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Abstract

Letting P (n) stand for the k-th largest prime factor of n > 2 and given an irrational
number « and a multiplicative function f such that |f(n)| =1 for all positive integers
n, we prove that ) . f(n)exp{2miaPy(n)} = o(x) as x — oo.

1 Introduction

In 1954, Vinogradov [7] showed that, given any irrational number «, if p; < ps < --- stands
for the sequence of primes, then

Ze(apn) = o(x) as T — 00, (1)

n<x
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where we used the standard notation e(z) = exp{2miz}. In light of the well known Weyl
criteria (see the book of Kuipers and Niederreiter [5]), statement (1) is equivalent to asserting
that the sequence ap,, n = 1,2, ..., is uniformly distributed mod 1.

In 2005, Banks, Harman and Shparlinski [1] proved that for every irrational number «,

Z e(aP(n)) = o(x) as T — 00, (2)

n<x

where P(n) stands for the largest prime factor of the integer n > 2 with P(1) = 1.

Let M denote the set of all complex valued multiplicative arithmetical functions and let
M; be those f € M for which |f(n)| = 1 for all positive integers n. In [2], we general-
ized (2) by showing that for any irrational number o and any function f € M;, we have

> ey f)e(@P(n)) = ofx) as @ — oo.

Let w(n) stand for the number of distinct prime divisors of n > 2 with w(1) = 0. Given
an integer k > 1, for each integer n > 2, we let Py(n) stand for the k-th largest prime factor
of n if w(n) > k, while we set Py(n) =1 if w(n) < k — 1. Thus, if n = p*p3? - - - p¢ stands
for the prime factorization of n, where p; < ps < --- < p,, then

Pi(n) = P(n) = ps, Py(n) = ps-1, P3(n) = ps-a, ...

In this paper, we prove that, given any integer £ > 2 and any irrational number «;, then

Zf e(aPy(n)) = o(x) as x — 0.

n<x

2 Main result

Theorem 1. Given an integer k > 2 and an irrational number o, let f € My and consider

the sum
Z f OéPk )

n<x

Then
Si(x) = o(x) as x — oo. (3)

3 Notation and preliminary results

We say that a function L : RT — R is slowly oscillating if lim, . L(cy)/L(y) for each real
number ¢ > 0.
In 1968, Haldsz [4] established the following result.

Lemma 2 (Haldsz’s theorem). Let f be a complex-valued multiplicative arithmetical function
such that | f(n)| < 1 for all positive integers n. The following two statements hold:



(a) If there exists a real number Ty for which the series

1—R(f(p)/p'™)
2

s convergent, then, as xr — oo,

i‘ro

n<x

(b) If the series

3 1—R(f(p)/p"")

» D

1s divergent for every real number T, then

Zf(n) = o(x) as r — 00.

n<z

Proof. For a proof, see the book of Schwarz and Spilker ([6, Thm. 3.1]).

Fix an integer k£ > 2 and for each real number 7, let

= f(n)n""e(aPi(n)).

n<z
We then have the following result.

Lemma 3. Let 7,75 € R. Then, as x — o0,

(a) Rn(x)=o(z) < (b)) BRn(x)=o(z).

Proof. 1t is clear that (a) holds if and only if, given any € > 0,

% Z f(n)n™e(aPy(n)) =0 asz — oo,

z<n<(1+€)x
while (b) holds if and only if, given any ¢ > 0,
1 )
— Z f(n)n'™e(aPy(n)) -0 asx — oc.
Ex

z<n<(14€)x

1 0 r
Zf =x- 1+1TOH (1—5) (1—1—;]);]25130)) + o(x).

But since each n € [z, (1 4 €)x] can be written as n = x + dz for some 0 < § < €, we have

n'? = (x4 6x)™ = 2" (14 0)"™ = 2™(1 4 0(¢)),

and similarly '
W =2 (14 0(e)).

