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Abstract

We investigate some properties of abelian return words as recently introduced by

Puzynina and Zamboni. In particular, we obtain a characterization of Sturmian words

with nonzero intercept in terms of the finiteness of the set of abelian return words to

all prefixes. We describe this set of abelian returns for the Fibonacci word but also

for the 2-automatic Thue–Morse word. We also investigate the relationship existing

between abelian complexity and finiteness of the set of abelian returns to all prefixes.

1 Introduction

Many notions occurring in combinatorics on words have been recently and fruitfully extended
to an abelian context. Two words u and v are said to be abelian equivalent if u is a per-
mutation of the letters in v and usually, the corresponding concepts are defined up to such
an equivalence. This framework gives rise to many challenging questions in combinatorics
on words: what kind of information is preserved in the abelian context? To what extent
can the classical results be applied? What kind of characterization can we obtain? For
instance, consider the classical notion of factor complexity px which maps an integer n ≥ 0
to the number of distinct factors of length n occurring in an infinite word x. The well-known
theorem of Morse–Hedlund gives a characterization of the ultimately periodic words. See
for instance [13]. Sturmian words are defined by the property px(n) = n + 1 for all n ≥ 0.
The analogue to factor complexity is the abelian complexity of x which maps n ≥ 0 to the
number of distinct abelian classes partitioning the set of factors of length n occurring in x.
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This latter notion was already introduced in the 1970’s [5]. Some other important questions
in combinatorics on words such as avoiding abelian repetitions, were initiated at the same
period. See for instance [6]. See also the reference [18] on abelian complexity which contains
many relevant bibliographic pointers.

The return word is a classical notion in combinatorics on words and symbolic dynamical
systems [11, 12, 20]. For instance, Durand obtained a characterization of primitive substi-
tutive sequences in terms of return words and derived sequences [9]. Let u be a recurrent
factor of x, i.e., a factor occurring infinitely many times in x. A return word to u is a factor
separating two consecutive occurrences of u. In this paper, we consider the abelian ana-
logue of this notion of return word. Such a study has been recently presented by Puzynina
and Zamboni during the WORDS 2011 conference. Here we focus on different aspects of
abelian returns and we hope that our results can be seen as complementary to those found
by Puzynina and Zamboni [17].

The main difference is that we usually consider the set of abelian returns with respect
to all the factors of an infinite word x, while Puzynina and Zamboni [17] study the set
of abelian returns with respect to each factor taken separately. In particular, their main
contribution is a characterization of Sturmian words: a recurrent infinite word is Sturmian
if and only if each of its factors has two or three abelian returns. Sturmian words have been
extensively studied and, in particular, every Sturmian word can be obtained by coding the
orbit (Rn

α(ρ))n≥0 of a point ρ on a circle under a rotation Rα by an irrational angle α when
the circle is partitioned in a suitable way into two complementary intervals. The irrational
α is called the slope of the Sturmian word and the initial point ρ is its intercept. See for
instance [14, 16]. Many of our results on Sturmian words rely on this definition of Sturmian
words.

This paper is organized as follows. In Section 2, we present the main definitions and
notation used in this paper. In Section 3, we discuss the relationship with periodicity and
we prove that a recurrent word is periodic if and only if its set of abelian returns is finite.
We also construct an abelian uniformly recurrent word which is not eventually recurrent.
In Section 4, we restrict ourselves to the set APRx of abelian returns to all prefixes. In
particular, this set is finite for any uniformly recurrent and abelian periodic word. We study
the special case of the Thue–Morse word t [1] and show that the set of abelian returns to
all prefixes of t contains 16 elements. Next, we obtain a characterization of Sturmian words
with (non)zero intercept as follows. Let x be a Sturmian word coding an orbit (Rn

α(ρ))n≥0.
The set APRx of abelian returns to the prefixes of x is finite if and only if x does not
have a null intercept (see Theorem 19). The celebrated Fibonacci word f can be defined
with a slope and an intercept both equal to 1/τ 2 where τ is the Golden mean. Therefore
our result implies that APRf is finite. We show that this set contains exactly 5 elements.
Interestingly, our developments can be related to the lengths of the palindromic prefixes of
f . See for instance [7, 10]. By contrast the set of abelian returns to all prefixes for the word
0f is infinite. Then we show that if x is an abelian recurrent word such that APRx is finite,
then x has bounded abelian complexity. In the last section of this paper, we introduce the
notion of abelian derived sequence. If a word x is uniformly recurrent, then x can be factored
in terms of abelian returns to a given prefix of x. This gives rise to a coding that allows
one to define a new sequence. Contrary to the non-abelian case and the characterization
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obtained by Durand, the Thue–Morse word is an example of word having infinitely many
derived sequences.

2 Preliminaries

An infinite word x is said to be recurrent if every factor u of x appears infinitely often in
x. An infinite word x is said to be uniformly recurrent, if it is recurrent and the distance
between any two consecutive occurrences of any of its factors u is bounded by a constant
depending only on u. The language of all the finite factors (resp. prefixes) of an infinite word
x is denoted by Fac(x) (resp. Pref(x)). Let i, j be such that i ≤ j. The factor xixi+1 · · · xj

of x = x0x1 · · · is denoted by x[i, j]. The notation x[i, i] is shortened to xi.

2.1 Return words

The classical notion of return word has been used by Durand [9] but was previously in-
troduced by Boshernitzan [4] (see also [8] for the notion of induced transformation in a
dynamical context). Let u be a prefix of a uniformly recurrent word x. A nonempty factor
w of x is a return word to u, if there exists some i ≥ 0 such that

• x[i, i+ |w| − 1] = w,

• x[i, i+ |u| − 1] = u = x[i+ |w|, i+ |w|+ |u| − 1],

• x[i+ j, i+ j + |u| − 1] 6= u for all j ∈ {1, . . . , |w| − 1}.

We denote by Rx,u the set of return words to u. Since x is uniformly recurrent, this set is
finite because the length of the longest return word to u is bounded by the maximal distance
between two successive occurrences of u. If we order the return words to u with respect to
their first occurrence in x, then the corresponding map is Λx,u : Rx,u → {1, . . . ,#(Rx,u)} =:
Rx,u. Since Rx,u is a code [9], i.e., any element in R∗

x,u has a unique factorization as return
words to u, x can be written in a unique way as x = m0m1m2 · · · and the derived sequence
Du(x) is an infinite word Λx,u(m0)Λx,u(m1)Λx,u(m2) · · · over Rx,u.

2.2 Abelian returns

Recently, the notion of return words has been generalized to an abelian framework [17]. In
this paper, we will distinguish two cases: abelian return to a prefix and abelian return to a
factor. We make such a distinction to be able to define in the first case the abelian derived
sequence. Let us start with a few definitions.

Let A = {a1, . . . , ak} be a k-letter alphabet. We denote by |w|ai the number of occur-
rences of the letter ai in a word w ∈ A∗. The Parikh mapping Ψ : A∗ → N

k is defined by
Ψ(w) = (|w|a1 , . . . , |w|ak). Let u, v be two finite words of the same length. We say that u
and v are abelian equivalent and we write u ∼ab v if Ψ(u) = Ψ(v).

