the initial conditions

pB
−1

0 (3) = pB
−1

1 (3) = 1, is solved by the period-6 sequence 1, 1, 0,−1,−1, 0. Thus, we have



















1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
...

...
...

...
...

. . .





































1
1
0
−1
−1
...



















=



















1
3
32

33

34

...



















.

These two cases are better understood by recalling that Un(cos y) =
sin(n+1)y

sin y
. Hence, we have

pB
−1

n (2) = Un

(

cos π
2

)

and pB
−1

n (3) = Un

(

cos π
3

)

. These identities explain why we obtained
periodic sequences.

Example 11 (Natural numbers). When x = 4, the recursion pB
−1

n (4) = 2pB
−1

n−1(4)− pB
−1

n−2(4),

with initial values pB
−1

0 (4) = 1, pB
−1

1 (4) = 2, is solved by the sequence (pB
−1

n (4))n≥0 =

10



(n+ 1)n≥0. Thus, we obtain the Identity (17):



















1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
...

...
...

...
...

. . .





































1
2
3
4
5
...



















=



















1
4
42

43

44

...



















.

The previous matrix identity is equivalent to Chen’s combinatorial formula [5]:

n
∑

k=0

(k + 1)2

n+ 1

(

2n+ 2

n− k

)

= 4n.

Example 12 (Fibonacci numbers). When x = 5, the recursion pB
−1

n (5) = 3pB
−1

n−1(5)−pB
−1

n−2(5),

with initial conditions pB
−1

0 (5) = 1 and pB
−1

1 (5) = 3, is solved by the subsequence of Fibonacci

numbers (pB
−1

n (5))n≥0 = (F2n+2)n≥0. Thus, Shapiro’s triangle B, and the Fibonacci numbers
of even index, are related by the following identity:



















1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
...

...
...

...
...

. . .





































1
3
8
21
55
...



















=



















1
5
52

53

54

...



















.

Equivalently, we have
n

∑

k=0

k + 1

n+ 1

(

2n+ 2

n− k

)

F2k+2 = 5n. (20)

Using the well-known binomial recurrence relation
(

n

k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

in Equation (19),
and then inverting Formula (20), we obtain

F2n+2 = (−1)n
n

∑

k=0

((

n+ k + 2

n− k

)

−
(

n+ k + 1

n− k − 1

))

(−5)k.

Moreover, seeing as F2n+3 = F2(n+1)+2 − F2n+2, we can deduce an analogous formula for the
Fibonacci numbers of odd index; that is

F2n+1 = (−1)n
n

∑

k=0

((

n+ k + 2

n− k

)

−
(

n+ k

n− k − 2

))

(−5)k.
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