It follows that (a) and (b) are equivalent, thus proving (4).
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Lemma 4. For all2 <y <z, let ¥(z,y) :==#{n <z : P(n) <y}. Then,
(a) As x — o0,
U(z,y) = (1+o0(1)p(u) z,

where u = log z/logy and p(u) is the Dickman function defined by the initial condition
p(u) =1 for 0 < u < 1 and thereafter as the continuous solution of the differential
equation with shift differences

up'(u) + plu—1) =0 (u>1).

11
(b) Forall2 <y <ux, ¥(r,y) < xexp{—élzzj}.

Proof. Proofs of these results can be found in the book of De Koninck and Luca ([3], pages
134 and 138). O

Lemma 5. Given an arbitrary irrational number «, set

Si(z) = e(aPy(n)).

n<zx

Then
Si(z) = o(x) as r — 00.

Proof. Let € > 0 be a small number. It is easy to see that in the sum representing S;(z),
we may drop three types of integers n < z, namely (i) those for which w(n) < k + 1, (ii)
those for which Pyy1(n) < 2 and finally (iii) those for which p?|n for some prime p > Py (n),
the reason being that the number of these exceptional n’s is O(ez). So, let us write the
remaining integers n < x as

n=uvpgPr_1---p1, wherez® < PW)<ppr<pr1<--<p

and set
Qr = prpr_1 - p1 (< a'79).

Using this set up, we may write

Si(x) = Z e(apy)¥ (é,pk) + O(ex).

€ <pp<--<p1

Qp<al—e
Let
G = ¥ env (m).
Qp<al—e
so that
Si(z) = Ti(x) + O(ex), (5)



Now, observe that, using Lemma 4 and the fact that Qp = prQr_1, we have
T T loga:—long> (w )
\Ij -, = —_— _— + 0 -
(Qk p’“) Q" ( log i Qs
_ o, (logx —log Q-1 1) o <£) ‘
Qr log py, Q
Substituting this last identity in (5), we get

L) = 3 elom)gr (logx;) glink‘l—l>+o(:v)

zs<pk<"'<171
PRpQp_1<al™e

_ Z Qx Z e(ozpk)p (logx —logQy—1 1)
k-1

e Dk log px

. 1—¢
PpQp_i<wl—e IE<Pk<m1H<Pk—175kil)

+ o(x). (6)

xl—a

Setting t(pg_1,...,p1) := min (pkl, Q—), we now subdivide the above inner sum into two
k—1

separate sums, depending if

t(pr—1,...,p1) <225 or t(pg-1,...,p1) > 225,

and thus we write 71 (z) = T} (x) + 17 (x).
On the one hand, using the fact that Z

€ <pp <2x°¢

k
T 1 T
T! — . . 7
rl<x>\<<5logx( > pk> < o ™

€ <p <2z¢

— , we obtain
pr  clogx

On the other hand, using the Vinogradov theorem (see (1)) and the continuity of the p
function, we obtain that, as x — oo,

Tl < Y dondy(Rers kel )

- Dk log pr,

€ <pp<t(pr—1,---P1)

1 (logz —log Qi
_ 3 _p(ogw ong_l)

1
€ <pp<t(Pk—1,--P1) P & Pr
= o(x). (8)

Substituting (7) and (8) in (6), and thus in light of (5) completes the proof of Lemma 5.

O



4 Proof of Theorem 1

Let us first assume (case (b) of Haldsz’s theorem) that

3 1 —R(f(p)p'™)

=00 forall T €¢R.

> p
Let us set
=> f(n) and  E(zly)= > f(n).
n<z n<z
- P(n)<y

It follows from Haldsz’s theorem (Lemma 2) that E(z) = o(z) as * — oo, in which case
there exists a positive decreasing function ¢(x) which tends to 0 as * — oo and for which
we have

|E(2)| < xd(x). (9)

Let ¢ > 0 be a fixed small number and choose y satisfying * < y < x. Further set
IT, :=[,<p<. p- We then have

