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Abstract

Letting B, be the n-th r-Bell polynomial, it is well known that B, (z) admits
specific integer coordinates in the two bases {z'}; and {xB;(z)}; according to, respec-
tively, the Stirling numbers and the binomial coefficients. Our aim is to prove that the
sequences By, r(z) and By, y4¢(x) admit a binomial recurrence coefficient in different
bases of the Q-vector space formed by polynomials of Q[X].

1 Introduction

In different ways, Belbachir and Mihoubi [5] and Gould and Quaintance [10] showed that the
Bell polynomial B,,,, admits integer coordinates in the bases {z'B;(x)}; ;. Xu and Cen [18]
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extended the latter in some particular cases of complete Bell polynomials. Also, the second
author and Bencherif |2, 3] established that Chebyshev polynomials of first and second kind,
and more generally bivariate polynomials associated with recurrence sequences of order two,
including Jacobsthal polynomials, Vieta polynomials, Morgan-Voyce polynomials and others,
admit remarkable integer coordinates in a specific bases. Some recurrence relations on Bell
numbers and polynomials are given by Spivey [16] and some other relations by Sun and Wu
[17]. What about r-Bell polynomials?
The r-Bell polynomials {B,, , },>0 are defined by their generating function

Z BW(I)Z—H! = exp(z(e’ — 1) +1t),

n>0

and satisfy the generalized Dobinsky formula

7', (1)

It is well known that B, ,(z) admits integer coordinates in the following two: bases {z'}
and {B;(x)}; as

B, (z) = En: {?i:}x and B, (z) = En: (’Z) " Bi(), 2)

i=0 =0

according to, respectively, the r-Stirling numbers of the second kind and the binomial coef-
ficients, see for example [11]. For a general overview of the r-Stirling numbers, one can see
6, 7, 8, 15]. An extension of r-Stirling numbers of the second kind and the r-Bell polyno-
mials is given in [14]. In the sequel, we refer to [1, 4] for some properties and recurrence
relations of r-Lah numbers.

Our aim is to prove that the polynomials B, ., , and B, . admit a binomial recurrence
coefficient in the families

{2'Bujir(2)}ig, {2 Buarr()}i, {2'Bjn(2)};, {Bjs(2)}; and {2'B;(x)},

of the basis of the Q-vector space formed by polynomials of Q[X] .

2 Main results

Mez6 [11, Thm. 7.1] showed that the r-Bell polynomials satisfy the following recurrence

relation
n

Bura0) =3 () Burto),

=0
This can be generalized as follows.



Theorem 1. Decomposition of B, ,+s(x) into the family of basis {B;,(x)};. For all nonneg-
atwe integers n, r and s, we have

Burase) = 3 (1)1 Buule)

i=0
Proof. Use (1) to get
dS
drs (exp(z) By (7)) = exp(z) By rys(2). (3)

Using the following identity [11]

we obtain

0B ) =3 () et B o)
and, applying property (3), we obtain the desired identity.

We give now a combinatorial proof: let x be a positive integer (a number of colors).
By the definition of the r-Bell numbers, B, s(z) gives the number of partitions of an
(n 4+ r + s)-element set, with the restriction that the first r + s elements are in distinct
subsets (these are called distinguished elements from now on). Moreover, the blocks not
containing distinguished elements are colored with one of the x colors.

We can construct such partitions in the following way: from the n non-distinguished
elements we put n — ¢ into the blocks of r distinguished elements. To do this, we have
(niz) = (?) possibilities choosing those n —i elements. Then, we put these elements into the
above mentioned blocks, which can happen on 7"~ ways. Then the remaining n+s—(n—i) =
s + ¢ elements have to form a partition in which s elements go to different blocks and the
other blocks are colored with one of the x colors. The number of these possibilities is exactly
B, s(z). The left and right hand sides coincide for any positive integer x, so they coincide
for any x € R. ]