An infinite word x is abelian periodic (of period m), if it can be factored as x = u1u2u3 · · ·
where, for all i, j, the finite words ui and uj have the same length m and are abelian
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equivalent. The smallest m for which such a factorization exists is called the abelian period
of x. For instance, the Thue–Morse word is an infinite concatenation of 01 and 10 and is
thus abelian periodic of period 2.

Let x be an infinite word. If, for each factor u of x, there exist infinitely many i such
that x[i, i+ |u| − 1] ∼ab u, then x is said to be abelian recurrent.

If x is abelian recurrent and if, for each factor u of x, the distance between any two
consecutive occurrences of factors abelian equivalent to u is bounded by a constant depending
only on u, then x is said to be abelian uniformly recurrent.

Remark 1. Note that uniform recurrence implies obviously abelian uniform recurrence. We
will show in Proposition 6 that the converse does not hold.

Definition 2. Let u be a prefix of an abelian uniformly recurrent word x. We say that a
nonempty factor w of x is an abelian return to u, if there exists some i ≥ 0 such that

• x[i, i+ |w| − 1] = w,

• x[i, i+ |u| − 1] ∼ab u ∼ab x[i+ |w|, i+ |w|+ |u| − 1],

• x[i+ j, i+ j + |u| − 1] 6∼ab u, for all j ∈ {1, . . . , |w| − 1}.

We denote by APRx,u the set of abelian returns to the prefix u. Since x is abelian uniformly
recurrent, then the set APRx,u is finite. We define the set of abelian returns to prefixes as

APRx :=
⋃

u∈Pref(x)

APRx,u.

Observe that if x is uniformly recurrent, then the length of the longest element in APRx,u

is bounded by the length of the longest element in Rx,u.

We will also consider a more general situation where u is not restricted to be a prefix of
x. Puzynina and Zamboni [17] called this notion a semi-abelian return to the abelian class of
u and the number of abelian returns is the number of distinct abelian classes of semi-abelian
returns.

Definition 3. If x is abelian recurrent and if u is a factor of x, we can define as above the
notion of abelian return to u. The corresponding set ARx,u of abelian returns to u is well
defined. We define the set of abelian returns as

ARx :=
⋃

u∈Fac(x)

ARx,u.

Remark 4. Let x be an abelian recurrent word. The set ARx,u is finite, for each factor u of
x, if and only if x is abelian uniformly recurrent.
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3 Finiteness of the set of abelian returns

Puzynina and Zamboni [17] provided a discussion between periodicity and the number of
abelian returns. Here we take the finiteness of the set of abelian returns to characterize
periodicity.

Theorem 5. Let x be a recurrent word. The set ARx is finite if and only if x is periodic.

Proof. The “if” part is obvious. We prove the “only if” part.
Suppose that ARx is finite and that x is recurrent but not periodic. In this case, for

each k, there exists a word u satisfying |u| > k such that au, bu ∈ Fac(x) for some letters
a 6= b. Hence there exist i, j such that i < j, x[i, i+ |u|] = au and x[j, j + |u|] = bu. Define
v = x[i, j − 1]. Since x[i + d, j − 1 + d] 6∼ab v for all d ∈ {1, . . . , |u|}, there is an abelian
return to v in x of length at least k. As we can do the same for arbitrarily large k, the set
ARx is infinite.

Obviously, uniform recurrence implies abelian uniform recurrence, but the converse is not
true. Recall that an eventually recurrent word is an infinite word having a recurrent suffix.

Proposition 6. There exists an abelian uniformly recurrent word which is not eventually
recurrent.

Proof. Let t = t0t1 · · · = 01101001 · · · be the Thue–Morse word and ϕTM be the Thue–
Morse morphism, ϕTM(t) = t. Define the set I = {i0 < i1 < . . .} of all positions where an
isolated 1 occurs. That is, for all n, we have tin = 1 and tin−1 = tin+1 = 0. Moreover we set
J = {i2k | k > 0}.

Let y = y0y1 · · · be the word defined by yj = 0, if j ∈ J , and yj = tj otherwise. Define
x = ϕTM(y).

The word x coincides with y almost everywhere, except for positions from the set 2J ∪
(2J + 1). Hence, each factor of the Thue–Morse word occurs in x uniformly, i.e., with
bounded gaps. At the same time, the factor ϕTM(000) occurs in x with strictly growing
gaps. Hence x is not eventually recurrent.

Let us now prove that x is abelian uniformly recurrent. First we point out a property of
the Thue–Morse word: for all d > 0 and all a ∈ {0, 1}, there exists k such that tk = a 6= tk+d.
This property follows from the well-known fact that the Thue–Morse word does not contain
any constant infinite arithmetical subsequence [15].

As x is abelian periodic (of period 2), the weight (i.e., the sum of digits) of each factor u

of x of odd length is either |u|+1
2

or |u|−1
2

. Note that yi = 0 implies |x[2i+1, 2i+ |u|]|1 = |u|+1
2

and yi = 1 implies |x[2i + 1, 2i + |u|]|1 = |u|−1
2

. Since 0 (resp. 1) occurs with bounded gaps
in y, gaps between abelian occurrences in x of a factor of odd length are bounded.

The weight of a factor u of even length of x can take values |u|
2
, |u|

2
+ 1 and |u|

2
− 1.

The first case takes place when u occurs at an even position in x, meaning that the gaps
between abelian occurrences of u of weight |u|

2
in x are bounded. The last two cases take

place if u occurs in x at an odd position i and if y i−1

2

= 1 and y i−1+|u|
2

= 0 or, y i−1

2

= 0 and

y i−1+|u|
2

= 1. Due to the mentioned property of the Thue–Morse word, there exists k such

that tk = 1 6= t
k+

|u|
2

(resp. tk = 0 6= t
k+

|u|
2

) and since t is uniformly recurrent, the factor
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t[k, k + |u|
2
] occurs infinitely often with bounded gaps in t. Hence abelian occurrences of u

in x appear infinitely often with bounded gaps.

4 Finiteness of the set of abelian returns to prefixes

Contrary to the finiteness of ARx, the finiteness of APRx does not imply periodicity nor
abelian periodicity of x. Moreover, if x is uniformly recurrent, it is well-known that

min
v∈Rx,u

|v| → ∞, if |u| → ∞,

meaning that taking longer prefixes eventually leads to longer return words. Here we show
that such a result does not hold for abelian returns to prefixes. Indeed, for the Thue–Morse
word the corresponding set APRt is finite and can be described precisely. Such a result
also holds for the Fibonacci word. In particular, amongst the set of Sturmian words, the
finiteness of APRx characterizes Sturmian words with nonzero intercept.

Lemma 7. If x is a uniformly recurrent and abelian periodic word, then the set APRx is
finite.

Proof. Let m be the (minimal) abelian period of x. Let us find an upper bound for the
length of an abelian return u to a prefix p of x.

Suppose first that |p| = mk. In this case, due to abelian periodicity, for all i, we have
x[mi,m(i+ k)− 1] ∼ab p. Hence we get |u| 6 m.

