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Abstract

The S-adic conjecture postulates the existence of a condition C such that a sequence
has linear complexity if and only if it is an S-adic sequence satisfying C for some
finite set S of morphisms. We present an overview of the factor complexity of S-adic
sequences and we give some examples that either illustrate some interesting properties,
or that are counterexamples to what might seem to be a “good” condition C.

1 Introduction

A common tool in the study of a sequence (or an infinite word) w over a finite alphabet A
is the complexity function pw (or simply p) that counts the number of factors of each length
n occurring in the sequence, i.e., pw(n) = Card({u ∈ A∗ | |u| = n and ∃x ∈ A∗,y ∈ AN :
w = xuy}) (see [BR10, Chap. 4] for a survey on complexity function). The set of factors of
length n of w is denoted by Facn(w) and Fac(w) =

⋃

n∈N Facn(w). The complexity function
pw is clearly bounded by (Card(A))n, n ∈ N, but not every function can be a complexity
function. As an example, it is well known (see [MH38]) that either the sequence is ultimately
periodic (and then pw(n) is ultimately constant), or its complexity function grows at least
like n + 1. Non-periodic sequences with minimal complexity pw(n) = n + 1 for all n exist.
They are called Sturmian sequences and a large literature is devoted to them (see [Lot02,
Chap. 2] and [Fog02, Chap. 6] for surveys on these sequences).

There is a huge literature about sequences with low complexity. Indeed, such sequences
occur, for instance, in combinatorics [All94, Cas96, Cas97, GJ09, Kos98, Rot94], dynamical
systems [AR91, Bos84, Bos92, Fer95, Fer99], number theory [AB07, AB11, AZ98, FM97],
and geometry [CS01, HZ98, Rau82]. In this paper, by “linear complexity” we mean that
the number of factors of length n is O(n), and by “low complexity” we usually mean linear
complexity.

Moreover, many well-known families of sequences can also be indefinitely desubstituted
with a finite number of morphisms. Formally, an S-adic sequence is defined as follows. Let w
be a sequence over a finite alphabet A. If S is a set of morphisms (possibly infinite), an S-adic
representation of w is given by a sequence (σn : A∗

n+1 → A∗
n)n∈N of morphisms in S and a se-

quence (an)n∈N of letters, ai ∈ Ai for all i, such that1 A0 = A, w = limn→+∞ σ0σ1 · · · σn(aωn+1)
and limn→+∞ |σ0σ1 · · · σn(an+1)| = +∞, where aωn+1 is the sequence only composed of occur-
rences of an+1. The sequence (σn)n∈N ∈ SN is the directive word of the representation. In
the sequel, we will say that a sequence w is S-adic if there exists a set S of morphisms such
that w admits an S-adic representation.

The notion of S-adicity first appeared when Ferenczi [Fer96] proved that the set of factors
of any uniformly recurrent sequence with linear complexity admits an S-adic representation,
with S finite, satisfying limn→+∞mina ∈ An+1|σ0σ1 · · · σn(a)| = +∞. The present work
found its motivation in that paper. Indeed, an open problem is to determine the link between
being an S-adic sequence and having linear complexity (see [AR91, Fer96, Ler12b]). This
problem is called the S-adic conjecture:

1The topology over AN is the classical product topology of the discrete topology over A.
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Conjecture 1.1 (S-adic conjecture). There exists a condition C such that a sequence has
linear complexity if and only if it is an S-adic sequence satisfying Condition C for some finite
set S of morphisms.

It is clear that we cannot avoid considering a particular condition since there exist some
pure substitutive sequences with quadratic complexity.

In this paper, we present an overview of the factor complexity (aka “subword complex-
ity”) of S-adic sequences and we give some examples that either illustrate some interesting
properties, or that are counterexamples to what might seem to be a “good” condition C.

In what follows, we consider that alphabets are finite subsets of N and if σ : A∗ → B∗ is
a morphism with A = {0, 1, . . . , k}, we write σ = [σ(0), . . . , σ(k)]. The following example is
classical when considering S-adic sequences.

Example 1.2. Let us define the four morphisms R0, R1, L0 and L1 over {0, 1} by R0 =
[0, 10], R1 = [01, 1], L0 = [0, 01] and L1 = [10, 1]. Since the work of Morse and Hed-
lund [MH40], it is well known that for any Sturmian sequence w, there is a sequence (kn)n∈N
of integers such that

w = lim
n→+∞

Lk0
0 R

k1
0 L

k2
1 R

k3
1 L

k4
0 R

k5
0 · · ·Lk4n+2

1 R
k4n+3

1 (0ω). (1)

With, for all n ≥ 1, the additional assumptions “k2n + k2n+1 ≥ 1” and “if k2n = 0, then
k2n−1 6= 0”, the sequence (kn)n∈N is unique [BHZ06, LR07].

It is important to notice that, when we talk about an S-adic sequence, the corresponding
directive word (σn)n∈N ∈ SN is always implicit (even when it is not unique). Indeed, for a
given set S of morphisms, we will see that two distinct S-adic sequences can have different
properties depending on their respective directive words.

Observe that another classical tool to study sequences is topological entropy (h =

lim supn→+∞
log(p(n))

n
), also used in dynamical systems. However, as we are interested in

very low complexity (subexponential) sequences, it is of no help.
The paper is organized as follows. Section 2 aims to present an overview of the complexity

functions of morphic and S-adic sequences. Section 3 explores some necessary and some
sufficient conditions on directive words that might lead to a correct statement of the S-adic
conjecture. These conditions are illustrated through examples and counterexamples and
expressed in terms of growth rate, return words, and composition rules of the morphisms and
repetitions. A key tool to prove or disprove the linearity of the complexity of many examples
is the deep result of Cassaigne characterizing the linearity of the complexity in terms of
special factors (Theorem 3.7 on page 10). Section 4 goes further than the S-adic conjecture
and proposes a new problem about the possible complexities of everywhere-growing S-adic
sequences.

2 Comparison between morphic and S-adic sequences

The aim of this section is to compare morphic sequences with S-adic sequences. In particular,
we show that the factor complexity of morphic sequences is rather restricted and can depend
on combinatorial criteria, although this is not the case for S-adic sequences.
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2.1 Morphic and pure morphic sequences

Purely morphic sequences correspond to S-adic sequences with Card(S) = 1. If S = {σ},
we then have σ0σ1σ2 · · · = σσσ · · · = σω. In that case, the complexity functions that can
occur were completely determined by Pansiot in [Pan84]. Indeed, he proved that for pure
morphic sequences w = σω(a) = limn→+∞ σn(aω) with σ non-erasing (i.e., σ(b) is not the
empty word for all letters b), the complexity function pw(n) can have only five asymptotic
behaviors that are2 Θ(1), Θ(n), Θ(n log n), Θ(n log log n) and Θ(n2). Moreover, when the
sequence w is aperiodic, Morse and Hedlund proved that its complexity function cannot be
Θ(1) (see [MH38]). Pansiot proved that the class of complexity of the sequence only depends
on the growth rate of the length of the images.

Definition 2.1. Recall that a morphism σ : A∗ → A∗ is said to be everywhere-growing if
it does not admit bounded letter, i.e., letter b such that limn→+∞ |σn(b)| < +∞. We let
AB,σ (or AB when no confusion is possible) denote the set of bounded letters of σ. By
opposition, a non-bounded letter is called a growing letter. Since for all letters a, we have
|σn(a)| ∈ Θ(nαaβn

a ) for some αa in N and βa ≥ 1 (see [RS80]), any everywhere-growing
morphism satisfies exactly one of the following three definitions:

1. a morphism σ : A∗ → A∗ is quasi-uniform if there exists β ≥ 1 such that for all letters
a ∈ A, |σn(a)| ∈ Θ(βn);

2. a morphism σ : A∗ → A∗ is polynomially diverging if there exists β > 1 and a function
α : A→ N, α 6= 0, such that for all letters a ∈ A, |σn(a)| ∈ Θ(nα(a)βn);

3. a morphism σ : A∗ → A∗ is exponentially diverging if there exist a1, a2 ∈ A, α1, α2 ∈ N

and β1, β2 > 1 with β1 6= β2 such that for each i ∈ {1, 2}, |σn(ai)| ∈ Θ(nαiβn
i ).

Theorem 2.2 (Pansiot [Pan84]). Let w = σω(a) be a pure morphic sequence with σ non-
erasing.

1. If σ is everywhere-growing and

i. quasi-uniform, then3 pw(n) ∈ O(n);

ii. polynomially diverging, then pw(n) ∈ Θ(n log log n);

iii. exponentially diverging, then pw(n) ∈ Θ(n log n).