E(zly) = > f(n) > puld)=>Y p(d) > f(md)

n<x d|(n,I1y) d|TI, md<x

= Y@ Y fmy+o| 3o

d|TL, m<z/d dm<z

d|TTy
(d, m)>1
1
= Z w(d E(z/d)+ O Z - |-
d|IL, P>y p

Consequently, uniformly for ¢ <y < z, and in light of (9), we have

Bl <o 20 o (%), (10

d|TLy
In light of (10), in order to show that
E(zly) = o(x) as v — 00, (11)
we only need to show that
Ty == Z 5(a7d/d) =o(l) asx— oc. (12)

d|TLy



We split the above sum in two parts as follows:

O(x/d O(x/d
ooy Ay d

d|Tly d|Tly
d<z/logx z/log x<d<z
< d(log ) g ! +c E !
d|Tly d|TIy,
d<z/logx z/logx<d<z
= Od(logx)T) + cTx, (13)

where ¢ is some positive constant. On the one hand, we have

ni< ] ( ><<exp{z1

e <p<zx ¢ <p<zx p

}<< iy 10

3

On the other hand, setting Uy = x/logx and letting j, be the smallest positive integer
satisfying 27071U, > z, we have

Jo 1
I = ZQ]’U Z 1

j=0 0 20 Ug<d<2i+1Uy
p(d)>x®
Jo 1 J log log x
0
< 1—- . 15
B lep[“ p) S logr = Tloge "

Combining (14) and (15), we immediately obtain (12), from which (11) follows.

On the other hand,
U(z,y) > x for 2 <y < x. (16)
Combining (11) and (16), we get that

lim max ———
r—00 ¢ <y<z \I}(l’,y)

—0. (17)

Given a positive integer k and a positive integer n, it will be convenient to write

Qr(n) = Qr = Pe(n)Bpa(n) - - Pi(n).

Then, write

Z f(n)e(aPy(n Z f(n)e(aPy(n)) = St(x) + S¥(x), (18)

n<x n<x
Pp(n)<z® Py (n)>x€

say.
First, observe that it is an easy consequence of the Turan-Kubilius inequality that

2

Z Z 1— Z < Z %<<x10g(1/5),

n<z x€ <p<:1: e <p<zx
z€ <p<z



from which it follows that

> (k—log(1/2))* < xlog(1/e).

n<x
Py (n)<az€

Using this, we conclude that

T

Similarly, we can say that
T
<zxz:P < zf _.
#{n_:v k+1(n) =T }<< lOg(l/&)
This implies that Qr(n) < 2!~ for all but O T integers n < x.
log(1/2)
This means that
x
57(0)| < elaP) FQuB(/QuR) +0 (17 ). (20)
Using (17), we obtain that the summation on the right-hand side of (20) is
1 1 )" 1\"
olx Z =o|x— Z — =0 x(log—)),
P p1<T Pk P1 & <x€<p§w p) ( c
z£<pk.<'-~<p1
implying that
S%(x) = o) as r — 00. (21)

Substituting (19) and (21) in (18), we obtain (3).
It remains to consider case (a) of Haldsz’s theorem (Lemma 2), that is when there exists
a real number 7y for which the series

3 1—R(f(p)/p'™)

D

p
is convergent. In light of Lemma 3 we can assume that 7y = 0, that is that

3 1-R(f) _ (22)

» p

For each prime power p®, let us write f(p®) = exp{iu(p®)} where u(p®) € [-7, ). It follows
that




Now let D be a large number and define the multiplicative functions fp and gp on prime
powers p® by
1, if p<D;
f"), ifp>D.

Then define the arithmetical function ¢(n) implicitly by the relation fp(n) = 35, t(d). Since

one easily sees that t(p) = 0 if p > D, it follows that the above summation runs over only
those divisors ¢ for which P(J) < D.