Suppose now that |p| = mk + ℓ, where 0 < ℓ < m. Let us denote the word x[mk,m(k +
1) − 1] by s. As the word x is abelian periodic, if there exists i such that the equality
x[mi,m(i + 1) − 1] = s holds, then x[m(i − k),mi + ℓ − 1] ∼ab p. Hence, it is sufficient to
prove that the set

{i ≥ 0 | x[mi,m(i+ 1)− 1] = s}
has bounded gaps.

Let us consider the word x′ on the alphabet of factors of x of length m, such that
x′
i = x[mi,m(i+ 1)− 1]. It is well-known that the uniform recurrence of x implies uniform

recurrence of x′ (see for instance [19]). Hence, for each letter of x′ there is an upper bound
on the gap between two consecutive occurrences of it in x′. Denoting the maximum of such
constants by D, we get |u| 6 mD.

Remark 8. In Lemma 7, the condition on a word x to be uniformly recurrent is essential:
there exists an abelian periodic word x which is not uniformly recurrent and such that
APRx,u is infinite for some prefix u of x. Consider the abelian periodic word of period 4
given by x = φϕω(0) where ϕ : 0 7→ 010, 1 7→ 111 and φ : 0 7→ 01230123, 1 7→ 0213:

x = 01230123 0213 01230123 0213 0213 0213 · · ·

In x there are unbounded gaps between consecutive abelian occurrences of its prefix 012301

that correspond to the occurrences of φ(1m).
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Remark 9. In Lemma 7, the condition on abelian periodicity of x is not necessary to get
finiteness of APRx. We shall give an example below when discussing the case of Sturmian
words. Indeed, Sturmian words are not abelian periodic (see Lemma 20) but for instance,
the Fibonacci word f is uniformly recurrent and the corresponding set APRf is finite.

Proposition 10. A word x is periodic if and only there exists some prefix u such that
infinitely many factors of x are abelian equivalent to u and all the abelian returns in APRx,u

have length 1.

Proof. If x = uω, then x[i, i+ |u|−1] ∼ab u for all i ≥ 0. Conversely, if all the abelian returns
to some prefix u in APRx,u have length 1, then x[i, i+ |u| − 1] ∼ab u ∼ab x[i+ 1, i+ |u|] for
all i ≥ 0. There is an abelian return a of length 1 at position i in x and it also occurs in
position i+ |u|. It follows that |u| is a period of x.

4.1 Finiteness of APRt for the Thue–Morse word

We already know from Lemma 7 that the Thue–Morse word has a finite set of abelian returns
to all its prefixes. Here we describe precisely this set.

Lemma 11. Let x be a uniformly recurrent word. Let n ≥ 1 and i, j be such that i < j.
Assume that x[i, i+ n− 1] ∼ab x[j, j + n− 1] and there exists a prefix u of length j − i of x
such that u ∼ab x[i, j − 1]. The word x[i, i + n − 1]is an occurrence of an abelian return to
the prefix u if and only if, for all ℓ ∈ {0, . . . , n− 2}, x[i, i+ ℓ] 6∼ab x[j, j + ℓ].

Proof. Since |u| = j − i, by assumption we have x[i, i + |u| − 1] ∼ab u. Observe first
that there exists ℓ ∈ {0, . . . , n − 1} such that x[i, i + ℓ] ∼ab x[j, j + ℓ] if and only if x[i +
ℓ + 1, i + ℓ + |u|] ∼ab u. In particular, since x[i, i + n − 1] ∼ab x[j, j + n − 1], we get
x[i+ n, i+ n+ |u| − 1] = x[i+ n, j − 1 + n] ∼ab u. Moreover, ℓ ∈ {0, . . . , n− 2} is such that
x[i+ ℓ+ 1, i+ ℓ+ |u|] 6∼ab u if and only if x[i, i+ ℓ] 6∼ab x[j, j + ℓ].

Remark 12. From this lemma, we can derive a necessary condition for a word to be an
abelian return to a prefix. If a word w = w1 · · ·wn of length n is an abelian return to a
prefix, then there exists some factor y = y1 · · · yn of x such that

w ∼ab y and, for all ℓ ∈ {1, . . . , n− 1}, w1 · · ·wℓ 6∼ab y1 · · · yℓ. (1)

This condition is not sufficient. For instance, w = 001011 and y = 110010 are two factors
of length 6 satisfying(1) and occurring in the Thue–Morse word t. But, as shown in the
following proposition, w is not an abelian return to any prefix.

Theorem 13. The set APRt of abelian returns to prefixes for the Thue–Morse word t is

{0, 1, 01, 10, 001, 011, 100, 110, 0011, 0101, 1010, 1100, 00101, 01011, 10100, 11010}.

Proof. One can check with some computer experiments that the factors given above appear
as abelian returns to some prefix of t. Moreover, one can also check that these are the only
factors of length 2, . . . , 5 in t satisfying condition (1).
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Assume that there exists some abelian return w = w1 · · ·wn = t[i, i + n − 1] of length
n ≥ 2 to a prefix of t occurring at position i. In particular, we may assume that w is an
abelian return to the prefix u of length j − i > 0 and y = y1 · · · yn = t[j, j + n− 1] satisfies
(1). We will show that the length of w is at most 5. Recall that t[2k, 2k + 1] ∈ {01, 10} for
all k ≥ 0.

Assume first that i, j are even. Since t[i, i + 1] and t[j, j + 1] belong to {01, 10}, we
conclude that t[i, i + 1] ∼ab t[j, j + 1] and, in that situation, we can only have an abelian
return of length at most 2.

Assume now that i is odd and j is even and that ti = 0 (symmetric cases can be treated
in the same way). Our aim is to build the longest possible abelian return. Since ti = 0 and
j is even, we consider t[j, j + 1] = 10 because otherwise, t[j, j + 1] = 01 and w1 = y1 (i.e.,
t[i + 1, j + 1] ∼ab t[i, j] ∼ab u and we get directly an abelian return of length n = 1). Now
t[i, i+2] = 001 because otherwise, t[i, i+2] = 010 and w1w2 ∼ab y1y2. Continuing this way,
we have t[j, j + 3] = 1010 and t[i, i + 4] = 00101. Since (10)3 is not a factor of t, we have
t[j, j + 5] = 101001 and t[i, i + 4] ∼ab t[j, j + 4]. In that situation, we can only have an
abelian return of length at most 5.

The last case is when i and j are odd. Assume ti = 0 and tj = 1. We have ti = 0

and tj−1 = 0 because t[j − 1, j] = 01. Moreover, z = t[i + 1, j − 2] ∈ {01, 10}∗ and thus
v = t[i, j − 1] = 0z0 is a word of even length such that |v|0 = 2 + |v|1. Therefore v cannot
be abelian equivalent to a prefix u of t. So in such a situation, we cannot have an abelian
return to some prefix of t.

Proposition 14. If a factor of length n ≥ 6 of the Thue–Morse word satisfies (1), then n
is even.