Corollary 2. For all nonnegative integers n, k, r and s, we have

n—k
n—+r-+s 1 S n-+r
= — |+ k)
{k+r+s}r+s k! j=0 (J) {J+k+r}r(]+ )7 (5)

n+r+s " /n 14+ .
TSI S S TF S S 0
k+r+sr+s — \1 k+r),

(

Proof. From the definition of B, ,(z) given by (2), we have

Ten@B, @) = {1 e,



and upon using the Leibniz formula, one obtains

st = L2 (i)

=0 k=0
" s i [n+1r]
=22 o )utin,g®
o\t~ Ple+r ),
n n .! + r
-2 (i
= T
)Ty
— T\ LJii+r),
The identity (5) follows by identification using the definition of B, ,;s(x), and the fact that
the elements 1,2,...,r + s are in different parts.
We have a combinatorial interpretation as follows: for j =0, ..., s, there are (Sfj) = (j)
ways to form s — j singletons using the elements in {1,...,s} and there are { kiﬁj} ways

to partition the set {s+1,...,n+r+ s} into (k+r+s) — (s —j) = k + r + j subsets such
that the elements of the set {s+1,...,s+r} are in different subsets. The j elements of the
set {1,...,s} not already used can be inserted in the (k +r + j) — r = k + j subsets in

(k+J)!

(b 3) (b ) = +1) = =

ways. Then the number of partitions of the set {1,...,n+7r+ s} into k + r + s subsets such
that the elements of the set {1,...,7 + s} are in different subsets is

{n+r+s} _ZS:(S>{ n+r }(k+j)!
k+r—i—sr+s_j: i) \k+r+y3). kU

0

For the identity (6), using the definition of B, ,(x) and Theorem 1 gives

~ [n+7r+
G = s
o Tr+s).

=0

- n) n_ii{iﬂ‘} K
= s T

z‘o(2 k=0 k—Hn?"
B i n T+ i
-2 (Ol

k=0 i=k T

Then, by identification, we obtain the identity (6) of the corollary.

3 |
3



We also give a combinatorial proof for this identity: from the n non-distinguished ele-
ments i go to the k + r blocks which contain the first r distinguished elements: (?) ;fr:}T
possibilities. The remaining n — ¢ elements go to the s additional distinguished blocks, in

s"~" ways. (So the k+ 1+ s blocks are guaranteed). Finally we sum the 7 disjoint cases. [

We note that the formula (6) is immediate from [6, Lemma 13] with appropriate substi-
tutions.

In different ways, Belbachir and Mihoubi [5] and Gould and Quaintance [10] showed that
B ym(x) admits a recurrence relation according to the family {z'B;(x)} as follows:

By ZZ{ b1 )ittt 7)

In [11], Mez6 cited the Carlitz identities [7, eq. (3.22-3.23)] given by
" (mtr P
Bhymy = By jgr d Bpyys = —1 sjan i)
o ;{kJrr}T Ak S0C Fnrt ;;{k‘—i—rlﬂ( ) e

and established [13], by a combinatorial proof, the following identity

o =557 (),

k=0 5=0

where B,, = B,(1) is the number of ways to partition a set of n elements into non-empty
subsets, B,,, = B, ,(1) is the number of ways to partition a set of n 4 r elements into non-
empty subsets such that the first r elements are in different subsets and {Z}r is an r-Stirling
number of the second kind; see [6, 7, 8]. The following theorem generalizes these results.

Theorem 3. Decomposing B, ym () into the family of the basis {x* B, j1r(2) }i, {27 Bir(2) } ik
and {x? By(x)};x : for all nonnegative integers n, m, r and s, we have

By (1) = f{jjj}B() ©)
Bunele) = XS {7 () w0 )

k=0 j=0

3 |l
<.