2. If σ is not everywhere-growing and if there are infinitely many factors of w in A∗
B
,

then pw(n) = Θ(n2).

3. If σ is not everywhere-growing and if there are only finitely many factors of w in A∗
B
,

then there exists a pure morphic sequence τω(b) with τ : B∗ → B∗ everywhere-growing
and a non-erasing morphism λ : B∗ → A∗ such that w = λ(τω(b)). In this case, we
have pw(n) ∈ Θ(pτω(b)(n)).

2f(n) ∈ Θ(g(n)) if ∃C1, C2 > 0, n0 ∀n ≥ n0 |C1g(n)| ≤ |f(n)| ≤ |C2g(n)|.
3f(n) ∈ O(g(n)) if ∃C > 0, n0 ∀n ≥ n0 |f(n)| ≤ |Cg(n)|.
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Unfortunately, Theorem 2.2 only holds for non-erasing morphisms. However, the follow-
ing result states that when the morphism is erasing, the obtained pure morphic sequence
is a morphic sequence (i.e., an image under a morphism of a pure morphic sequence) with
non-erasing morphisms. The result is due to Cobham [Cob68] and was recovered later by
Pansiot [Pan83]. It can also be found in Cassaigne and Nicolas’s survey [CN03].

Theorem 2.3 (Cobham [Cob68] and Pansiot [Pan83]). If w is a morphic sequence, it is the
image under a letter-to-letter morphism of a pure morphic word σω(a) with σ a non-erasing
morphism.

Theorems 2.2 and 2.3 show that to compute the complexity function of a pure morphic
sequence, it is sometimes necessary to view it as a morphic sequence. It is therefore natural
to be interested in the complexity function of such sequences. By definition, any pure
morphic sequence is morphic. The converse has been known to be false since at least 1980,
when Berstel proved that the Arshon word is morphic but not pure morphic [Ber80]. Other
examples can be found in the literature; for instance, the result by Séébold showing that
the unique (up to letter permutation) binary overlap-free word which is a fixed point of a
morphism is the Thue-Morse word [Séé85]).

Moreover, it is not only the case that the class of morphic sequences strictly contains
the class of pure morphic sequences, but also the asymptotic behavior of their complexity
functions are different. Indeed, Example 2.4 shows that complexity classes given by Pansiot
are no longer sufficient.

Example 2.4 (Deviatov [Dev08]). Let w be the morphic sequence τ(σω(0)) where σ and τ
are defined by

σ :



















0 7→ 01

1 7→ 12

2 7→ 23

3 7→ 3

and τ :



















0 7→ 0

1 7→ 1

2 7→ 2

3 7→ 2

We have pw ∈ Θ(n
√
n).

Other examples can be found in [Pan85]. Indeed, for all k ≥ 1, Pansiot explicitly built
a morphic sequence w whose complexity function satisfies pw(n) ∈ Θ(n k

√
n). However,

these behaviors Θ(n k
√
n) seem to be the only new behaviors with respect to pure morphic

sequences. Indeed, in [Dev08] Deviatov proved the next result and conjectured an equivalent
result of Pansiot’s theorem (Theorem 2.2) for morphic sequences.

Theorem 2.5 (Deviatov [Dev08]). Let w be a morphic sequence. Then, either pw(n) ∈
Θ(n1+ 1

k ) for some k ∈ N
∗, or pw(n) ∈ O(n log n).

Conjecture 2.6 (Deviatov [Dev08]). The complexity function of any morphic sequence only
adopts one of the following asymptotic behaviors: Θ(1), Θ(n), Θ(n log log n), Θ(n log n),

Θ(n1+ 1
k ) for some k ∈ N.
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In particular, Theorem 2.5 implies that the highest complexity that one can get is the
same for morphic sequences and for pure morphic sequences. This can be explained by the
following result.

Proposition 2.7 (Cassaigne and Nicolas [CN03]). Let w be a one-sided sequence over A
and σ : A∗ → B∗ be a non-erasing morphism. If M = maxa∈A |σ(a)|, for all n we have
pσ(w)(n) ≤ Mpw(n). Moreover, if w is pure morphic and σ is injective, then pσ(w)(n) ∈
Θ(pw(n)).

It has been pointed out by a referee that Proposition 2.7 could be improved by re-
placing the injectivity hypothesis with the following one: there exists K such that for all
u ∈ Fac(σ(w)), we have Card (σ−1 ({u}) ∩ L(w)) ≤ K. Furthermore, the comparison be-
tween the respective complexity of w and σ(w) seems to depend on the lack of injectivity of
σ.

The previous discussion shows that the factor complexity of morphic sequences is rather
constrained. To conclude this section, we give some examples of how some additional com-
binatorial criteria can restrict it even further.

A well-known fact is that if a pure morphic sequence is k-power-free, i.e., it does not
contains any factor of the form uk, then its factor complexity grows at least linearly and at
most like n log n (see [ER83]). We will consider a similar criterion for S-adic sequences in
Section 3.5.

Another such criterion is the uniform recurrence of the sequence, i.e., any factor occurs
infinitely often and with bounded gaps in w. For morphic sequences, this implies that the
complexity is linear (see [NP09]). Actually, the uniform recurrence of a morphic sequence
is even equivalent to its linear recurrence, i.e., any factor u occurs infinitely often and with
gaps bounded by K|u| (see [Dur98, Dur]). Furthermore, if w is a morphic and uniformly
recurrent sequence over A, then w is a morphic sequence τ(σω(a)) with σ a primitive mor-
phism (this result was already proved in [Dur98] in the particular case of morphic sequences
ψ(ϕω(a)) with ψ non-erasing and ϕ everywhere-growing). The following result also provides
an algorithm to check whether a pure morphic sequence is uniformly recurrent.

Theorem 2.8 (Damanik and Lenz [DL06]). A pure morphic sequence w = σω(a) is uni-
formly recurrent if and only if there is a growing letter b ∈ A that occurs with bounded gaps
in w and such that for all letters c ∈ A there is a power σk such that c occurs in σk(b).

2.2 S-adic sequences

The previous section shows that the factor complexity of morphic sequences is rather re-
stricted (especially for pure morphic sequences). In particular, the class of uniformly recur-
rent morphic sequences is strictly contained in the class of morphic sequences with linear
complexity. In this section, we show that, for S-adic sequences, the state of affairs is quite
different. The first important result is the following.

Proposition 2.9 (Cassaigne [Fog11]). Let A be an alphabet and l /∈ A. There exists a finite
set S of morphisms over A′ = A ∪ {l} such that any sequence over A is S-adic.
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In particular, this implies that any function which is the complexity function of some
sequence is also the complexity function of some S-adic sequence. (although for morphic
sequences, the complexity is at most quadratic). Moreover, the following proposition implies
that the set of possible asymptotic behaviors for the complexity function of S-adic sequences
is uncountable (although it is finite for pure morphic sequences and countable for morphic
ones since the set of morphic sequences is countable). See also [MM10] for another approach
to build sequences whose complexity is closed to a given function.

Proposition 2.10 (Cassaigne [Cas03]). Let f : R+ → R
+ be a function such that

i. limt→+∞
f(t)
log t

= +∞;

ii. f is differentiable, except possibly at 0;

iii. limt→+∞ f ′(t)tβ = 0 for some β > 0;

iv. f ′ is decreasing.

Then there exists a uniformly recurrent sequence w over {0, 1} such that4 log(pw(n)) ∼ f(n).

In particular, the function f(n) in the previous proposition can be taken equal to nα for
any α with 0 < α < 1.

Another big difference is that the class of uniformly recurrent S-adic sequences with linear
complexity forms a very small subset of the class of uniformly recurrent S-adic sequences.
Indeed, recall that the topological entropy of a sequence over an alphabet A is the real number
h with 0 ≤ h ≤ log(Card(A)) defined by

h = lim sup
n→∞

log(p(n))

n
.

A uniformly recurrent sequence w over an alphabet A with at least two letters a, b ∈ A
cannot have maximal complexity (pw(n) = Card(A)n): since all powers an occur in w, there
are unbounded gaps between two successive occurrences of b in w. However, together with
Proposition 2.9, the following result shows that, except the maximal one pw(n) = Card(A)n,
any high complexity can be attained by uniformly recurrent S-adic sequences.

Theorem 2.11 (Grillenberger [Gri73]). Let A be an alphabet with d = Card(A) ≥ 2 and h ∈
[0, log(d)[. There exists a uniformly recurrent one-sided sequence w over A with topological
entropy h.

The proof of previous theorem is furthermore constructive and Ferenczi and Monteil
noticed [BR10, Chap. 7] that this construction is S-adic with an infinite set S.