Proof. Let w = t[i, i+n− 1] and y = t[j, j+n− 1] be factors of t of length n ≥ 6 satisfying
(1). As n ≥ 6, i and j are odd. Hence, to satisfy the condition (1), we must have

(

t[i, i+ n− 1]
t[j, j + n− 1]

)

∈
(

0

1

){(

01

01

)

,

(

10

10

)

,

(

01

10

)}∗ (
1

0

)

∪
(

1

0

){(

01

01

)

,

(

10

10

)

,

(

10

01

)}∗ (
0

1

)

.

So n must be even.

For n = 6, 8, 10, . . . , 104, with a computer search, we get the following number of factors
of length n satisfying (1): 6, 4, 8, 12, 12, 4, 8, 8, 4, 0, 0, 8, 0, 0, 4, 8, 4, 0, 0, 0, 0, 0, 4, 0, 4,
0, 0, 0, 0, 0, 4, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0.

4.2 Sturmian words

Sturmian words form one of the most studied classes of infinite words. It can be defined in
several ways. For our purpose, the definition in terms of rotations is convenient.

Let C be the one-dimensional torus R/Z identified with the interval [0, 1). As usual, we
denote by {x} the fractional part of x. The rotation Rα defined for a real number α is a
mapping C → C that maps an x to {x+ α}.
Theorem 15 (Kronecker [2]). If a number α is irrational, then the set of points {Ri

α(ρ) |
i ∈ N} is dense in C for all initial points ρ ∈ C.
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By an interval (resp. half-interval) of C we mean a set of points that is an image of an
interval (resp. half-interval) of R under operation {·}. For instance, if 0 ≤ b < a < 1, then
[a, 1) ∪ [0, b) is denoted by [a, b).

Let α be irrational and ρ be real. Without loss of generality we can assume 0 ≤ α, ρ < 1.
A Sturmian word x = St(α, ρ) (resp. x = St′(α, ρ)) can be defined as

xi =

{

0, if Ri
α(ρ) ∈ I0;

1, if Ri
α(ρ) ∈ I1,

(2)

where I0 = [0, 1 − α) and I1 = [1 − α, 1) (resp. I0 = (0, 1 − α] and I1 = (1 − α, 1]). See
[2, 14].

If ρ = 0, then
St(α, 0) = 0cα and St′(α, 0) = 1cα

and cα is said to be the characteristic Sturmian word of slope α [14]. If x = St(α, 0), we say
that x is a Sturmian word with null intercept.

Example 16. If τ = (1 +
√
5)/2 is the Golden mean, then St(1/τ 2, 0) = 0f where f

is the Fibonacci word 0100101001 · · · which is the unique fixed point of the morphism
ϕ : 0 7→ 01, 1 7→ 0. In particular, we have f = St(1/τ 2, 1/τ 2).

Theorem 17. [14, Theorem 2.1.5] An infinite word x ∈ {0, 1}ω is Sturmian if and only if it
is aperiodic and balanced, i.e., for all u, v ∈ Fac(x) of same length, we have ||u|1 − |v|1| ≤ 1.

Let x = St(α, ρ) be a Sturmian word. For a binary word v = v0v1 · · · vm, we define a
half-interval Iv of C as

Iv := Iv0 ∩R−1
α (Iv1) ∩ · · · ∩R−m

α (Ivm). (3)

Hence x[i, i+m] = v if and only if Ri
α(ρ) ∈ Iv. See [14, Section 2.1.2].

Definition 18. Let x = St(α, ρ) be a Sturmian word. For each k the number of 1’s in a
factor of length k in x can only take the values ⌈kα⌉ or ⌈kα⌉− 1. The corresponding factors
will be called respectively heavy and light. If x is understood from the context, H(k) (resp.
L(k)) will denote the set of heavy (resp. light) factors of length k in x. Define

IH(k) :=
⋃

v∈H(k)

Iv and IL(k) :=
⋃

v∈L(k)

Iv.

So, the word x[i, i+ k − 1] is heavy if and only if Ri
α(ρ) ∈ IH(k).

Theorem 19. Let x be a Sturmian word. The set APRx is finite if and only if x does not
have a null intercept.

Proof. For the sake of convenience, let x be defined as St(α, ρ) for half-intervals I0 = [0, 1−α)
and I1 = [1− α, 1). Let us prove by induction on k ≥ 1 that

IH(k) = [1− {kα}, 1) and IL(k) = [0, 1− {kα}). (4)

It holds true for k = 1. Suppose now that the statement holds true for some k ≥ 1. We
consider two cases.
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• Assume that 0 6∈ R−k
α (I1). Therefore we get R

−k
α (I1) = [1−{(k+1)α}, 1−{kα}) with

1−{(k+1)α} < 1−{kα}. By the induction hypothesis, we have IH(k) = [1−{kα}, 1)
and consequently,

R−k
α (I1) ∩ IH(k) = ∅.

This means that all the heavy factors of length k of x can only be extended with 0

to factors of length k + 1 of x. In particular, the weights of heavy factors of length k
and k + 1 are the same. At the same time, we have R−k

α (I1) ∩ IL(k) = R−k
α (I1), which

means that the factors corresponding to elements belonging to this latter set are the
light factors of length k that are extended with 1 to heavy factors of length k+ 1. We
conclude that

IH(k + 1) = IH(k) ∪R−k
α (I1) = [1− {(k + 1)α}, 1)

and IL(k + 1) = IL(k)\R−k
α (I1) = [0, 1− {(k + 1)α}).

• Assume now that 0 ∈ R−k
α (I1), i.e., 1 − {(k + 1)α} > 1 − {kα}. In this case, using

again the induction hypothesis, R−k
α (I1) ∩ IH(k) = [1 − {(k + 1)α}, 1) is nonempty.

This interval corresponds to the heavy factors of length k having an extension with 1

making them the only heavy factors of length k + 1 in x.

Now we are ready to prove the main part of the statement. First of all, let us prove that,
if x has a null intercept, then APRx is infinite. Let k ≥ 1 and p be the prefix of length k
of x. As ρ = 0, we have 0 ∈ Ip. Since the interval Ip corresponds exactly to one word p
which is either light or heavy, we have Ip ⊆ IL(k) or Ip ⊆ IH(k). As 0 ∈ Ip, we conclude
that Ip ⊆ IL(k) using (4). In other words, we have just shown that each prefix of x is a light
factor.

Now we show that, for all n, there exists a length ℓ such that gaps between consecutive
occurrences of light factors of length ℓ in x can be larger than n. Let n ≥ 1. Define the set
of points

Sn := {Ri
α(0) | 0 6 i 6 n}

and denote by d the minimal length of intervals having endpoints in Sn. Due to Kronecker’s
theorem, we can find some ℓ such that |IL(ℓ)| < d and it follows that IL(ℓ)∩Sn = {0}. With
our definitions, it means that the light prefix of x of length ℓ is followed by at least n heavy
consecutive factors of length ℓ. Since this can be done for any n, the set APRx is infinite.

Let us prove that, if x does not have a null intercept, then APRx is finite. The main
difference with the previous situation is that a prefix can now be a heavy or a light factor
depending on its length: ρ ≥ 1 − {kα} if and only the prefix of length k is heavy. We
will show that there exists a constant c such that, for all prefixes p of x, the gap between
consecutive occurrences of factors abelian equivalent to p is bounded by c.

