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Abstract

We study integer coefficient polynomials of fixed degree and maximum height H

that are irreducible by the Dumas criterion. We call such polynomials Dumas polyno-

mials. We derive upper bounds on the number of Dumas polynomials as H → ∞. We

also show that, for a fixed degree, the density of Dumas polynomials in the set of all

irreducible integer coefficient polynomials is strictly less than 1.

1 Introduction

The two most well-known polynomial irreducibility criteria based on coefficient primality
divisibility are probably the Eisenstein criterion and the Dumas criterion. In the last decade
and a half, results regarding the density of polynomials that satisfy the Eisenstein criterion
have been obtained (see, for example, Dobbs and Johnson [2], Dubickas [3], and the author
and Shparlinski [5, 6]). In this paper we explore densities of polynomials that satisfy the
Dumas criterion. This criterion is a sufficient condition for polynomial irreducibility over Z
(and hence Q). It can be thought of as a generalization of the Eisenstein criterion since the
Eisenstein criterion is an easy consequence of the Dumas criterion.

We can now state the Dumas criterion. Let

f(x) =
n

∑

i=0

Aix
i ∈ Z[x] (1)
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be such that A0An 6= 0.
If the Newton polygon for f with respect to any prime is a single segment and contains

no points with integer coordinates except the end points, then f is irreducible. The proof of
the Dumas criterion is often based on the Newton diagram for a polynomial. The Newton
diagram is similar to, but lesser known than, the Newton polygon. Construction of the
Newton diagram and the proof of the Dumas criterion can be found in the book of Prasolov
[8, Subsection 2.2.1]. Interested readers can also consult the 1906 paper by Dumas [4].

By way of example, the polynomial f(x) = x4 + 8 with respect to the prime number 2
has a Newton polygon without integer coordinates (other than endpoints). Therefore f is
irreducible by the Dumas criterion. By contrast, the reducible polynomial f(x) = x4 + 4
cannot satisfy the Dumas criterion since the coordinate (2, 2) or (2, 0) will appear in any
Newton polygon of f . So the determination of irreducibility using the Dumas criterion is
not possible for f(x) = x4 + 4. For integers n ≥ 2 and H ≥ 1 let Dn(H) be the number of
Dumas polynomials of height at most H, that is, satisfying max{|A0|, . . . , |An|} ≤ H. Our
main result is the following theorem.

Theorem 1. We have

Dn(H) ≤ (2H)n+1τn +

{

O (H2(logH)2) , if n = 2;

O (Hn) , if n ≥ 3,

where

τn =







1−
∏

p prime

(

1− 1
p

)2 (

1 + 2
p

)

, if n = 2;

1− 1
ζ(n−1)

, if n ≥ 3.

We have already noted that the number of polynomials that satisfy the Eisenstein cri-
terion, calculated by the author and Shparlinski [5], provides a lower bound on Dn(H).
Specifically,

Lemma 2. We have

Dn(H) ≥ ϑd2
dHd +

{

O
(

Hd−1
)

, if d > 2,
O(H(logH)2), if d = 2,

where

ϑd = 1−
∏

p prime

(

1−
p− 1

pd+1

)

.

We note the appearance of values of the zeta function in the main term of the estimate in
Theorem 1. This arises from the fact that estimates of the probability of k-tuples of positive
integers being relatively prime play a major role in the proof of Theorem 1.

In Theorem 1 we also observe that the result for quadratics is quite different to the result
for higher degree polynomials. For polynomials of degree greater than 2 we can use gcd
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conditions about the coefficients of the non-leading and non-constant terms to enumerate
the number of Dumas polynomials. This is clearly not possible for quadratics and we are
forced to consider the coefficients of the leading and non-constant terms as well.

2 Notation

Let f(x) be as in (1). We define the height of the polynomial f as

H(f) = max
0≤i≤n

|Ai|.

As usual the Riemann zeta function is given by

ζ(s) =
∞
∑

k=1

1

ks
,

for all complex numbers s whose real part is greater than 1. We also recall that the notation
U = O(V ) is equivalent to the assertion that the inequality |U | ≤ c|V | holds for some
constant c > 0.

3 Preparations

Lemma 3. Fix n = 2. Suppose that f(x) is as in (1) with H(f) ≤ H and A1 6= 0. If f is a

Dumas polynomial then gcd(Aj, Ak) 6= 1 for every j, k ∈ {0, 1, 2}.

Proof. Suppose there exists a polynomial with the property that gcd(Aj, Ak) = 1 for some
distinct j, k ∈ {0, 1, 2}. If for any prime p we have p | A1 then clearly p ∤ A0 and p ∤ A2. So
the Newton passes through the point (1, 0), since it lies on the segment from (0, 0) to (2, 0).
Thus f is not a Dumas polynomial. On the other hand, if for any prime p we have p ∤ A1

then the Newton polygon includes the point (1, 0). So again f is not a Dumas polynomial,
completing the proof.

Lemma 4. Fix n ≥ 2. Suppose f(x) is as shown in (1) with H(f) ≤ H and A1A2 · · ·An−1 6=
0. If f is a Dumas polynomial then gcd(A1, A2, . . . , An−1) 6= 1.