The following result provides an S-adic characterization of uniformly recurrent sequences.
A sequence is said to be primitive S-adic (with constant s0) if s0 ∈ N is such that for all
r ∈ N, all letters in Ar occur in all images σr · · · σr+s0(a), a ∈ Ar+s0+1. It is said to be weakly
primitive S-adic if for all r ∈ N, there exists s > 0 such that all letters in Ar occur in all

4f(n) ∼ g(n) if ∀ε > 0 ∃n0 ∀n > n0 |f(n)/g(n)− 1| < ε.
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images σr · · · σr+s(a), a ∈ Ar+s+1. Any primitive S-adic sequence is weakly primitive and
Durand [Dur03] proved that any weakly primitive S-adic sequence is uniformly recurrent.
Following a construction based on return words (see Section 3.4 for the definition), one can
prove that the converse is true. Recall that a sequence is said to be proper S-adic if all
morphisms in its directive word are proper, i.e., for all n there are letters a, b ∈ An such that
σn(An+1) ⊂ aA∗

nb. Then we have

Theorem 2.12 (Durand [Dur03], Leroy [Ler12a]). A sequence w is uniformly recurrent if
and only if it is weakly primitive S-adic.

Moreover, the directive word can be chosen to be proper and if w does not have linear
complexity, then S is infinite.

The proof is similar to the proof of the following result, which gives an S-adic character-
ization of linearly recurrent sequences.

Theorem 2.13 (Durand [Dur03]). A sequence w is linearly recurrent if and only if it is
primitive and proper S-adic with Card(S) < +∞.

The next example shows that the linear recurrence property is an even stronger condition
than primitivity for S-adic sequences (contrary to what holds in the morphic case).

Example 2.14 (Durand [Dur03]). Let S = {σ, τ} where σ and τ are defined by

σ :











0 7→ 021

1 7→ 101

2 7→ 212

and τ :











0 7→ 012

1 7→ 021

2 7→ 002

The sequence
w = lim

n→+∞
στσ2τ · · · σnτ(0ω)

is primitive S-adic but not linearly recurrent.

3 S-adicity and linear complexity

The aim of this section is to explore some ideas that one might have about the S-adic
conjecture. First, we present some sufficient conditions for S-adic sequences to have linear
complexity, and we show that we cannot make them weaker. Then, we give some coun-
terexamples to some conditions that one might naturally believe to be sufficient to get linear
complexity.

3.1 The growth rate of the length

Durand [Dur00, Dur03] gave some sufficient conditions for an S-adic sequence to have linear
complexity. The main condition is the one given by the following result and is a generalization
of what exists for pure morphic sequences (see Theorem 2.2). The other conditions are simply
consequences of it.
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Proposition 3.1 (Durand [Dur03]). Let w be an S-adic sequence with Card(S) < +∞ and
whose directive word is (σn)n∈N with σn : A∗

n+1 → A∗
n and A0 the alphabet of w. If there is

a constant D such that for all n,

max
a,b∈An+1

|σ0 · · · σn(a)|
|σ0 · · · σn(b)|

≤ D, (2)

then pw(n) ≤ Dmaxσn∈S,a∈An+1 |σn(a)|(Card(A))2n with A = ∪n∈NAn.

Corollary 3.2 (Durand [Dur03]). If w is S-adic with Card(S) < ∞ and all morphisms in
S are uniform, then pw(n) ≤ l(Card(A))2n with A = ∪n∈NAn and l = max

σ∈S,a∈A(σ)
|σ(a)|.

Proposition 3.3 (Durand [Dur00]). If w is a primitive S-adic sequence with Card(S) < +∞
and constant s0 directed by (σn)n∈N with σn : A∗

n+1 → A∗
n and A0 the alphabet of w, then

there exists a constant D such that for all non-negative integers r,

max
a,b∈Ar+s0+1

|σr · · · σr+s0(a)|
|σr · · · σr+s0(b)|

≤ D.

Corollary 3.4. Let S be a set of non-erasing morphisms and τ ∈ S be strongly primitive
(i.e., for all letters a of τ(A), the letter a occurs in all images τ(b) for b ∈ A). Any S-
adic sequence for which τ occurs infinitely often with bounded gaps in the directive word is
uniformly recurrent and has linear complexity.

The everywhere-growing property can be naturally transposed to S-adic sequences. But,
contrary to what holds in the pure morphic case, under that assumption, the condition
given by Equation (2) is not equivalent to linear complexity. Indeed, even some Sturmian
sequences do not satisfy it (those with unbounded coefficients (kn)n∈N in Example 1.2). One
might therefore try to make that condition a little bit weaker.

We can observe in Example 1.2 that Condition (2) is still satisfied infinitely often. Indeed,

let us consider the directive word (τn)n∈N defined by τ0 = Lk0
0 R

k1
0 L1, τ2n = Lk4n−1

0 R
k4n+1

0 L1

for n ≥ 1 and τ2n+1 = L
k4n+2−1
1 R

k4n+3

1 L0 for n ≥ 0. For all n, there exist integers i and j such
that either τn = [0i10j+1, 0i10j ] or τn = [1i01j , 1i01j+1]. With these morphisms, we have

τ0τ1 · · · τn · · · = Lk0
0 R

k1
0 L

k2
1 R

k3
1 · · ·Lk4n+2

1 R
k4n+3

1 · · · (3)

and there is a constant K such that for all n, maxa,b∈An+1

|τ0···τn(a)|
|τ0···τn(b)|

≤ K. The sequence

(τn)n∈N is called a contraction of the directive word (Lk0
0 R

k1
0 · · · ). Observe that the set S =

{τn | n ∈ N} of morphisms might be infinite (when (kn)n∈N is unbounded). Consequently, it
may be interesting to work either with infinite sets of morphisms or with contractions.

However, Example 3.5 below shows that Proposition 3.1 is no longer true when Card(S) =
∞. Indeed, if we consider the contraction (σn)n∈N of the directive word of Proposition 3.6
defined for all n ≥ 0 by

σn = γknµ, (4)

we have |σ0 · · · σn(0)| = |σ0 · · · σn(1)| for all n, although the complexity is no longer linear
when the sequence (kn)n∈N is unbounded.
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Example 3.5. Let µ be the Thue-Morse morphism [01, 10] and let γ be the morphism
[001, 1]. From Theorem 2.2 we know that the non-uniformly recurrent sequence

γω(0) = 0010012001001300100120010014 · · ·

has quadratic complexity.

Proposition 3.6. Let (kn)n∈N be a sequence of non-negative integers. The sequence

wγ,µ = lim
n→+∞

γk0µγk1µγk2µ · · · γknµ(0ω)

is uniformly recurrent. Moreover, wγ,µ has at most linear complexity if and only if the
sequence (kn)n∈N is bounded. Finally, for all n we have

|γk0µγk1µγk2µ · · · γknµ(0)| = |γk0µγk1µγk2µ · · · γknµ(1)|,

and denoting
ℓn = |γk0µγk1µγk2µ · · · γknµ(0)|,

we have
pwγ,µ

(ℓn) ≤ 3ℓn.

Before proving the result, recall that a right (resp., left) special factor in a language
L ⊂ A∗ is a factor such that there are at least two letters a, b ∈ A for which ua and ub
(resp., au and bu) belong to L. A bispecial factor is a factor which is both left and right
special. This definition can be extended to words and sequences w by replacing L by the set
of factors Fac(w). Let us recall the following result.

Theorem 3.7 (Cassaigne [Cas96]). A sequence has linear complexity if and only if there is
a constant K such that for all n, the number of right (resp., left) special factors of length n
is less than K.

Proof of Proposition 3.6. First, as µ occurs infinitely often in the directive word, wγ,µ is
weakly primitive {γ, µ}-adic and so, by Theorem 2.12, it is uniformly recurrent.

Now let us study the complexity depending on the sequence (kn)n∈N. The case of a
bounded sequence is a direct consequence of Corollary 3.4. Hence, let us assume that the
sequence (kn)n∈N is unbounded and let us show that the complexity is not at most linear.
Due to Theorem 3.7, we only have to prove that the number of right special factors of length
n of wγ,µ is unbounded.

As already mentioned in Example 3.5, the fixed point γω(0) has quadratic complexity.
Consequently the number of right special factors of γω(0) of a length n is unbounded.

We let the reader verify that bispecial factors of γω(0) are the words ε, 0, 1 and the words
γ(1v) with v bispecial, and that other right special factors of γω(0) are the suffixes of words
γ(v) for v right special. Thus, by induction, one can state that all right special factors of
length n of γω(0) occur in γn+1(0).