Let n ≥ 1. Consider as before the set Sn and order its elements 0 = s0 < s1 < · · · < sn.
Denote by D(n) the maximal length of the intervals [s0, s1), . . . , [sn−1, sn), [sn, s0) whose
endpoints are consecutive points in Sn. Due to Kronecker’s theorem, there exists some c
such that 2D(c) < min{ρ, 1− ρ}.

Suppose that the prefix of length k of x is a light word. Then we have ρ ∈ IL(k)
and, consequently, |IL(k)| > ρ. Assume that there is a light factor of length k occurring
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at position i in x, i.e., Ri
α(ρ) ∈ IL(k). We consider two cases. If Ri

α(ρ) ≥ D(c), there
exists j ∈ {1, . . . , c} such that Rj

α(0) = sc and θ = 1 − Rj
α(0) ∈ (0, D(c)]. Hence the

point Rj
α(R

i
α(ρ)) = Ri+j

α (ρ) = Ri
α(ρ) − θ belongs to IL(k), i.e., the factor of length k at

position i + j in x is light again. If Ri
α(ρ) < D(c), there exists j ∈ {1, . . . , c} such that

Rj
α(0) = s1 ≤ D(c) < ρ/2. Hence the point Rj

α(R
i
α(ρ)) = Ri+j

α (ρ) = Ri
α(ρ) + s1 is less than

ρ and belongs to IL(k).
A similar proof can be done for the case of a heavy prefix of length k. Assume that

ρ ∈ IH(k) and that, for some i ≥ 0, Ri
α(ρ) ∈ IH(k). If R

i
α(ρ) < 1−D(c), then Ri

α(ρ)+s1 < 1.
If Ri

α(ρ) ≥ 1−D(c), then Ri
α(ρ)−(1−sc) ≥ 1−2D(c) > ρ. We can derive the same conclusion

as above.
Hence the number c is an upper bound on the length of abelian returns to any prefix and

therefore APRx is finite.

Lemma 20. No Sturmian word is abelian periodic.

Proof. Proceed by contradiction and assume that x = St(α, ρ) is abelian periodic of periodm
with α irrational. Then all factors of the kind x[tm, (t+1)m−1], t ∈ N, are abelian equivalent,
i.e., have the same weight. Assume that, for all t, Rtm

α (ρ) = Rt
mα(ρ) ∈ IL(m). But since α

is irrational, mα is also irrational and thanks to Kronecker’s theorem, {Rt
mα(ρ) | t ≥ 0} is

dense in C contradicting the fact that {Rt
mα(ρ) | t ≥ 0} ∩ IH(m) should be empty.

4.3 Finiteness of APRf for the Fibonacci word

From Theorem 19, since the Fibonacci word f is given by St(1/τ 2, 1/τ 2), we already know
that APRf is finite. Here we exhibit exactly the elements of this set in Theorem 22. As
a first attempt, (1) gives a necessary condition that allows one to exclude some words as
abelian returns. This condition will not be used in the proof of Theorem 22 but, interestingly,
our developments can be related to the lengths of the palindromic prefixes of f , [7, 10].

Proposition 21. For the Fibonacci word, there exist exactly two factors of length n satisfying
(1) if n is a Fibonacci number. Otherwise, no factor of length n satisfies such a condition.

Proof. Consider two factors x, y of length n satisfying (1) and occurring in

f = 010010100100 · · · .

Assume that x starts with 0. Then to fulfill (1), y starts with 1. Since f is Sturmian, for
any two words of the same length x′ and y′ which are prefixes of x and y respectively, we
have ||x′|1 − |y′|1| ≤ 1. Therefore, we deduce that x and y must be of the form x = 0u1 and
y = 1u0 for some u ∈ {0, 1}∗. This means that u is a bispecial factor of the Fibonacci word.

Recall that the left special factors in f are its prefixes and its right special factors are the
mirror images of its prefixes [3, Prop. 4.10.3]. So bispecial factors of f are its palindromic
prefixes. If (ℓi)i≥1 denotes the increasing sequence of all lengths of palindromic prefixes in f ,
it is well-known that (ℓi)i≥1 = (0, 1, 3, 6, 11, . . .) is given by ℓi = Fi+1 − 2 where Fi is the ith
Fibonacci number. See [7, Thm. 5] and [10]. Hence n must be a Fibonacci number.

Conversely, for any bispecial factor u of f , it is easy to show that either 0u0 or 1u1 is
not a factor occurring in f (see for instance [14, p. 47]). Therefore, amongst the four words
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0u0, 1u1, 0u1 and 1u0, the last two must occur in f and we get exactly two factors of length
|u| + 2 satisfying (1). Indeed, assume that 0u0 does not occur in f . Then for u to be left
(resp. right) special, 0u1 (resp. 1u0) must occur in f .

The reader may notice that the computations carried out in the proofs of the next two
results could also be adapted to other Sturmian words.

Theorem 22. The set APRf of abelian returns to prefixes for the Fibonacci word f contains
exactly the words 0, 1, 01, 10, 001.

Proof. Using the same notation as in Theorem 19, for c = 7, we have D(7) ≈ 0.145898 which
is such that 2D(7) < min{1/τ 2, 1− 1/τ 2} ≈ 0.381. Hence, all abelian returns to prefixes of
the Fibonacci word have length at most 7. Actually, this value can be reduced:

Lemma 23. There is no abelian return of length greater than 3 to prefixes in the Fibonacci
word.

Proof. With the notation of the proof of Theorem 19, we set ρ = α = 1/τ 2 ≈ 0.381. Let i
be a natural number. Define the four points ρi,t = Ri+t

α (ρ) for t = 0, 1, 2, 3.
Recall that, for all k ≥ 1, the unit circle [0, 1) is split into two half-intervals IH(k) =

[1−{kα}, 1) and IL(k) = [0, 1−{kα}) such that two factors f [i, i+ k− 1] and f [j, j + k− 1]
are abelian equivalent if and only if the points Ri

α(ρ) and Rj
α(ρ) belong to the same interval

IH(k) or IL(k).
Let I be any of the two intervals IH(k) or IL(k). What we are going to prove is that if ρ

and ρi,0 belong to I, then either ρi,2 or ρi,3 belongs to I. In other words, if f [i, i+ k− 1] ∼ab

f [0, k−1], then either f [i+2, i+k+1] or f [i+3, i+k+2] is abelian equivalent to f [i, i+k−1]
which gives the upper bound on the length of any abelian return to a prefix of f .

Note, that ρi,0 = Rδ(ρi,2), ρi,2 = R−δ(ρi,0) and ρi,3 = Rα−δ(ρi,0), where δ = 1 − 2α ≈
0.2361. Assume that the factor of length k starting in position i is abelian equivalent to the
prefix of f of length k, i.e., ρ and ρi,0 are both light or heavy words. We consider two cases.
Suppose first that ρ, ρi,0 ∈ IL(k). In this case, we have [0, ρ] ⊆ IL(k).