Further define »)
U
ap(x) == Z k'Y

D<p<lz p

f(p*), ifp< D

d @y —
1 ifp>p 9o(p") {

Using the Turan-Kubilius inequality, we obtain that

2

U2 a
S u) - ave) | <o 3 <,
n<z i‘;\lg p>D P

say, where np — 0 as D — oo.
It follows from this that

31 f(n) = fom)e @[ < e,
n<x

and therefore that |
> () = fo(n)e™ ™| < npa.

n<x

We may conclude from this that
Sp(a) = e P @ Ap(z) + O(npa),
where

Ap(x) == fo(n)e(aPy(n)).

For each integer 6 > 1, let

With this definition, we may write

Ap(z) = 3 H(5)Bs (%) . (23)

PHED
Now if P.(dm) # Pi(m), then either w(m) < k —1 or Py(m) < D. Thus
€ x
— —_ — < _
BG)-s()ls X v ¥ 1=vmene e

m<xz/é Qu<z /s
w(m)<k—1 w(Q)<k—1, P(1)<D



say. Write
Ui(w)= ) *+ »  *=Ux)+U{(2), (25)
i<\/x Va<s<z
say. Then, it is clear that
Uf(z) < > 1<V (26)
m<y/z
On the other hand, using the Hardy-Ramanujan inequality (see, for instance, [3, Theorem
10.1]), it follows that there exist two absolute positive constants ¢; and ¢y such that

Ul(z) < ciz (loglogx + cy)*~2
1

~ dlogx (k—2)! (27)

On the other hand,
Us(x) < Us(x) + Uy (2), (28)

where in Uj(z), we sum over those @ < /x/§, while in U} (x), we sum over those v < y/x/J.
To estimate Uj(x), we proceed as follows. First, using Lemma 4 (b), we get

Uy(x) < Z Z 1< Z %exp{—%bg&#}. (29)

Seul s S86l
1/4
Since — > <£> > /8 it follows from (29) that
0Q )
, x 1 logx
Us(x) < Z @exp “T6l0gD | (30)
Q<\x/s
w(Q)<k—1
Since

1
Z — < (loglog )1,
Q<a
w(@)<h—1
it follows from (30) that, given any positive number K,

Uj(x) <p %(log z)~ K. (31)

On the other hand, setting mx(z) := #{n < z : w(n) = k} and again using the Hardy-
Ramanujan inequality, it follows that

10



Uz) < > > 1

v<\/z/5 Q<=z/dv
P(u)</D w(@)<k—1

x
< k=1 Y ma(s)
v<y/z/6
P(v)<D
kx 1 (loglogz + cy)k=2
= o 51 k—2)
PieD v logx ( !
!
< 510 (loglogx—l—cz)k’zn (1—]—))
p<D
log D
< Sglo (loglog z)F~2 (32)

Substituting (26) and (27) in (25), and then using (31) and (32) in (28), we obtain from (24)
that

max — |55 (5) - B (5)] < 7=

say. It follows from this last estimate and (23) that for some positive constant c3

|Ap(z)] < =z Z + Z It(6 |‘Bl< >) logx Z|t -

Ve<d<z
P(5)<D P(6)<D
= W W- W- 33
PWA(r) + W)+ E W), (39
say.
Since

<H(1+|t ’t(;);)‘Jr...)

p<D

and since |t(p®)| = |f(p®) — f(p?~1)| < 2, it follows that
Ws(z) < c(log D). (34)
Using Lemma 5, we obtain that, as x — oo,
Wa(z) = o (zWs(x)) = o (z(log D)?) . (35)
In order to estimate Wi(x), let us first find an upper bound for

k(v) = Z t(d) for Vo <v <z

We have



2
Since ?U > V/2v > \/w, it follows that, given any arbitrary large number R > 0,

2 2
¥ (%,D) < %(log z) " (37)

Let vg = y/z and, for each integer j > 1, let v; = 27\/z. Letting j, be the smallest positive
integer such that v;, > x, so that j, = O(log ), we obtain, using (37) in (36), that

.

0

K(v)) Jo+1

Wi(z) < v; (logz)i

J=0

(38)

Substituting (34), (35) and (38) in (33), we obtain that
Ap(z) = o(x) as v — 00,

thus completing the proof of Theorem 1.
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