Now let us show that if u is a right special factor in γkn+1(0), then γk0µγk1µ · · · γknµ(u)
is a right special factor of w of length |u|2q with q = ∑n

i=0(ki +1). Indeed, as µ(0) and γ(0)
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start with 0 and µ(1) and γ(1) start with 1, the image of u is still a right special factor.
Moreover, µ(u) contains exactly |u| occurrences of the letter 0 and |u| occurrences of the
letter 1, and both γ and µ map a word with the same number of 0 and 1 to a word of double
length with the same number of 0 and 1. Hence |γk0µγk1µ · · · γknµ(u)| = |u|2q with q defined
as previously. Now, if u and v are two distinct right special factors of length m of γω(0),
then γk0µγk1µ · · · γknµ(u) and γk0µγk1µ · · · γknµ(v) are two distinct special factors of length
m2q of w. As the number of right special factors of a given length of γω(0) is unbounded,
and as the sequence (kn)n∈N is unbounded, the number of right special factors of a given
length of w is also unbounded, which concludes the first part of the proof.

The last step is to show that, for all integers ℓn, we have pwγ,µ
(ℓn) ≤ 3ℓn. For all non-

negative integers n, we already know that

|γk0µγk1µ · · · γknµ(0)| = |γk0µγk1µ · · · γknµ(1)| = ℓn = 2q.

with q as defined previously by
∑n

i=0(ki + 1). Consequently, all factors u of length ℓn are
factors of |γk0µγk1µ · · · γknµ(v)| for some word v of length 2. As there are only 4 possible
binary words of length 2 and as there are no more than ℓn + 1 distinct factors of length
ℓn in a word of length 2ℓn, we obtain pwγ,µ

(ℓn) ≤ 4ℓn + 4. However, it is easily deduced
from the following equations that the sets of factors of length ℓn that respectively occur in
γk0µγk1µ · · · γknµ(00) and in γk0µγk1µ · · · γknµ(11) are equal.

γk0µγk1µ · · · γknµ(00) = γk0µγk1µ · · · γkn−1µ
(

γkn(0)1γkn(0)1
)

γk0µγk1µ · · · γknµ(11) = γk0µγk1µ · · · γkn−1µ
(

1γkn(0)1γkn(0)
)

Consequently, we obtain pwγ,µ
(ℓn) ≤ 3ℓn + 3. But, among the 3ℓn + 3 words, both words

γk0µγk1µ · · · γknµ(0) and γk0µγk1µ · · · γknµ(1) have been counted several times (twice for one
of them and four times for the other). Hence pwγ,µ

(ℓn) ≤ 3ℓn − 1.

3.2 The condition C of the conjecture might not only concern the
set S

Since it seems hard to make the condition of Equation (2) weaker, another idea is to determine
new sufficient conditions that are independent of it. The first attempt in this direction
was proposed by Boshernitzan. He asked whether the following holds: if S contains only
morphisms for which the fixed points (if it exists) of their powers have linear complexity,
then any S-adic sequence has linear complexity.

But Boshernitzan eventually provided the following counterexample to that statement.
Since we did not find any detailed proof of it in the literature, we provide it below.

Example 3.8. Let γ and E be the morphisms over {0, 1} respectively defined by [001, 1] and
[1, 0]. Observe that both morphisms γE and Eγ are primitive. Consequently, they admit a
power whose fixed points have linear complexity. We consider the sequence

wγ,E = lim
n→+∞

γEγ2Eγ3E · · · γn−1Eγn(0ω).

11



Proposition 3.9 (Boshernitzan). The sequence wγ,E is S-adic for S = {γE,Eγ}. Further,
it is uniformly recurrent and does not have linear complexity.

Proof. First, by definition, wγ,E is indeed S-adic for S = {γE,Eγ}.
Next, the composition γEγ is strongly primitive and occurs infinitely often in the directive

word of wγ,E. It is therefore a consequence of Theorem 2.12 that wγ,E is uniformly recurrent.
To prove that wγ,E does not have linear complexity, by Theorem 3.7, it is sufficient

to prove that the number of its right special factors of length n is unbounded. For this
purpose, let us introduce notation. For all k ∈ N

∗, let us define the morphism Γk =
γEγ2E · · · γk−1EγkE and, for all k ∈ N, the sequence

w(k) = lim
n→+∞

γk+1Eγk+2E · · · γk+n−1Eγk+n(0ω).

We then have wγ,E = w(0) = Γk(w
(k)), for all k ≥ 1. For all i ≥ 1 we also consider the

word ui = γi(10) = 1γi(0). As 100 and 101 are factors of E(w(k+1)), and as 100 and 001 are
factors of γk−jγ(E(w(k+1))) for all j with 1 ≤ j ≤ k (observe also that γ(100) = γ(10)001
and γ(001) = 00γ(10)1), we can deduce that ui is a right special factor of w(k) for all i with
1 ≤ i ≤ k + 1. As words Γk(0) and Γk(1) start with different letters, for all integers i such
that 1 ≤ i ≤ k + 1, the word Γk(ui) is a right special factor of wγ,E, and so are all of its
suffixes.

For 1 ≤ i ≤ k+1, the word ui end with 1001i, so that the longest common suffix between
ui and ui+1 is 1i. It follows that the longest common suffix between Γk(ui) and Γk(ui+1) is
the word pkΓk(1

i) where p0 = ε and for k ≥ 1,

pk = 1Γ1(1
2)Γ2(1

3) · · ·Γk−1(1
k).

This is indeed a consequence of the fact (we let the reader verify it) that for any word u
containing at least one occurrence of 0 and 1, the word Γk(u) ends with apk where a is the
last letter of u when k is even, and where a is the opposite letter to the last letter of u when
k is odd.

From what precedes wγ,E has at least n(k) right special words of length |pkΓk(1
k)| + 1,

where n(k) denotes the number of integers i between 1 and k + 1 such that |Γ(ui)| >
|pkΓk(1

k)|. Next fact allows to estimate n(k).
Fact : With f(k) = k2+k+2

2
, for all k ≥ 2,

1. for all 1 ≤ i ≤ k + 1, |Γk(ui)| = 2i2f(k),

2. |pkΓk(1
k)| ≤ k22f(k).

Proof of the fact. 1. Let i be between 1 and k + 1. By induction, one can verify that
|γi(0)|0 = 2i and |γi(0)|1 = 2i − 1. As ui = 1γi(0), we have |ui|0 = |ui|1 = 2i. Observe that
for any word v such that |v|0 = |v|1, we have |γ(v)| = 2|v| and |γ(v)|0 = |γ(v)|1 = |v| and
|E(v)|0 = |E(v)|1 = |v|0.

Thus, as Γk = γEγ2E · · · γk−1EγkE, |Γk(ui)| = 2i+12
∑k

j=1 j = 2i+12
k(k+1)

2 = 2i2f(k).

12



2. Before estimating |pkΓk(1
k)|, we need an estimate of |Γk(1)|.

|Γk(1)| =
∣

∣γEγ2E · · · γkE(1)
∣

∣

=
∣

∣γk(0)
∣

∣

0

∣

∣γEγ2E · · · γk−1E(0)
∣

∣+
∣

∣γk(0)
∣

∣

1

∣

∣γEγ2E · · · γk−1E(1)
∣

∣

= 2k (|Γk−1(01)| − |Γk−1(1)|) +
(

2k − 1
)

|Γk−1(1)|
= 2

k2+k+2
2 − |Γk−1(1)| < 2f(k).

Observe that |Γk(1
k)| = k|Γk(1)|. One can verify that, for all j with 1 ≤ j ≤ k, Γj−1(1

j) ≤
Γk(1

k). Moreover as k ≥ 2, |1Γ1(1
2)| ≤ |Γk(1

k)|.
Hence |pkΓk(1

k)| = |1Γ1(1
2)|+∑k

j=3 |Γj−1(1
j)|+ |Γk(1

k)| < k|Γk(1
k)| < k2f(k).

To end the proof of proposition 3.9, it suffices to notice that for all i such that log2 k
2 <

i ≤ k + 1, |Γk(ui)| > |pkΓk(1
k)|, so that n(k) ≥ k + 1 − ⌈log2 k2⌉. In other words, the

number of right special words of wγ,E of length |pkΓk(1
k)|+1 is unbounded, which shows by

Theorem 3.7 that wγ,E does not have linear complexity.

Remark 3.10. The previous result is even stronger than just considering sets S of morphisms
with fixed points of linear complexity. Indeed, the sequence also has bounded partial quo-
tients, i.e., all morphisms occur with bounded gaps in the directive word (over {γE,Eγ}).

The opposite question to the one previously answered is to ask whether S-adic sequences
can have linear complexity when S contains a morphism that admits a fixed point which does
not have linear complexity. Example 3.5 positively answers that question, and we can prove
even more. Indeed, the following example provides a uniformly recurrent S-adic sequence
with linear complexity such that a “bad” morphism occurs with arbitrary high powers in its
directive word.