• If ρ ≤ ρi,0 < 1, then [0, ρi,0] ⊆ IL(k) and 0 < ρi,2 = R−δ(ρi,0) < ρi,0. Thus ρi,2 belongs
also to IL(k).

• If ρ > ρi,0 > 0, either ρi,0 ≥ δ and then ρi,2 = R−δ(ρi,0) ∈ [0, ρ) meaning that ρi,2 ∈
IL(k) or, 0 < ρi,0 < δ, i.e., −δ < ρi,2 − 1 < 0 and then 0 < α− δ < ρi,3 = Rα(ρi,2) < ρ
meaning that ρi,3 ∈ IL(k).

Suppose now that ρ, ρi,0 ∈ IH(k). In this case, as ρ ∈ IH(k), we have [ρ, 1) ⊆ IH(k).

• If ρ > ρi,0 > 0, then [ρi,0, 1) ⊆ IH(k) and ρi,3 = Rα−δ(ρi,0) belongs to IH(k).

• If ρ ≤ ρi,0 < 1, either ρi,0 ≥ ρ+δ and then ρi,2 = R−δ(ρi,0) ∈ IH(k) or, ρ ≤ ρi,0 < ρ+δ,
i.e., ρ − δ ≤ ρi,2 < ρ and then ρ < ρ − δ + α ≤ ρi,3 = Rα(ρi,2) < ρ + α < 1 meaning
that ρi,3 ∈ IH(k).
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The factors of length at most 3 occurring in f are ε, 0, 1, 00, 01, 10, 001, 010, 100 and
101. Clearly, 00, 010 and 101 do not satisfy (1) and cannot be abelian returns. To conclude
the proof, we just have to show that 100 is also forbidden.

Lemma 24. The set APRf of abelian returns to prefixes for the Fibonacci word f does not
contain 100.

Proof. We continue with notation of Lemma 23. Suppose that 100 ∈ APRf . There exists a
prefix p of f of length k and a position i ≥ 0 such that

1. f [i, i+ 2] = 100,

2. f [i, i+ k − 1] ∼ab p, i.e., ρ and ρi,0 belong to the same interval I ∈ {IL(k), IH(k)},

3. for t = 1, 2, f [i+ t, i+ t+ k − 1] 6∼ab p, i.e., ρi,1 and ρi,2 do not belong to I,

4. f [i+ 3, i+ 2 + k] ∼ab p.

To get a contradiction, let us prove that either ρi,1 or ρi,2 belongs to I. Since fi = 1, ρi,0
belongs to I1 = [1 − α, 1). If I = IL(k), then we have ρi,1 ∈ [0, ρ) ⊆ IL(k). If I = IH(k),
then we have ρi,2 ∈ [ρ, ρ+ α) ⊆ IH(k).

That concludes the proof of Theorem 22.

4.4 Link with abelian complexity

The abelian complexity of an infinite word x is the function pabx : N → N that maps n ≥ 0
to the number of distinct abelian equivalence classes of factors of length n in x. Let C > 0.
Recall that an infinite word x ∈ Aω is C-balanced, if for all u, v ∈ Fac(x) such that |u| = |v|,
we have ||u|a − |v|a| ≤ C for all a ∈ A.

Lemma 25. [18] An infinite word has bounded abelian complexity if and only if it is C-
balanced for some C > 0.

Proposition 26. If x is an abelian recurrent word such that APRx is finite, then x has
bounded abelian complexity.

Proof. Suppose x satisfies the assumptions of the proposition but that x has unbounded
abelian complexity. From the previous lemma, we deduce that there exists a symbol a such
that the maximum of differences |u|a − |v|a for factors u, v in x having equal length can be
arbitrarily large.

Let δ > 0. There exist u, v ∈ Fac(x) of equal length n such that |u|a − |v|a ≥ δ. Let
p = x0x1 . . . xn−1 be the prefix of length n of x. Without loss of generality, we may assume
that

||u|a − |p|a| >
δ

2
.

Indeed, if ||u|a−|p|a| < δ/2 and ||v|a−|p|a| < δ/2, then one would deduce that ||u|a−|v|a| < δ.
As x is abelian recurrent, factors abelian equivalent to p (resp. to u) occur infinitely

often in x. Therefore there exist i < j < k such that
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1. x[i, i+ n− 1] ∼ab p, x[k, k + n− 1] ∼ab p,

2. for all t such that i < t < k, we have x[t, t+ n− 1] 6∼ab p,

3. x[j, j + n− 1] ∼ab u.

This just means that we can consider two consecutive factors abelian equivalent to p sepa-
rated by a factor abelian equivalent to u. Note that, for all t,

||x[t+ c, t+ n− 1 + c]|a − |x[t, t+ n− 1]|a| 6 c, ∀c ≤ n.

Hence, j− i ≥ δ/2 and k−j > δ/2. Therefore we get k− i ≥ δ which means that the abelian
return x[i, k − 1] to the prefix p has length at least δ. As δ can be chosen arbitrarily large,
the set APRx is infinite and that is a contradiction.

Note that any Sturmian word x satisfies pabx (n) = 2 for all n ≥ 1 : there are exactly two
kinds of factors of length n, the light ones and the heavy ones. But thanks to Theorem 19,
if x is a Sturmian word with null intercept, then APRx is infinite. In other words, bounded
abelian complexity does not imply the finiteness of APRx.

5 Abelian derived sequences

We refer the reader to definitions and notation introduced in Section 2.1. As was studied by
Durand [9] for classical return words, we introduce the notion of abelian derived sequence
which is the factorization of an infinite word with respect to its abelian returns to prefixes
in their order of occurrence. The next result allows us to define such a sequence.

Lemma 27. Let u be a prefix of a uniformly recurrent word x. The word x has a factor-
ization as a sequence m0m1m2 · · · of elements in APRx,u computed as follows. Consider
the sequence of indices (in)n≥0 such that, for all j ≥ 0, x[ij, ij + |u| − 1] ∼ab u and, for all
i 6∈ {in | n ≥ 0}, we have x[i, i+ |u| − 1] 6∼ab u. Set mn := x[in, in+1 − 1].

As shown in Example 29, the factorization of x with elements inAPRx,u is not necessarily
unique.

Definition 28. We define a map µx,u : APRx,u → {1, . . . ,#(APRx,u)} =: Ax,u analogous
to Λx,u. The abelian derived sequence Eu(x) is the corresponding infinite word

µx,u(m0)µx,u(m1)µx,u(m2) · · ·

over Ax,u where the sequence m0m1m2 · · · ∈ APRω
x,u is the one computed in the previous

lemma. The inverse map µ−1
x,u defines a morphism θx,u from A∗

x,u to APR∗
x,u

Observe that Eu(x) is uniformly recurrent. Indeed, if a1 · · · an is a factor occurring in
Eu(x), it comes from a factor m1 · · ·mn ∈ APR∗

x,u such that m1 · · ·mnv occurs in x for some
v ∼ab u and µx,u(m1) · · ·µx,u(mn) = a1 · · · an. Since x is uniformly recurrent, m1 · · ·mnv
occurs infinitely often with bounded gaps in x.
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Example 29. Consider the Thue–Morse word where the first few symbols are

t = 01101001100101101001011001101001100101100110100101 · · · .

