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Abstract

We define the central component of a triangulation of a regular convex polygon
as the diameter or triangle containing its geometric center. This definition yields a
new recursion relation for Catalan numbers, which can be used to derive congruence
relations. We generalize this idea to k-angulations, giving congruences of k-Catalan
numbers. We also enumerate the triangulations that include a fixed vertex in their
central components.

1 Introduction

Considering a triangulation of a regular convex polygon as a subset of R? centered at the
origin, define its central component to be the diameter or triangle that contains the origin
(see Figure 1). More generally, every dissection of a polygon can be associated with its set
of components, including one central component. Bowman and the author used components
and central components to enumerate symmetry classes of dissections in a paper [2]|, where
these notions are more formally defined. In this note we use central components to obtain
new recursion relations for Catalan and k-Catalan numbers, and use these recursions to prove
congruence relations of these numbers. We also enumerate the triangulations that include a
fixed vertex in their central components.

Let C,, be the n-th Catalan number, so C,,_5 is the number of triangulations of an n-gon,
and let C, = 0 unless x is a nonnegative integer. The Catalan numbers satisfy the recursion

Z CrCho = Chia. (1)
k=0
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Figure 1: A central triangle with n = 12,7 =3, j =4 and k = 5.

Consider a triangulation of an n-gon as a labeled graph with vertices 0,1,...,n — 1 and
edges denoted zy for distinct vertices x and y. The edges include n sides 01,12, ..., (n—1)0
and n — 3 diagonals. The cyclic length of an edge xy, with x < y, is defined as

min{y —x,n+x — y}.

By enumerating the triangulations of an n-gon according to their central components, we
obtain the following new recursion relation, which is one of the main results of this paper.

Lemma 1. For any n > 3,

n
Cho = 502/2,1 + | Z mijkcz'Aijle—l’ (2)
i+j+k=n
i<j<k<n/2

where

B ifi=j=k

n ifi<j=kori=j<k;
2n, if1<j <k.

Mk =

Proof. The first term of (2) enumerates the triangulations whose central component is a
diameter: there are n/2 possible positions for a diameter, and for each of these there are
Ch/2-1 triangulations of each of the two resulting (n/2 4 1)-gons. In the summation, mj;
is the number of ways to position a triangle whose sides have cyclic lengths i, 7, k inside
an n-gon (see Figure 1). The conditions under the summation ensure that indeed this is a
central triangle. The three cases determining m;;, correspond to the central triangle being
equilateral, isosceles or scalene. Each position of the triangle results in an (7 + 1)-gon, a
(7 +1)-gon and a (k + 1)-gon, and these can be triangulated in C;_;, C;_;, and Cj_; ways,
respectively. O]



2 Congruence relations

Congruence relations of Catalan numbers ), and related sequences have been the object of
extensive study (see [1, 3] and the references therein). We next show that Lemma 1 can be
used to derive some results of this nature. Note that the following result can also be proved
using (1). In what follows we use the notation

tij = M Ci—1C; 1 Cp_1,
with m;j; as in Lemma 1.

Theorem 2. C), is odd if and only if n = 2% — 1 for some integer a > 0.

Proof. We use induction on n, with the base cases easily verified. The proof will follow from
the next observation: the term ¢;;; (with ¢ < j < k) is odd if and only if i = 1 and j = k = 2°
for some ¢ > 1. To see this, first note that by induction, any term of the form #; ¢ 9 is odd.
Conversely, if ¢, is odd then by induction, i = 2°, j = 2¢ and k = 2% for some 0 < b < ¢ < d.
Since n = 2° + 2¢ 4+ 27 is odd it follows that b = 0, and since mgj is odd then ¢ = d as
claimed.

Now let n = 2% + 1, with @ > 1. On the right hand side of (2) we have C, /51 = 0,
and the observation above implies that ¢;;; is odd for exactly one term of the summation, so
C_9 1s odd.

Conversely, suppose that C),_5 is odd. If n is even then so are the terms ¢;;, so that
5 3/2_1 must be odd. Therefore n/2 is odd, and at the same time by induction n/2 = 2° for
some b>0. Thusb=0and n=0=2"—1. If nis odd then Chrja—1 = 0, so at least one of
the ¢;;, must be odd, and by the observation above this implies n = 14 2¢ +2°¢ =1 4+ 2°+1
completing the proof. O

We next use Lemma 1 to prove a recent result of Eu, Liu and Yeh [4]. Another proof is
given by Xin and Xu [8, Theorem 5].