Example 3.11. Let us consider the morphisms

β :











0 7→ 010

1 7→ 1112

2 7→ 2

and M :











0 7→ 0

1 7→ 1

2 7→ 1

and the sequence
wβ,M = lim

n→+∞
MβMβ2Mβ3M · · · βn−1Mβn(0ω).

Note that β is not everywhere-growing; its set of bounded letters is AB,β = {2} and all words
in A∗

B,β are factors of βω(0). Hence by Theorem 2.2(2), pβω(0) is in θ(n
2).

Proposition 3.12. The sequence wβ,M defined just above has linear complexity. More pre-
cisely, for all n we have p(n+ 1)− p(n) ∈ {1, 2}.

The proof of this proposition uses the link, proved by Cassaigne [Cas97], between bispecial
factors and the first difference s of the complexity function. Given an infinite word w, we
recall that the bilateral order of a word u is the value

m(u) = Card(Fac(wβ,M) ∩ AuA)− Card(Fac(wβ,M) ∩ Au)− Card(Fac(wβ,M) ∩ uA) + 1.
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When m(u) > 0, the word u is a bispecial factor of w called a strong bispecial factor, and
when m(u) < 0, the word u is also a bispecial factor of w called a weak bispecial factor.

Let sw (or simply s) be the function defined for n ≥ 0 by s(n) = p(n + 1) − p(n). We
have s(0) = 1, and Cassaigne proved (see [Cas97]) that

s(n+ 1)− s(n) =
∑

u∈Facn(w)

m(u) (5)

In the next useful result, B0 is the identity morphism and, for k > 0, we have Bk =
MβMβ2 · · ·Mβk.

Lemma 3.13. A word u is a strong bispecial factor of wβ,M if and only if u = BkMβi(1)
for some k ≥ 0 and some i in {0, . . . , k}.

A word u is a weak bispecial factor of wβ,M if and only if u = BkMβi(101) for some
k ≥ 0 and some i in {0, . . . , k}.
Proof. For all integers k ≥ 0, let w(k) be the sequence w(k) whose directive word is (M, βk+1,
M, βk+2, . . . ). Note that, for k ≥ 0, wβ,M = Bk(w

(k)).
All words 010, 011, 110, 111 occur in w(k+1) and all words 010, 011, 120, 111 occur in

βj(w(k+1)) for j ≥ 1. Thus Mβi(1) for i in {0, 1, . . . , k + 1} are strong bispecial factors of
w(k+1) (observe that Mβi(120) =Mβi(210) contains the factor 1Mβi(1)0). As Bk(0) starts
and ends with 0, and as Bk(1) starts and ends with 1, BkMβi(1) for i ∈ {0, 1, . . . , k} are
strong bispecial factors of wβ,M .

Now let i ∈ {0, 1, . . . , k}. The words 0Mβi(101)1 and 1Mβi(101)0 are factors of w(k) (re-
spectively factors ofMβi+1(01)1 and 1Mβi+1(10)). So 0Bk(Mβi(101))1 and 1Bk(Mβi(101))0
are factors of wβ,M . One can verify that the existence of the factor 0Bk(Mβi(101))0 in wβ,M

would imply the existence of factorsM(0βj(101)0) in β(k+1−j)(w(k+1)) for 0 ≤ j ≤ i, and the
existence of the factor 01010 in β(k+1−i)(w(k+1)), which is impossible. Similarly the existence
of the factor 1Bk(Mβi(101))1 in wβ,M would imply the existence of 11011 in β(k+1−i)(w(k+1)),
which is also impossible.

We now prove that there are no other strong and weak bispecial factors. Let u be a
bispecial factor of wβ,M . If u contains no occurrence of the letter 0, then u = 1n for some
n ≥ 0. As wβ,M contains arbitrarily large powers of 1 and infinitely many occurrences of
0, the words 11n1, 01n1, 11n0 are all factors of wβ,M . When 01n0 is a factor of wβ,M , one
can verify that 1n = BkMβi(1) for some k ≥ 0 and some integer i in {0, . . . , k}. Thus 1n

is a strong bispecial factor of wβ,M if and only if 1n = BkMβi(1) for some k ≥ 0 and some
integer i in {0, . . . , k}.

Note that any factor of wβ,M containing only one occurrence of 0 is of the form 01n, 101n,
1n0 or 1n01 for some n ≥ 0, and is not bispecial.

Thus assume u contains at least two occurrences of 0. From the form of the morphisms
Bk, there is a unique integer k and a unique sequence of words

v, p0, s0, p1, s1, . . . , pk−1, sk−1

over {0, 1} such that

u = p0B1(p1)B2(p2) · · · Bk−1(pk−1)Bk(v)Bk−1(sk−1) · · · B2(s2)B1(s1)s0,
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where v is a proper factor of Mβk+1(010) and for all i, 0 ≤ i ≤ k− 1, the word pi (resp., si)
is a suffix (resp., prefix) of Bi+1(0) or of Bi+1(1) but is neither equal to Bi+1(0) nor equal to
Bi+1(1).

Since for all i, Bi(0) and Bi(1) do not have any common prefix or suffix, the factor u is
bispecial if and only if all words p0, s0, p1, s1, . . . , pk−1, sk−1 are empty words and v is bispecial
in w(k). Moreover, v contains an occurrence of the letter 0. We also have that u is strongly
(resp., weakly) bispecial if and only if v is also. Then it can be easily verified that the only
bispecial factors in w(k) that contain an occurrence of 0 and that are factors of Mβk+1(010)
are the words Mβi(101) for i ∈ {0, 1, . . . , k}, which are weak bispecial factors.

Proof of Proposition 3.12. Let (un)n≥0 be the sequence of strong and weak bispecial factors
of wβ,M . Observe that, for all k ≥ 0,

• BkMβk+1(1) = Bk+1(1) = Bk+1Mβ0(1).

• |Bk(Mβi(1))| < |Bk(Mβi(101))| < |Bk(Mβi+1(1))|, for all i in {0, 1, . . . , k}.

Therefore, by Lemma 3.13, the word un is a strong bispecial factor of wβ,M if n is even, and
it is a weak bispecial factor of wβ,M if n is odd. As for any factor u we have m(u) = 1 if it is
strong bispecial, m(u) = −1 if it is weak bispecial, and m(u) = 0 otherwise, by Formula 5,
for all n ≥ 0, we have

• s(|un|+ 1)− s(|un|) = 1 if n is even,

• s(|un|+ 1)− s(|un|) = −1 if n is odd,

• s(n+ 1)− s(n) = 0 if n 6∈ {|um| | m ≥ 0}.

Consequently, since s(0) = p(1)− p(0) = 1, for all n ≥ 0, we have p(n+ 1)− p(n) = s(n) ∈
{1, 2}.

3.3 Another (easier?) version of the S-adic conjecture

A natural idea to try to understand the S-adic conjecture is to consider examples composed
of well-known morphisms.

Example 3.14. The Sturmian word which is the fixed point of the Fibonacci morphism
ϕ = [01, 0] and the Thue-Morse word which is the fixed point of the Thue-Morse morphism
µ = [01, 10] both have linear complexity.

Proposition 3.15. If S = {ϕ, µ}, where ϕ and µ are defined above, any S-adic sequence is
linearly recurrent.

Proof. Let S = {µ, ϕ}. Let w be an S-adic sequence directed by (σn)n∈N and, for all k ∈ N,
let w(k) be the S-adic sequence directed by (σn)n≥k.

By the definition of ϕ and µ, as w(k) ∈ {ϕ(w(k+1)), µ(w(k+1))}, the word 111 does not
occur in w(k) for all k ≥ 1. Note also that 000 does not occur in µ({0, 1}∗), and 0000 does
not occur in ϕ(w(k+1)), since otherwise 111 would occur in w(k+1). Thus, for all k ≥ 0,
neither 0000 nor 111 occurs in w(k). This implies that the gap between two occurrences of
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01 and 10 is at most 5 (7 is the maximal length of a shortest word of the form 10u10 or of
the form 01u01).

Now observe that 11 occurs in w(k) only in the image of σk(10) (and only if σk = µ).
This implies that the gap between two consecutive occurrences of 11 is at most 12.

Finally observe that 00 occurs in w(k) only in the image of σ1(10) or in the image of
σk(11) (when σk = ϕ). As any factor of w(k) that starts with 10 or 11, ends with 10 or
11, and does not contain any other occurrences of 10 or 11 has length at most 7, the gap
between two consecutive occurrences of 00 is at most 12.