Take the prefix u = 011. We get the derived sequence over Rt,u = {1, . . . , 4}

Du(t) = 12341243123431241234124312412343123412431234312412 · · ·

where the set of return words to u in order of occurrence in t is given by

Rt,u = {011010, 011001, 01101001, 0110}.

The abelian derived sequence over At,u = {1, . . . , 6} is

Eu(t) = 12314212521612314216125212314212521612521231421612 · · ·

where the set of abelian returns to u in order of occurrence in t is given by

APRt,u = {0, 1, 1010, 1100, 10100, 110}.

Note that, since 0, 1 ∈ APRt,u, there are infinitely many factorizations of t in terms of
elements belonging to APRt,u.

Proposition 30. Let u be a prefix of a uniformly recurrent word x. There exists a morphism
hu from Rx,u to A∗

x,u such that hu(Du(x)) = Eu(x).

Proof. Each return word m occurring in x is followed by u. Consider the procedure of
Lemma 27 applied to mu. It will define the image by hu of Λx,u(m). Indeed, one has to take
into account a factor u appended to m because some suffix of m and a prefix of u can give
a word v ∼ab u leading to some abelian return in the decomposition of m. More precisely,
we consider all the occurrences 0 = i1 < · · · < it = |m| of factors abelian equivalent to u in
w = mu. Then

hu(Λx,u(m)) := µx,u(w[i1, i2 − 1]) · · ·µx,u(w[it−1, it − 1]).

Example 31 (Example 29 continued). There exists a morphism hu from Rt,u to A∗
t,u such

that hu(Du(t)) = Eu(t). Take

hu(1) = 123, hu(2) = 142, hu(3) = 1252, hu(4) = 16.

Let us explain how to get hu(2). We have the following factorization where the vertical bars
indicate the occurrence of a factor abelian equivalent to u:

Λ−1
t,u(2) u = (|0|1100|1) 011.
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Definition 32. A map h : Aω → Bω is a t-block morphism, if there exists some map
f : At → B∗ such that, for all w ∈ Aω,

h(w) = f(w[0, t− 1])f(w[1, t])f(w[2, t+ 1]) · · · .

By abuse of notation, the second map f will also be denoted by h.

Proposition 33. Let u be a prefix of a uniformly recurrent word x. Let v be a prefix of
y = Eu(x). There exist t ≤ |u| − 1 and a t-block morphism hu,v : (Ay,v)

t → A∗
x,u such that

hu,v(Ev(Eu(x))) = Eu(x).

Proof. Note that any element θx,u(θy,v(a)) with a ∈ Ay,v is a concatenation of abelian returns
to u. Now consider a factor a0a1 · · · at−1 occurring in Ev(Eu(x)). We have to determine the
unique factorization of θx,u(θy,v(a0)) with abelian returns to u given by Lemma 27. This one
is completely determined when one knows the |u| − 1 symbols occurring next. Without that
extra knowledge we cannot uniquely determine the factorization for the last |u| − 1 symbols
possibly occurring in θx,u(θy,v(a0)). This is the reason to consider the suffix a1 · · · at−1 in
such a way that θx,u(θy,v(a1)) · · · θx,u(θy,v(at−1)) has length at least |u| − 1. One takes t
large enough to ensure this property for any initial symbol a0 ∈ Ay,v. More precisely,
consider all the occurrences 0 = i1 < · · · < is of factors abelian equivalent to u in w =
θx,u(θy,v(a0)) · · · θx,u(θy,v(at−1)). Let r be the largest integer such that ir < |θx,u(θy,v(a0))|.
Then

hu,v(a0 · · · at−1) := µx,u(w[i1, i2 − 1]) · · ·µx,u(w[ir, ir+1 − 1]).

Note that the above definition is only meaningful if a0 · · · at−1 is a factor of Ev(Eu(x)). Since
this is the only relevant situation, in any other case, the image of hu,v is set to ε.

Observe that if we iterate the process, since the composition of a t-block morphism and
an s-block morphism is an (st)-block morphism, then there exists an r-block morphism
h such that h(Euk

(· · · (Eu2
(Eu1

(x))) · · · )) = Eu1
(x) where prefixes u1, . . . , uk are considered

accordingly.

Example 34 (Example 29 continued). We can iterate the process of computing the abelian
derived sequence, for instance by taking each time the corresponding prefix of length 3:

E123(E011(t)) = 12131415121315141213141514121315121314151213151412 · · · ,

E121(E123(E011(t))) = 12341243123431241234124312412343123412431234312412 · · · ,
E123(E121(E123(E011(t)))) = 12341432123432141234143214123432123414321234321412 · · · .
Let us illustrate the previous result. Take again u = 011, y = Eu(t), v = 123. We have

APRy,v = {1, 23142125216, 23142161252, 231421252161252, 2314216}.

Observe that θt,u(θy,v(1)) = θt,u(1) = 0 and, for all a ∈ {2, . . . , 5}, θy,v(a) has a prefix 23,
so θt,u(θy,v(a)) has prefix 110 ∼ab u. Let us assume that hu,v is a 3-block morphism. We
define hu,v(1ab) = 1, for all a, b ∈ Ay,v and a 6= 1. We get hu,v(213) = 23142125216 because,
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if vertical bars denote occurrences of a factor abelian equivalent to u, we get the following
factorization:

θt,u(θy,v(2)) θt,u(θy,v(13)) =

(|1|1010|0|1100|1|0|1|10100|1|0|110) |011010011001011001101001.

Proposition 35. Let σ be a primitive substitution and u be a prefix of its fixed point x =
σ(x) ∈ Aω. There exists a 2-block morphism σu : A∗

x,u → A∗
x,u such that Eu(x) is fixed point

of σu and
θx,u(σu(Eu(x))) = σ(θx,u(Eu(x))).

Proof. We may replace σ by a convenient power of σ in such a way that, for all a ∈ A,
σ(a) contains an occurrence of a factor abelian equivalent to u. For all a, b ∈ Ax,u, consider
all the occurrences i1 < · · · < it of a factor abelian equivalent to u occurring in w =
σ(θx,u(ab)). With our choice of σ, at least one of these ij belongs to [0, |σ(θx,u(a))|−1] (resp.
[|σ(θx,u(a))|, |w| − 1]). Let r be the largest integer such that ir < |σ(θx,u(a))|. We define

σu(ab) = µx,u(w[i1, i2 − 1]) · · ·µx,u(w[ir, ir+1 − 1]).

Corollary 36. Let σ be a primitive substitution and u be a prefix of its fixed point x = σ(x) ∈
Aω. The sequence Eu(x) is primitive substitutive, i.e., there exists a primitive morphism
τu : B → B∗ and a coding φ : B → Ax,u such that Eu(x) = φ(τωu (b)) for some b ∈ B.

Proof. We may replace σ by a convenient power of σ in such a way that, for all a ∈ A, σ(a)
contains occurrences of two factors abelian equivalent to u. Consider the alphabet

B = {(a, b) | a, b ∈ Ax,u ∧ ab is a factor of Eu(x)}.

