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Abstract
Let (by)n>0 be the binomial transform of (a,)n>0. We show how a binomial trans-
formation identity of Chen proves a symmetrical Bernoulli number identity attributed
to Carlitz. We then modify Chen’s identity to prove a new binomial transformation
identity.

Carlitz [1] posed as a problem the remarkable symmetric Bernoulli number identity

03 (1) B = 03 () B 1)
k=0 k=0
valid for arbitrary m,n > 0. The published solution by Shannon [2] used mathematical
induction on m and n. The identity was rediscovered recently by Vassilev and Vassilev-
Missana [10], but stated in the form
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valid for arbitrary positive integers m and n. Identity (2) is equivalent to Identity (1) since
[(—1)™ — (=1)"] Byyn = 0. Their proof used the symmetry of a function fi(z,y) involving
Bernoulli numbers introduced in a separate paper [9]. They give no reference to Carlitz’s or
to Shannon’s proof.

An alternative proof of Equation (1) is derived through an application of a binomial
transformation identity discovered by Chen [3]. Let (a,) be any sequence of numbers, and
define the binomial transform of (a,) to be the sequence (b,), where b, = >"p_o (7)ar. A
corollary of [3, Thm. 2.1] is

> (G Jowsn = 20 (e 3)

The Bernoulli numbers satisfy the recurrence Y-, (7)Br = (—1)"B, for n > 0. Setting
ay = By, we then have b, = (—1)"B,, so that Equation (3) becomes
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which is precisely Identity (1) of Carlitz.
Chen’s proof of Equation (3) relies on certain properties of Seidel matrices. We present
a direct proof which relies on the hypergeometric identity
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see [6, Identity 3.47, p. 27]. In Equation (4) we require that m and r be nonnegative integers
and z be a complex number.
Since the binomial transform inverts to give a,, = > _(=1)""*(})b), we find that
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A careful analysis of this preceding proof yields a short proof of [3, Thm. 3.2], where Chen
relies on lengthy induction arguments. We will instead use Equation (4).



Theorem 1. [3, Thm. 3.2] Let b,, be the binomial transform of a,,. Then
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for arbitrary nonnegative m,n, and s.

Proof. By definition b, = Y _ (})ax. This implies that a,, = > _,(=1)"*(})by. Hence
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where the fourth equality follows by Equation (4). O
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Equation (5) allows us to establish a generalization of the curious formula
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discovered by Simons [8]. A quick proof of this was given by Gould [7] using elementary
properties of Legendre polynomials. Instead, choose a,, = 2" for alln > 0. Then b,, = (1+x)"
and Identity (5) tells us that
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Letting m = s = n recovers Identity (6).
Through an induction argument Chen proves

Theorem 2. [3, Thm. 3.1] Let b, be the binomial transform of a,. Then

n<++4)rs)an+k+s = Z(—l)"_k(m(++)+s)bm+k+s

s—ls—l-j n41+i
Z S—l—])(S—l) (—1)" " sa;
+ . 9 7
e ( J (m—l—n+1+z)(m+n+z) (7)

where m, n, and s are nonnegative integers.



If we use Equation (4) and the following hypergeometric identity attributed to Frisch [4],
[5, p. 337],
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(6, Identity 4.2, p. 46], we are able to prove the following new binomial transformation
identity.

Theorem 3. Letb,, be the binomial transform of a,,. Let m, n, and s be nonnegative integers.
Then
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Proof. By definition b, = >"7_; (})ax. Hence a, = Y (=1)"7*(})by, and
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The fourth line follows from Equation (4) while the seventh follows from Equation (8).
In summary, we have shown that
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If we compare Identity (7) to Identity (10), we conclude that
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Equation (11) can be furthered simplified by applying Equation (8). In particular,

- szl:] (5 —-1- ]) (s — 1) (—1)" 1 Hisa;
/ ] (m+n+1+z (m+n+z)

7=0 =0
s—1 s—1—j S— 1
n S s—1 ( J)
= : (—1) +1n+1( . >a] Z m+n+1+z)

Jj=0 1= n+1
_ 81(_1)n+1 S (5—1)0/' n+1 1 '
= n+1\ j Tn4s — g (Tt

s—1 S(S_,l)
= (=" Z -~ m+n+s,]~) G-

= (n+s—7)(m™t

These calculations show that Equation (11) is equivalent to
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Set s — s+ 1 to obtain

i (e, -y 0 () (13)
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Since (n+s+1—7)("" ) = (m+n+s+1— ) ("), we see that Equation (13)
is equivalent to Equation (9). O
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