We have just proved that the length of the largest gap between two occurrences of a
word of length 2 in all words w(k) is bounded. By the choice of S, we see that w is primitive
S-adic. Hence by a result of Durand [Dur03], we know that w is linearly recurrent.

Let us say that a set of morphisms S is good-adic if all S-adic sequences have linear
complexity. Proposition 3.15 provides an example of such a set. Many other examples are
known. For example:

• any singleton {f} with f a morphism with fixed points of linear complexity;

• the set of Sturmian morphisms {[01, 1], [10, 1], [0, 01], [0, 10]};

• the set of episturmian morphisms over an alphabet A: S = {La, Ra | a ∈ A} with for
all a ∈ A, La(a) = Ra(a) = a, La(b) = ab and Ra(b) = ab for b 6= a;

• any finite set S that contains only uniform morphisms (see Corollary 3.2);

• any finite set S that contains only strongly primitive morphisms (see Corollary 3.4).

Note that if S is good-adic then, for any morphism f in S admitting an infinite fixed
point, this fixed point must have linear complexity. But this necessary condition is certainly
not the only one.

Question 3.16. What are good-adic sets of morphisms?

3.4 About return words

If u is a factor of a sequence w, a (left) return word to u is a word r such that ru is a factor
of w having u as a prefix and containing only two occurrences of u. Return words to u in w
actually correspond to the gaps between two consecutive occurrences of u in w.

Durand [Dur98] proved that primitive morphic sequences, i.e., sequences defined as the
image, under a morphism, of a fixed point of a primitive morphism, can be characterised
using return words. Hence, it is quite natural to ask whether such a result exists for S-adic
sequences with linear complexity.

There exist many examples of S-adic sequences w with linear complexity for which there
exists an integer K such that all factors of w have at most K return words. For instance,
Vuillon [Vui01] proved that Sturmian sequences are exactly the sequences whose factors
have exactly two return words. Justin and Vuillon [JV00] extended this result to the family
of Arnoux-Rauzy sequences (also called strict episturmian sequences) whose factors have
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exactly m return words, with m the cardinality of the alphabet. Balková, Pelantová and
Steiner [BPS08] characterized sequences that do not contain any weak bispecial factors and
whose factors have the same number of return words by showing they all have linear com-
plexity. Improving a result by Ferenczi [Fer96], Leroy [Ler12a] proved that sequences whose
complexity satisfies 1 ≤ p(n+1)−p(n) ≤ 2 for all sufficiently large n are S-adic and infinitely
many of their factors admit two or three return words.

Despite the previous example, the next proposition shows that there exist S-adic se-
quences with linear complexity such that any long factor has many return words (“many”
depending on “long”).

Example 3.17. Let us consider the three morphisms p, σ and s defined by

p :



















a1 7→ 0

a2 7→ 1

b1 7→ 1

b2 7→ 0

σ :



















a1 7→ a1a2a1

a2 7→ a2a2a2

b1 7→ b1b2b1

b2 7→ b2b2b2

s :

{

0 7→ a1

1 7→ b1

For all n ≥ 1 we let πn denote the morphism pσns. Then we have

πn :







0 7→ 01e001e101e2 · · · =
(

∏2n−1−1
i=0 01ei

)

0

1 7→ 10e010e110e2 · · · =
(

∏2n−1−1
i=0 10ei

)

1
,

where e is the fixed point of the morphism Exp defined over the infinite alphabet {3n | n ∈ N}
by

∀n ∈ N, Exp(3n) = 13n+1,

i.e.,
e = 1313213133131321313413132131331313213 · · · .

Now let us consider the sequence

wπ = lim
n→+∞

π1π2 · · · πn(0ω).

Proposition 3.18. The sequence wπ defined above is uniformly recurrent, has linear com-
plexity and for all integers k, there is a length ℓk such that all factors of wπ of length at least
ℓk have at least k return words in wπ.

Proof. Uniform recurrence is a direct consequence of Theorem 2.12. Since w is S-adic with
S = {p, σ, s}, it is a consequence of Corollary 3.2 that wπ has linear complexity.

Let us prove that all sufficiently long factors of wπ have many return words. For all
k ≥ 1, we let w(k) denote the sequence

w(k) = lim
n→∞

πkπk+1 · · · πn(0ω).

We obviously have w(1) = wπ and for all k ≥ 1, wπ = π1 · · · πk(w(k+1)). We also have
|πk(0)| = |πk(1)| = 3k for all k and we let ℓk denote the length

|π1π2 · · · πk(0)| = |π1π2 · · · πk(1)| = 3
k(k+1)

2 .
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Due to the form of the morphisms π1, any factor u of wπ of length at least equal to 24 can
be uniquely decomposed into images π1(0) and π1(1), i.e., there is a unique word v in w(2)

such that u ∈ Fac(π1(v)) and such that if u ∈ Fac(π1(v
′)), then v ∈ Fac(v′). Indeed, given

such a factor u, either it contains an occurrence of 00 or of 11 (which uniquely determine
how to decompose the factor), or it is equal to π1(10101010) or to π1(01010101) (neither
101010101, nor 010101010 occur in w(2)).

Similarly, we see that, for all k ≥ 2, any factor of w(k) of length at least equal to 7 can
be uniquely decomposed into πk(0) and πk(1).

Let n be a positive integer; suppose it is large. The sequence (lk)k≥1 is increasing, so
there is a unique positive integer k such that lk−1 ≤ n < lk. Consequently, all factors of
length n of wπ belong to Fac (π1 · · · πk ({0, 1}2)). From what precedes, there is a unique
word v in Fac (πk ({0, 1}2)) ⊂ Fac

(

w(k)
)

such that u ∈ Fac(π1 · · · πk−1(v)) and any word v′

over {0, 1} such that u ∈ Fac (π1 · · · πk−1(v
′)) contains v as a factor.

By the uniqueness of v, the number of return words to u in wπ is at least equal to the
number of return words to v in w(k) (some return words might also occur in π1 · · · πk−1(v)),
so we only have to show that the number of return words to v in wk is at least linear in k.
This will prove the result since k increases with n.

First, if |v| ≥ 7, we have seen that there is a unique word x ∈ {0, 1, 00, 01, 10, 11} such
that v ∈ Fac(πk(x)) and such that if v ∈ Fac(πk(y)), then x ∈ Fac(y). The number of return
words to v in w(k) is at least equal to the number of return words to x in w(k+1), and the
reader can verify that it is at least linear in k.

Let us suppose that |v| < 7 and that the factor 000 occurs in v (the case 111 ∈ Fac(v) is
similar). Then, from the form of πk, the word v only occurs in w(k) as factor of πk(1). The
number of return words to v in w(k) is then at least equal to the number of return words to
1 in w(k+1), and the reader can verify that it is at least linear in k.

Now suppose that neither 000 nor 111 occur in v (still with |v| < 7). Since the number of
return words to a factor is the same as the number of return words to the smallest bispecial
factor containing it, we only have to count the number of return words to bispecial factors
of w(k) that are smaller than 7 and that do not contain either 000 or 111 as factors. The
reader can now verify that these are given by

{0, 1, 00, 01, 10, 11, 010, 101, 0101, 1010, 01010, 01011, 11010, 10101, 010101, 101010} .

The bispecial factors 01010, 10101, 010101 and 101010 only occur in w(k) as factors of πk(01)
and πk(01) but are neither factors of πk(0) nor of πk(1). Since the number of words filling
the gaps between occurrences of 01 and 10 in w(k+1) is linear in k, these bispecial factors
have a number of return words that is linear in k, too.

The reader can now verify that the other bispecial factors have a number of return words
in w(k) which is linear in k (each return word containing a different highest power of 0 or of
1 depending on the bispecial factor). This completes the proof.

To end with return words, let us observe that it is possible to build sequences whose
complexity is not linear and in which infinitely many factors have a bounded number of
return words. Indeed, the sequence γω(0) (see Example 3.5) has quadratic complexity and
any factor γn(1) admits two return words. After the last observation, it seems difficult to
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characterize sequences with linear complexity using return words. Nevertheless, the next
interesting question is open.

Question 3.19. Let w be a sequence such that, for some integer K, all factors of w have
at most K return words. Is it true that w is S-adic for some suitable set S and has linear
complexity?

3.5 Number of distinct high powers

As already mentioned, it is known that the factor complexity of k-power-free pure morphic
sequences grows at most like n log n. In this section, we explore links between bounding the
number of distinct exponents of factors instead of the maximal exponent of factors and the
factor complexity.

Let us introduce the following notation: given a language L and a word u = u1 · · · u|u| ∈ L,
Pow(u, L) is the set of all non-negative integers i such that there exist words p and s such
that puis belongs to L, |p| ≤ |u|, |s| ≤ |u|, p is not a suffix of u, and s is not a prefix of u.