Theorem 3. [/, Theorem 2.3] For all n > 0,

1, ifn=2*—1 for some a > 0;
Chn=412, ifn=2"+2"—1 for someb>a>0; (3)
0, otherwise.
Proof. In what follows, we repeatedly make use without mention of Theorem 2 and of the

uniqueness of binary representation. By verifying the base cases we may assume n > 10 and
proceed by induction on n. Consider the three cases on the right hand side of (3).

1. The case n = 2% — 1:
Let n = 2%+ 1 with a > 4, and we show that C,_s =4 1. Reducing (2) modulo 4 gives

Ch_2 =4 Z mijkci—lcj—lck—l- (4)

i+j+k=n
1<j<k<n/2

3



Since Cya—1_; is odd,
t172a7172a71 - TLCOC2G,7102(Z71 E4 ]_, (5)

and in fact this is the only term not divisible by 4. To see this, consider the terms for
which tijk 7_é4 0.
(a) Suppose i = j = k. Then C;_; must be odd, so i = 2¢ for some ¢ > 0. Therefore
32°—1)=i+j+k=n=2"+1,
or equivalently, 21 4 2¢ = 2% 4+ 22, Therefore a = 3, ¢ = 2 and n = 9, contrary
to the assumption that n > 10.

(b) Suppose i = j < k. Then C;_; must be odd, so i = j = 2° for some ¢ > 0. Since
Cj_1 #4 0, by induction either k = 2¢ with d > ¢, or k = 2% 4 2°¢ with e > d > c.
In the former case, this implies

2041 =2i+k=2" 429
and in the latter case
2a+1:26+1+2d+26’
both cases resulting in a contradiction.

(¢) Suppose i < j = k. As above, it follows that j = k = 2° and either ¢ = 2¢, with

e>c, ori=2°+2¢ with e > d > c. In the former case,
20 41 =1i+42j =2°4+2°F1
which implies ¢ = 0 and e = a — 1, yielding the term given by (5). The latter case
again results in a contradiction.

(d) Suppose i < j < k. Since myj is even, C;_1C;_1Cj_; must be odd. Therefore
i=2¢j=2%and k = 2° for some e > d > ¢ > 0, but then 2¢ +2¢ 4+ 2¢ =29 4 1,
which is impossible.

2. The case n = 2% + 2 — 1:

Let n = 2% + 2* 4+ 1, and we show that C,,_y =4 2. If a = 0, then n/2—-1= 20-1 5o
by induction on b we have C, o1 =4 2. If a > 1, then by definition C,,/,_; = 0. In
either case, (4) still holds. Note that Cy = 1 and if @ > 1 then by induction Coe =4 2.
Therefore

t2a+172b—1,2b—1 = nC'gaC'zbfl_lCqu_l =4 2. (6)

Again, we show that all other ¢;;;, are divisible by 4, by considering the terms for which
tiji 4 0.

(a) Suppose i = j = k. Then we must have i = 2¢ for some ¢ > 0, but this implies
26+1+2C:7’L:2a+2b+17

which is impossible for sufficiently large n.
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(b) Suppose i < j < k. Then C;_1C;_1C)_1 is odd, so i = 2°, j = 2% and k = 2° for
some e > d > ¢ > 0. Therefore

20424 4 2°=n=2"4+2"41.
Since we may assume a > 1 (otherwise 2n =4 0), it follows that ¢ = 0, d = a and
e = b. But this implies k > n/2, contrary to the conditions under the summation.
(¢) Suppose that ¢ < j = k. Since C_; must be odd, k = 2° for some e > 0. Now if
i = 2% for some d < e then
2¢ 20 41 =27 4 2¢F

which is impossible. Therefore by induction we have i = 2¢ + 2¢, with e > d >
¢ > 0. This gives

20 420 41 =i 4 2k = 2¢ 4 2% 4 2¢F1
so ¢ = 0 and 2¢ + 2° = 29 4+ 2¢*1 Tt follows that ¢ = b — 1 and d = a, which
is the term given by (6). A similar analysis of the case i = j < k results in a
contradiction.

3. Otherwise:

We show that C),_s =4 0 unless n — 2 has one of the forms above. If 02/271 %4 0 then
n/2 = 2% for some a > 0. For n sufficiently large this implies 8|n so that %02/2—1 =, 0.
Next, consider the terms for which ¢, #4 0.

(a) Suppose i = j = k. Since 02/3_1 #, 0, we must have n/3 = 2% for some
a > 0. Thus n = 3 - 2% However, for sufficiently large n this would imply that
Mk = 77,/3 =4 0.