For all a, b ∈ Ax,u such that (a, b) ∈ B, consider all the occurrences i1 < · · · < it of a
factor abelian equivalent to u occurring in w = θx,u(ab). Let r be the smallest integer such
that ir ≥ |θx,u(a)|. Note that r ≥ 3. We define

τu((a, b)) = (µx,u(w[i1, i2−1]), µx,u(w[i2, i3−1])) · · · (µx,u(w[ir−1, ir−1]), µx,u(w[ir, ir+1−1])).

Let e0e1 be the prefix of length 2 of Eu(x). We have

Eu(x) = φ(τωu ((e0, e1)))

where φ : B → Ax,u is the coding that maps (a, b) ∈ B to a.
Observe that, for all (a, b) ∈ B, |τnu ((a, b))| ≥ 2n. Let us show that τu is primitive.

Since Eu(x) is uniformly recurrent, there exists K such that any factor of length K of Eu(x)
contains all elements in {cd | (c, d) ∈ B}. Therefore any factor of length K of τωu ((e0, e1))
contains all the elements of B. Take N such that 2N ≥ K. Then, for all (a, b), (c, d) ∈ B,
τNu ((a, b)) contains (c, d) which means that τu is primitive.
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Example 37 (Example 29 continued). Take again u = 011 and the morphism σ : 0 7→
01101001, 1 7→ 10010110 generating t. We have

σ(θt,u(12)) = (|0|1|1010|0|1)100|1|0|110 and σu(12) = 12314

σ(θt,u(23)) = (100|1|0|1|10)100|1|0|110 · · · and σu(23) = 2125

σ(θt,u(31)) = (100|1|0|110|0|1|1010|0|1100|1|0|110|0|1|10100|1)|0|1|101001
and σu(21) = 216123142161252.

Using the above corollary, we get

τu(1, 2) = (1, 2)(2, 3)(3, 1)(1, 4)(4, 2), τu(2, 3) = (2, 1)(1, 2)(2, 5)(5, 2), . . . .

5.1 Abelian derivatives of the Thue–Morse word

Proposition 38. For the Thue–Morse word t, the set {Eu(t) | u ∈ Pref(t)} is infinite.

Proof. It is sufficient to show that the set {Eu(t) | u ∈ Pref(t) : |u| ≡ 1 (mod 2)} is infinite.
Proceed by contradiction and suppose that the set {Eu(t) | u ∈ Pref(t) : |u| ≡ 1 (mod 2)}
is finite. Then there exist u and v distinct prefixes of odd length of the Thue–Morse word
t such that Eu(t) = Ev(t). Since APRt is finite, we can moreover assume that θt,u = θt,v.
Indeed, infinitely many sequences of the kind Eu(t) are equal and thus defined on the same
alphabet At,u. For all such sequences, there are finitely many morphisms of the kind θt,u
associating with each element of At,u an element of the finite set APRt. So we can impose
the extra condition on θt,u. Let

I(w) := {i ∈ N | t[i, i+ |w| − 1] ∼ab w}

denote the set of occurrences of factors of t abelian equivalent to a word w. We have
I(u) = I(v) as θt,u = θt,v. Without loss of generality, we may suppose that |u| = 2k + 1,
|v| = 2ℓ+1 with k < ℓ. We have Ψ(u) = (k, k+1) or Ψ(u) = (k+1, k) and Ψ(v) = (ℓ, ℓ+1)
or Ψ(v) = (ℓ+1, ℓ). Let au (resp. av) denote the letter having k+1 (resp. ℓ+1) occurrences
in the prefix u (resp. v). Note that au and av are respectively the last letters of u and v.

For any odd position j, recalling that t[2m, 2m+ 1] ∈ {10, 01}, we have

tj = au ⇔ t[j, j + |u| − 1] ∼ab u ⇔ t[j, j + |v| − 1] ∼ab v ⇔ tj = av

where the central equivalence comes from the fact that I(u) = I(v). As there exists at least
one such j, we have au = av =: a.

For any even position j, we have

tj+|u|−1 = a ⇔ j ∈ I(u) ⇔ j ∈ I(v) ⇔ tj+|v|−1 = a

since I(u) = I(v). Using this observation, we can show by induction that

t|u|−1+n(|v|−|u|) = a
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for all n ∈ N. In other words, there exists a constant infinite arithmetical subsequence in t,
which is a contradiction, since it is well-known that the Thue-Morse word does not contain
any such subsequence. Indeed, for n = 0, it is clear that the last letter of u is a. Suppose
now that the result holds true for n ≥ 0. We have t|u|−1+n(|v|−|u|) = a. Since |u|, |v| are odd,
n(|v| − |u|) is an even number and belongs to I(u) = I(v). Therefore t|v|−1+n(|v|−|u|) = a and
|v| − 1 + n(|v| − |u|) = |u| − 1 + (n+ 1)(|v| − |u|).

Remark 39. Using the same notation as in the previous proof, we show that the set {Eu(t) |
u ∈ Pref(t) : |u| ≡ 0 (mod 2)} is infinite. Proceed by contradiction. Then there exist u
and v distinct prefixes of even length of t such that Eu(t) = Ev(t) and θt,u = θt,v. Hence
I(u) = I(v). Note that 2N ⊆ I(u) = I(v). Suppose that |u| = 2k, |v| = 2ℓ, with k < ℓ.
Since a prefix of even length has a Parikh vector of the kind (r, r), 2i+1 is in I(u) if and only
if ti = ti+k. Similarly, 2i+ 1 is in I(v) if and only if ti = ti+ℓ. From I(u) \ 2N = I(v) \ 2N,
we deduce that, for all i ∈ N, ti = ti+k implies ti = ti+ℓ and conversely. This leads to the
contradiction that t is ultimately periodic of period ℓ− k. Indeed, suppose to the contrary
that for some i, ti+k 6= ti+ℓ. In this case, either ti+k or ti+ℓ is equal to ti. From our last
deduction, we get that all three letters ti, ti+k, ti+ℓ are equal.

Remark 40. Using the same notation as in the previous remark, there exist no prefixes u, v
of t such that |u| is even, |v| is odd and I(u) = I(v). (The symmetric case can be treated
in the same way.) Assume that |u| = 2k, |v| = 2ℓ + 1 for some positive integers k 6= ℓ. We
get Ψ(u) = (k, k) and Ψ(v) = (ℓ, ℓ+1) or Ψ(v) = (ℓ+1, ℓ). Let a denote the letter that has
ℓ + 1 occurrences in v. As v ∈ Pref(t), t|v|−1 = a. Note that, for all even positions j, if j is
in I(v), then tj+|v|−1 = a. Moreover, for all even j, we have j ∈ I(u). Since I(u) = I(v), we
get 2N ⊆ I(v) and thus tj+|v|−1 = a for all even j. Therefore, for all even j ≥ |v| − 1, we
have tj = a and also tj+1 = 1 − a since t is made up of blocks 01 or 10. This means that
the Thue–Morse word is ultimately periodic of period 2 which is a contradiction.
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