It is certainly well known that for any Sturmian sequence w and any factor u of w, we
have Card (Pow(u,Fac(wπ))) = {1, 2}. Indeed if Card (Pow(u,Fac(wπ))) ≥ 3 for a factor u
of a Sturmian sequence w, any factor of length |u| not in Fac(uω) (such a factor exists since
pw(|u|) = |u| + 1)) would have at least 3 return words, contradicting the result of Vuillon
[Vui01] that all factors of a Sturmian sequence have two return words.

Example 3.20 (Example 3.17 continued). With the notation of previous section, we have
Pow(π1 · · · πn(0),Fac(wπ)) = {30, 31, . . . , 3n}, which proves the existence of an S-adic se-
quence with at most linear complexity that has factors with an unbounded number of distinct
exponents.

Example 3.21 (Example 3.5 continued). The previous phenomenon also holds for S-adic
sequences that do not have linear complexity. Indeed, this is the case of the S-adic sequence
considered in Proposition 3.6 when the sequence (kn)n∈N is unbounded, as one can observe
that

Pow(γk0µγk1µγk2µ · · · γknµ(1),Fac(wγ,µ)) = {1, 2, . . . , kn+1 + 2}.

It seems difficult from the previous discussion to get an S-adic characterization of se-
quences with linear complexity using the number of distinct powers of their factors. Never-
theless, inspired by the word wγ,µ, Corollary 3.24 provides a new criterion for proving that
a sequence does not have linear complexity. Recall that a nonempty word u is primitive if
it is not a power of a smaller word v, i.e., there is no integer k ≥ 2 such that u = vk.

Lemma 3.22. Let w be a recurrent sequence over A. If u ∈ Fac(w) is a primitive word
such that there exist positive integers k and i < k/2 with k− i ∈ Pow(u,Fac(w)), then there
is a subset Fi of factors of length k|u| of w such that Card(Fi) = i|u|. Moreover, for i 6= i′

we have Fi ∩ Fi′ = ∅.

Before proving the result, let us recall the following classical result (see, for instance,
[Lot97, Prop. 1.3.2]).
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Proposition 3.23. If x and y are two nonempty words such that xy = yx, then there is a
word v shorter than or the same length as x and y such that x = vn and y = vm for some
positive integers n and m.

Proof. (of Lemma 3.22) By hypothesis the word uk−i is a factor of w and occurs infinitely
many times in w. Let us study the return words to it in w.

Since u is a primitive word, a return word r to it is either u or has length |r| > (k− i)|u|.
Indeed, if not, one of the following holds:

1. |r| = j|u| with 2 ≤ j ≤ k − i; in this case, we have r = uj which is not a return word
to u because it contains more than two occurrences of u;

2. |r| < (k − i)|u| and |r| is not a multiple of |u|; in this case, there is a nonempty word
u′ smaller than u such that u′u = uu′ and, by Proposition 3.23, u is not a primitive
word.

Now, since k − i belongs to Pow(u,Fac(w)) and w is recurrent, there are two words pi
and si such that piu

k−isi belongs to Fac(w), |pi| ≤ |u|, |si| ≤ |u| and u does not admit pi as
a suffix or si as a prefix. Thus, from what precedes, pi is a suffix of a return word ri to u

k−i

with |ri| > (k − i)|u| and such that riu
k−isi is a factor of the recurrent word w.

By hypothesis, we have k − i > k/2, so we get

|riuk−i| > k|u|.

Let vi denote the suffix of length k|u| of riuk−i and let xi denote a factor of w of length
(k+ i)|u| that admits visi as a prefix. For a given word w = w1 · · ·w|w|, we let w[r : s] denote
its factor wr · · ·ws−1. By definition of return words, the word uk−i occurs only once in vi.
Thus all the words

xi[ℓ : ℓ+ k|u|], ℓ ∈ {1, 2, . . . , i|u|},
are different. We take Fi = {xi[ℓ : ℓ+ k|u|] | ℓ ∈ {1, 2, . . . , i|u|}}.

Let us show that if i and j are such that 1 ≤ i < j < k/2, then Fi∩Fj = ∅, i.e., all words

xi[ℓ : ℓ+ k|u|], ℓ ∈ {1, 2, . . . , i|u|}
xj[m : m+ k|u|], m ∈ {1, 2, . . . , j|u|}

are distinct. Suppose that on the contrary there are some integers ℓ ∈ {1, 2, . . . , i|u|} and
m ∈ {1, 2, . . . , j|u|} such that

xi[ℓ : ℓ+ k|u|] = xj[m : m+ k|u|] = X.

Since ℓ ≤ i|u| and m ≤ j|u|, there are some words α, β, γ and δ such that

X = αuk−iβ = γuk−jδ.

We have |α| > |γ|; otherwise uk−j would occur twice in vj. Let us show that we also have
|α| < |γ|+ (k − j)|u| − |u|. As k − i > k − j > k/2, we have

(k − i)|u| ≥ (k − j + 1)|u| > k|u|/2 + |u|.
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Thus, if |α| ≥ |γ|+ (k − j)|u| − |u|, we have

|α|+ (k − i)|u| ≥ |γ|+ (k − j)|u| − |u|+ (k − j + 1)|u|
> |γ|+ k|u|,

which is a contradiction because |αuk−iβ| = k|u|.
We have just proved that

|γ| < |α| < |γ|+ (k − j)|u| − |u| = |γuk−j−1|.

This implies that, if p is the prefix of length (|α|−|γ|) mod |u| of u, we have up = pu. Since
|α| − |γ| 6= 0 mod |u| (otherwise sj would be a prefix of u), Proposition 3.23 implies that u
is not primitive, a contradiction. Thus we have Fi ∩ Fj = ∅.

Corollary 3.24. Let w be a recurrent sequence over A. If

sup
u∈Fac(w),

u primitive word,
k≥1

∑

0<i<k/2,
k−i∈Pow(u,Fac(w))

i

k
= +∞, (6)

then w does not have linear complexity.

Proof. Let u be a primitive word in Fac(w) and let i and k be integers as in Lemma 3.22.
This lemma permits us to obtain a lower bound on the number of factors of length k|u|.
Indeed, we immediately deduce that

pw(k|u|) ≥
∑

0<i<k/2,
k−i∈Pow(u,Fac(w))

i|u| = |u|
∑

0<i<k/2,
k−i∈Pow(u,Fac(w))

i.

But, as we have

sup
u∈Fac(w),

u primitive word,
k≥1

1

k

∑

0<i<k/2,
k−i∈Pow(u,Fac(w))

i = +∞,

the sequence w does not have linear complexity.

Remark 3.25. The hypothesis of primitivity of the words u in previous results cannot be
avoided. Indeed, consider the fixed point w = σω(0) with σ(0) = 010 and σ(1) = 111. The
sequence (13n)n∈N satisfies (6) (without primitivity) but pw(n) = 2n− 1 for all n ≥ 2.

The next example shows that the converse of Corollary 3.24 does not hold.

Example 3.26. It is well known that the Thue-Morse sequence t ∈ {0, 1}N is cubefree [Thu12],
i.e., it does not contain any factor of the form xxx. It is also strongly recurrent [Sal10], which
means that the direct product of it with any uniformly recurrent sequence is uniformly re-
current. Let w be a uniformly recurrent sequence over {0, 1} with exponential complexity
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(such a word exists from Theorem 2.11). The direct product t×w is then a uniformly recur-
rent sequence over the four-letter alphabet {(0, 0), (0, 1), (1, 0), (1, 1)} which has exponential
complexity and which is cubefree (because so is t). Thus we have

sup
u∈Fac(t×w),

u primitive word,
k≥1

∑

0<i<k/2,
k−i∈Pow(u,Fac(t×w))

i

k
= 0.

Despite the fact that the converse of Corollary 3.24 does not hold, Corollary 3.28 below
provides a family of sequences satisfying (6) and whose complexities are very close to linear.
First, we need the following result, which is obtained by a simple adaptation of Durand’s
result [Dur03, Prop. 2.1] (which is equivalent to Proposition 3.1 on page 9).

Proposition 3.27. Let w be an everywhere-growing S-adic sequence whose directive word
is (σn)n∈N with σn : A∗

n+1 → A∗
n and A0 the alphabet of w. If there is a constant K such that

for all n we have Card(An) ≤ K, and if there is a function D : N → R such that for all n
and all a ∈ An+2, b ∈ An+1 we have

|σ0 · · · σn+1(a)| ≤ D(n)|σ0 · · · σn(b)|, (7)

then for all m, pw(m) ≤ K2D(n(m))m, where n(m) is the greatest integer such that

min
a∈An(m)+1

|σ0 · · · σn(m)(a)| ≤ m.