(b) Suppose i =j <kori<j=k. If C;_1C;_1Cj_; is odd then

n =20t 4 2¢ (7)
for some b,c > 0 . Now
2°<nj2=2" 4271

so c—1 < band in fact ¢ < b (since c—1 = b would imply n = 2¢ =, 0). Therefore
(7) implies that c=0orc=1,s0n —2=2"1 —Torn —2=2071 420 — 1.
The only case left to check is when n is odd and C;_1C;_;Cy_1 =4 2. In this case,
by induction n = 2 - 2% + (2¢ + 29) with b,¢,d > 0 and d > ¢. Since n is odd then
c=0,sothat n —2 =201 4 2¢ _ 1

(¢) Suppose 2nC;C;Cy #4 0. Since C;, C; and Cy are odd, n = 2° 4 2¢ + 2¢ for some
d>c>b>0. Sincenisodd, b=0and n —2=2°+2¢ - 1.

[
Another congruence relation follows immediately from reducing (2) modulo a prime p > 5.

Theorem 4. If p > 5 is prime and n =, —2 then C,, =, 0.



3 Generalization to k-angulations

Lemma 1 can be generalized to give a recursion for the number of k-angulations, which are
partitions of a polygon into k-gons. Let f, ; be the number of k-angulations of an n-gon. It
is well known (see, for example, the paper of Przytycki and Sikora [5]) that

Je=vns2,k41 = Cnk (8)

1 kn
Cre = (k—l)n+1<n)

are the k-Catalan numbers [7, A137211]. Define f,; = 0 unless n = (k — 2)m + 2 for some
integer m > 0. The proof of the following Lemma is completely analogous to that of Lemma
1.

Lemma 5. For anyn > 2 and k > 3,

where

n
foge = §f2/2+1,k + D M fare e faru (9)
t1+...+ig=n
1< <ip<n/2
where my, ;. s the number of ways to position a k-gon with sides of cyclic lengths i1, ...,

inside an N-gon for N =iy + ...+ 1.

1 3n
Q"_Qn—i-l(n)

be the number of quadrangulations of a (2n+2)-gon, and let ), = 0 unless x is a nonnegative
integer. Then

Qn = (n+ 1)@%/2 + Z M@ (i—1)2Q -1y 2@ (k—1)/2Q 1-1) /2 (10)

i+j+k+1=2n+2
i<j<k<l<n+1

For example, let

where

%, if1 =1,

N, ifi=k<lori<j=I,

mir =< N, ifi=j<k=I (11)
3N, ifi=j<k<lori<j=k<lori<j<k=lI

6N, ifi<ji<k<l

for N=i+j5j+k+1L
Theorem 4 can be generalized by reducing equation (9) modulo a prime p > 3.

Theorem 6. If p > 3 is prime with p [k and p|n then f, =, 0.

Proof. For a given k-gon, the number of cyclic permutations of the k sides that leave the
k-gon unchanged is divisible by k. Therefore the number of inequivalent rotations of the
k-gon inside the n-gon is divisible by n/k. It follows that m,, , is divisible by n/k, and so
the given assumptions imply that p divides f,, 4. O



4 Triangulations with a fixed vertex in their central
component

L. Shapiro [6] proposed the following question: how many triangulations include the vertex
0 in their central component? The following theorem answers this question.

Theorem 7. Let n > 3. The number f(n) of triangulations of an n-gon with the vertex 0
outside their central component is

1 1
f(?’L) = 5 n—1 " On—2 + 5073/2_1-

Proof. Enumerate these triangulations according to the cyclic length [ of the shortest diag-
onal that separates 0 form the center (see Figure 2).

Given such [, suppose this diagonal is given by k(n + k —1). Note that 1 < k <[ — 1.
Since this is the shortest such diagonal, the triangulation must also include the diagonals Ok
and 0(n + k — 1), forming a triangle. The regions outside of this triangle can be triangulated
arbitrarily. Therefore

[n/2] 1-1

f(n) = Z Zc’nflflclfkflckfl

1=2 k=1
Ln/2]

= Z Cn—l—lol—l
=2

[n/2]-1
- Z Can72fm
m=1

n—3

1 1
- 5 Z Cmcn—2—m + 503/2_17

m=1

where the second equality follows from (1). The result now follows by again applying (1). O

n+k—1

Figure 2: Triangulations with the vertex 0 outside the central component.



It seems that the sequence a(n) = f(n — 3) is given in an entry of Sloane’s encyclopedia

[7, A027302]:

a(n) = Z T(n,k)T(n,k+1),

0<k<n/2

n—2k+1/n
T<”7’“>:n_—k+1(k)~

In this entry it also asserted that a(n) is the number of Dyck (n + 2)-paths with UU
spanning their midpoint. It would be interesting to determine whether any known bijection
between triangulations and Dyck paths gives this correspondence.

where
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