Buonele) = X" (1) G+t (10)

—0 =0 J+r

Also, we have

s s+ o
P Buriate) = 3 [ ] (0 B o), (1)
k=0 T



Proof. For the identity (8) we proceed as follows: the identity given in [5] and [16] can be
written as follows

1 11 R 2

From Theorem 1, we have )" , (")j”*iBm(x) = B, j+s(z), s > 0, then

i

and therefore

T o) B (o)) = Y- {7 Lo exp(o) B, ) (12)

Now, using (1), we get -
drr (exp(z)Bn(z)) = exp(z) By () (13)

and using (13) and the Leibniz formula in (12), we state that

Buame) = 2 {T}E (:) Gl B @)

=0

_ kg m T i'

k=0 j=k
Let
B " (m r g!
i =3 {71 D)
=k

Then

m>0 ik sy \J
= G2, -y
s RN R
_ (eXp(IZ!_l)k exp(rt),



which means that a(m, k,r) = m”} and By, () =Y 10, ?::}rkamkM(x)'
For a combinatorial proof, we consider that there are n +m non-distinguished elements.
From these we put m and the r distinguished elements into k + r blocks, such that the

r distinguished elements are separated: there are {m”} cases. We have to color the £

blocks not containing distinguished elements, and this can happen z* ways. Then n items
remain. We can put these elements into the already constructed blocks or into new blocks.
We can handle the already constructed blocks as distinguished elements. So we have n +
k 4+ r elements, of which k£ + r are distinguished. In addition, we have to color the non-
distinguished blocks To do this, we have B,, j+,(z) possibilities. Altogether, if k is fixed, we
have {m”} "By, 1o (x) cases. We can sum over k.

For the identity (9), use Theorem 1 to replace By, x1,(7) by D7 ( Vk" I B, (z).

For the identity (10), use relation (4) to replace B, x4.(x) by D7, ( )(k 4 r)" = B;(z).

As a combinatorial proof, we can argue as follows: from the n elements we choose k
elements in (Z) ways and separate them. The remaining m + r elements go to j 4+ r blocks,
but r elements stay in disjoint sets. This can happen in {m”} ways. We have to color the

j blocks; this is why the factor 27 appears. The non-separated n — k elements go to these
blocks. This means (j + r)"~* cases. Finally, the above k separated items go to separated
and colored blocks; this is what By (x) represents. We sum over the possible values of j and
k. Again, the left- and right-hand sides coincide for any positive integer x, so they coincide
for any x € R.

For the identity (11) using (1) and the following identity (see [6])

= [m+
Z{m 7} =(x+r)z+r+1)---(x+r+m-—1),
— k+r
we can write
s+ ok B . = . = [s+r], L
S [ 0 Bt = Cesta e S [ ien
=0 r =0 k=0 r
= (=1)® _ iV =i+ 1) (—id s —1)(i n_
(—1)” exp( ﬂf);( )(=i41) (=it s =D+ r)"
and this can be written as
exp(— Zzz—l z—s—l—l)(i—l—r)”% = :L'Sexp(—:c);(i+r)"(i_s>!



Corollary 4. For all nonnegative integers n, m, k, r and s, we have

min(m,k) .
n+m-+r m4r| [n+y+r
= E 14
{ k?—l-’f’ }r {j+r}r{ kZ+T }j+r’ ( )

=0
n+r+s > s+ (n+j+r
_ _1)5d ) 15
{k+r+8}r+s ]ZO( ) |:j+’l":|,r{]€+8+7“}r ( )

Proof. For the identity (14), we have from Theorem 3

= (m+r ;
B, (x) = , By, i (T).
nel) =S B 2)
J=0 "
; n n+j+r i ;
Upon using (2) to replace B, jir(x) by > 7", {i+;+r }ij , We can write
N (mAr) o= (ntjEr »
Bn-l—m,r(I) - Z{ . } Z{ . j } ZL’H_J
= JAr )i ettt )i,
n+m min(m,k )
- ix’“ 2(: ){m+r} {n+]+r}
k=0 3=0 I+ ktr Jtr
and using the definition By, (z) = > 0" "ZT:T}TJJI“, the first identity follows by identifi-
cation. The identity (15) follows by the same way upon using the fourth identity of Theorem
3. O

Remark 5. One can proceed similarly, as in the proof of the Spivey’s identity [16] to obtain
a combinatorial proof for the identity (9) when x is a positive integer.
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