Proof. Let m ≥ 1. Since the sequence
(

infa∈Ak+1
|σ0 · · · σk(a)|

)

k∈N
is non-decreasing and

tends to +∞, there is a greatest integer n(m) such that

inf
a∈An(m)+1

|σ0 · · · σn(m)(a)| ≤ m ≤ inf
a∈An(m)+2

|σ0 · · · σn(m)+1(a)|.

Consequently, for any word u in Facm(w), there exist letters b and c in An(m)+2 and a positive
integer i ≤ |σ0 · · · σn(m)+1(b)| such that u = σ0 · · · σn(m)+1(bc)[i : i+m]. It comes

pw(m) ≤ K2 sup
a∈An(m)+2

|σ0 · · · σn(m)+1(a)|

≤ K2D(n(m)) inf
a∈An(m)+1

|σ0 · · · σn(m)(a)|

≤ K2D(n(m))m.

The idea of the next result is to build a directive word (σn)n∈N satisfying (7) with slowly
increasing functions D(n) and n(m) while producing more and more powers with morphisms
σn.

Corollary 3.28. Let (φ(n))n≥0 be a non-decreasing sequence of integers greater or equal to
2 such that limn φ(n) = +∞. There exists a non-periodic sequence w ∈ {0, 1}N such that:
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i. w satisfies (6) in Corollary 3.24;

ii. pw(n) ≤ 4φ(log2(n))n for all n;

iii. pw(n) ≤ 8n for infinitely many n.

Proof. Let µ be the Thue-Morse morphism (see Example 3.5 on Page 10). For all integers
n ≥ 2, let τn be the uniform morphism over {0, 1} defined by:

τn :

{

0 7→ 0u0

1 7→ 1v1
,

where u and v are the prefixes of length n − 2 of
∏

i≥1 1
i0 and

∏

i≥1 0
i1 respectively. For

instance, we have

τ9 :

{

0 7→ 010110110

1 7→ 101001001
τ10 :

{

0 7→ 0101101110

1 7→ 1010010001
.

Let (σn)n∈N be the sequence of morphisms defined, for all n ≥ 0, by

σ2n = µ and σ2n+1 = τφ(n).

By construction, the sequence w = limn→+∞ σ0 · · · σn(0) satisfies the hypothesis of Corol-
lary 3.24, so it does not have linear complexity.

Let us give a general upper bound for pw(m), using Proposition 3.27 and its terminology
D(n) and n(m). For all n, we have |σn+1(0)| = |σn+1(1)| ≤ φ(⌊n/2⌋) ≤ φ(n). Thus we
can choose D(n) ≤ φ(n). For all m we have |σ0 · · · σm(0)| = |σ0 · · · σm(1)| ≥ 2m. Thus
n(m) ≤ log2(m) and we obtain

pw(m) ≤ 4φ(log2(m))m.

Now let us prove that pw(m) ≤ 8m for infinitely manym. Considerm = |σ0σ1 · · · σ2k+1(0)|.
We have n(m) = 2k + 1 and we can set D(2k) = |σ2k(0)| = |µ(0)| = 2; hence

pw(m) ≤ 8m.

4 Beyond linearity

Until now, we have provided several examples showing that various natural approaches to
characterize S-adic sequences that have linear complexity do not appear to be promising.
To conclude this paper, we raise a new problem related to S-adicity and, more precisely, to
everywhere-growing S-adic sequences.

For pure morphic sequences, the complexity function can have only 5 asymptotic behav-
iors and only depends on the growth rate of images (see Theorem 2.2). For S-adic sequences,
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we have seen in Section 2.2 that things are more complicated. However, Ferenczi [Fer96] (see
also [Ler12b, LR]) proved that any uniformly recurrent sequence with linear complexity is
everywhere-growing S-adic with S finite. This is a kind of generalization of the third point
of Theorem 2.2. Moreover, one can check that all examples considered in previous sections
(and more generally all S-adic representations of well-known families of sequences such as
codings of rotations, codings of interval exchanges, etc.) are everywhere-growing with S
finite. It is also interesting to note that for pure morphic sequences, the class of highest
complexity Θ(n2) can be reached only by morphisms with bounded letters (Theorem 2.2). A
similar phenomenon occurs for S-adic sequences. Indeed, Cassaigne’s constructions (Propo-
sition 2.9) allow building S-adic sequences with arbitrarily high complexity and they admit
several bounded letters. Consequently, the fact that the length of all images tends to infinity
with n seems to be important to get a reasonably low complexity. This is confirmed by the
following two lemmas. The first one can be found in a paper written by Boyle and Handel-
man [BH94] and certainly elsewhere. We let denote h(w) the entropy of the sequence w (see
Section 2.2).

Lemma 4.1. Let L be a set of m finite words of length at least l and at most k. Let w be
an infinite concatenation of elements of L. Then

pw(n) ≤ km2+n
l and h(w) ≤ logm

l
.

As a corollary we obtain the following lemma whose conclusion was certainly known in the
1970’s in ergodic theory, for instance to prove that measure-theoretical dynamical systems
of bounded rank have entropy zero (see [BKMS]).

Lemma 4.2. Let w be an S-adic sequence whose directive word is (σn)n∈N with σn : A∗
n+1 →

A∗
n and A0 the alphabet of w. Then, for all n such that mina∈An+1 |σ0 · · · σn(a)| 6= 0,

h(w) ≤ log (Card(An+1))

mina∈An+1 |σ0 · · · σn(a)|
.

Thus, if (Card(An))n∈N is bounded and (mina∈An+1 |σ0 · · · σn(a)|)n∈N tends to infinity, then
h(w) = 0.

Remark 4.3. The previous lemma shows that to build an S-adic sequence with a very high
complexity (i.e., with positive entropy), either we need bounded letters, or we need the set
S to be infinite and the alphabets An+1 must grow exponentially in the minimal length of
the images σ0 · · · σn(a).

Moreover, the converse of previous lemma is not true: there exist sequences of zero en-
tropy without S-adic representation satisfying the hypothesis. Indeed, as shown by Williams
[Wil84] (also see [GJ00]) there exist (Toeplitz) sequences x with zero entropy whose gener-
ated subshift (X,S) has infinitely many ergodic measures. It is part of the folklore of ergodic
theory that, in our context and for uniformly recurrent sequences, when (|An|)n is bounded
by some constant k and (mina∈An

|σ0 · · · σn(a)|)n tends to infinity, then the subshift gener-
ated by the S-adic sequence has at most k ergodic measures. Thus x has zero entropy but
does not have an S-adic representation with (|An|)n bounded and (mina∈An

|σ0 · · · σn(a)|)n
going to infinity.
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Observe that, given an S-adic sequence w, the everywhere-growing property is not a
necessary condition for w to have low complexity. Indeed, Cassaigne’s constructions also
hold for sequences with low complexity. One can also recall the Chacon substitution ̺ defined
by ̺(0) = 0010 and ̺(1) = 1 whose fixed point ̺ω(0) has complexity p(n) = 2n − 1 for all
n (see [Fer95]). However, the existence of an everywhere-growing S ′-adic representation of
w might be necessary (this is the case for the Chacon substitution and for any uniformly
recurrent sequence with linear complexity).

That property is neither a sufficient condition since the sequence wγ,E of Example 3.5
satisfies it and does not always have linear complexity. However, it seems natural to look
for Pansiot-like results.

Question 4.4. Let w be an everywhere-growing S-adic sequence directed by (σn)n∈N such

that the alphabets An have bounded cardinality. How can the ratio5 maxa,b∈An+1

|σ0···σn(a)|
|σ0···σn(b)|

influence pw?

This question seems to be a new and non-trivial problem. Proposition 4.5 below provides
a partial answer to this question. Indeed, it deals with expansive S-adic sequences, i.e., with
S-adic sequences such that for all morphisms σ in S and all letters a, we have |σ(a)| ≥ 2.
Leroy’s proof [Ler12b] involves techniques similar to those used by Ehrenfeucht, Lee, and
Rozenberg [ELR75] for D0L systems.

Proposition 4.5. If w is an expansive S-adic sequence with Card(S) < +∞, then pw(n) ∈
O(n log n).

The next example shows that the bound of Proposition 4.5 is the best one we can obtain.

Example 4.6. Let ϑ be the morphism

ϑ :











0 7→ 0120

1 7→ 11

2 7→ 222

and consider its fixed point wϑ = ϑω(0). It can be seen as an expansive {ϑ}-adic sequence
and, by Theorem 2.2, we have that pwϑ

(n) ∈ Θ(n log n).
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