Proof. Suppose f is as described above with gcd(A1, A2, . . . , An−1) = 1. For any prime p we
must have p ∤ Ai for some 1 ≤ i ≤ n − 1. So the Newton diagram for f with respect to p
includes the point (Ai, 0). Thus the Newton diagram with respect to any prime p does not
consist of a single segment. Therefore f is not a Dumas polynomial.
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4 Proof of Theorem 1

Let f(x) be as in (1) with H(f) ≤ H. We prove Theorem 1 for n = 2 and n ≥ 3 separately.
We start with the n = 2 case. To ease notation we use gcd∗(A0, A1, A2) 6= 1 to mean

that A0, A1 and A2 are not pairwise coprime, that is, gcd(A0, A1) 6= 1 or gcd(A0, A2) 6= 1 or
gcd(A1, A2) 6= 1. We also use gcd∗(A0, A1, A2) = 1 to mean that A0, A1 and A2 are pairwise
coprime, that is, gcd(A0, A1) = gcd(A0, A2) = gcd(A1, A2) = 1.

There are O(H2) polynomials with A0A1A2 = 0. If we have A0A1A2 6= 0 then, by Lemma
3, the polynomial f can only be a Dumas polynomial if gcd∗(A0, A1, A2) 6= 1. Therefore,

D2(H)−O(H2) ≤
∑

1≤|A0|,|A1|,|A2|≤H
gcd∗(A0,A1,A2) 6=1

1

=
∑

1≤A0,A1,A2≤H
gcd∗(A0,A1,A2) 6=1

8

= (2H)3 −
∑

1≤A0,A1,A2≤H
gcd

∗
(A0,A1,A2)=1

8. (2)

From the paper of Tóth [9, Corollary 2] we have

∑

1≤A0,A1,A2≤H
gcd

∗
(A0,A1,A2)=1

1 = H3
∏

p prime

(

1−
1

p

)2 (

1 +
2

p

)

+O
(

H2(logH)2
)

,

from which

∑

1≤|A0|,|A1|,|A2|≤H
gcd

∗
(A0,A1,A2)=1

1 = (2H)3
∏

p prime

(

1−
1

p

)2 (

1 +
2

p

)

+O
(

H2(logH)2
)

. (3)

Substituting (3) into (2) completes the proof for the n = 2 case.
Now fix n ≥ 3. There areO(Hn) polynomials for whichA1A2 · · ·An−1 = 0. IfA1A2 · · ·An−1 6=

0 then, by Lemma 4, the polynomial f can only be a Dumas polynomial if gcd(A1, A2, . . . , An−1) 6=
1. Therefore,

Dn(H)−O(Hn) ≤
∑

1≤|A1|,|A2|,...,|An|≤H
gcd(A1,A2,...,An−1) 6=1

1. (4)

We infer from Nymann [7] that

∑

1≤|A1|,|A2|,...,|An|≤H
gcd(A1,A2,...,An−1) 6=1

1 = (2H)n+1

(

1−
1

ζ(n− 1)

)

+O(Hn). (5)

Substituting (5) into (4) completes the proof for the n ≥ 3 case. Thus Theorem 1 is proven.
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5 Comments

Let Pn(H) be the number of polynomials of degree n and maximum height H. Let In(H)
be the number of irreducible polynomials of degree n and maximum height H. Two results
immediately follow from Theorem 1.

Firstly, we note that Pn(H) is precisely (2H)(2H + 1)n and infer from Cohen [1, Theo-
rem 1] that for n ≥ 2

lim
H→∞

In(H)

Pn(H)
= 1.

Thus, for n ≥ 2,

lim sup
H→∞

Dn(H)

Pn(H)
= lim sup

H→∞

Dn(H)

In(H)
≤ τn.

Secondly, τn < 1 for all n ≥ 2 and so for n ≥ 2

lim sup
H→∞

Dn(H)

Pn(H)
= lim sup

H→∞

Dn(H)

In(H)
< 1.

Table 1 shows some calculated values of upper bounds on the limit superior ofDn(H)/Pn(H)
as H goes to infinity. It also includes limit inferior calculations derived from a paper by the
author and Shparlinski [5]. Specifically, for various values of n, lower bounds on the limit
inferior of Dn(H)/Pn(H) as H goes to infinity. All summations are over all primes less than
100,000.

Table 1: Some upper bounds on lim supDnH/Pn(H) as H → ∞ and lower bounds on
lim inf Dn(H)/Pn(H) as H → ∞

n Lower bound Upper bound
2 0.1677 0.7133
3 0.0556 0.3922
4 0.0224 0.1681
5 0.0099 0.0766
6 0.0046 0.0357
7 0.0022 0.0181
8 0.0010 0.0079
9 0.0005 0.0049
10 0.0003 0.0020
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This prompts the following question. Is it possible to obtain tighter bounds or the exact
values of

lim inf
H→∞

Dn(H)

Pn(H)
and lim sup

H→∞

Dn(H)

Pn(H)

(they most likely coincide)?
We also note that it is possible to find upper bounds on

lim sup
H→∞

Dn(H)/Pn(H)

by directly calculating the number of Dumas polynomials for an arbitrary single segment
Newton polygon that contains no points with integer coordinates other than endpoints, and
then summing over all possible single segment Newton polygons that contain no points with
integer coordinates other than endpoints. There are substantial problems using the inclusion
exclusion principle with this approach; a Dumas polynomial with respect to more than one
prime may exhibit a different Newton polygon for each of these primes. Whilst results for
degree n > 3 are obtainable without the inclusion exclusion principle, it has not been possible
to find any results that are superior to Theorem 1.
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