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Abstract

We present some infinite product formulas for e
7ζ(3)

π2 , e
4G
π and e

2G
π

±
1
2 , where G is

Catalan’s constant. We relate these formulas to similar ones obtained by Guillera and

Sondow in the context of their systematic study of Lerch’s transcendent. Our proofs

are entirely elementary.

1 Introduction

This paper studies some infinite product formulas involving two classical constants, namely
ζ
(

3
)

and Catalan’s constant, whose definition we now recall:

ζ
(

3
)

=
∞
∑

n=1

1

n3
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and

G =
∞
∑

m=0

(

− 1
)m

(

2m+ 1
)2 .

The following formulas are reminiscent of similar formulas obtained by Guillera and Sondow
in [5]:

Proposition 1. The following formulas hold:

e
7ζ(3)

4π2 + 1
4 = lim

m→∞

2m+1
∏

n=1

1
4
√
e

(

1− 1

n+ 1

)

n(n+1)
2

(−1)n

. (1)

e
7ζ(3)

4π2 −
1
4 = lim

m→∞

2m
∏

n=1

4
√
e
(

1− 1

n+ 1

)

n(n+1)
2

(−1)n

. (2)

e
7ζ(3)

π2 = lim
m→∞

( 22
2 · 442 · 662 · · · (2m)(2m)2

112 · 332 · 552 · · · (2m− 1)(2m−1)2

)4 ( (2m+ 2)4m+5

(2m+ 1)12m+9

)m

. (3)

Proposition 2. The following formulas hold:

e
2G
π

−
1
2 = lim

m→∞

2m
∏

n=1

(

1− 2

2n+ 1

)n(−1)n

. (4)

e
2G
π

+ 1
2 = lim

m→∞

2m+1
∏

n=1

(

1− 2

2n+ 1

)n(−1)n

. (5)

e
4G
π = lim

m→∞

(33 · 77 · 1111 · · · (4m− 1)4m−1

11 · 55 · 99 · · · (4m− 3)4m−3

)2 (4m+ 3)2m+1

(4m+ 1)6m+1
. (6)

We claim no novelty for the formulas themselves; our only purpose here is to present
completely elementary proofs of these formulas and to establish the not-so-obvious facts
below:

Fact 3. Formula (3) is equivalent to the following formula given by Guillera and Sondow [5,
Example 5.3]:

e
7ζ(3)

4π2 = e

∞∑

n=1

n(n+1)

2n+3

n∑

k=0
(−1)k+1 (nk) log(k+1)

=
∞
∏

n=1

(

n
∏

k=0

(

k + 1
)(−1)k+1 (nk))

n(n+1)

2n+3

=

(

21

11

)
1·2
24
(

22

11 · 31
)

2·3
25
(

23 · 41
11 · 33

)
3·4
26
(

24 · 44
11 · 36 · 51

)
4·5
27

· · · .
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Fact 4. Formula (4) follows from rearranging the factors of the following formula given by
Guillera and Sondow [5, Example 5.5]:

e
G
π = e

∞∑

n=1

n

2n+2

n∑

k=0
(−1)k+1 (nk) log(2k+1)

=
∞
∏

n=1

(

n
∏

k=0

(

2k + 1
)(−1)k+1 (nk))

n

2n+2

=

(

31

11

)
1
23
(

32

11 · 51
)

2
24
(

33 · 71
11 · 53

)
3
25
(

34 · 74
11 · 56 · 91

)
4
26

· · · ,

which in turn is equivalent to formula (6).

2 Proof of Proposition 2

We begin with the following formula which is a classically known Fourier expansion (see, for
example, Exercise 11.15(c) in [1, p. 338]):

Formula 5. Let σ ∈
[

− 1
2
, 1
2

]

\ {0}. Then

∞
∑

m=0

cos
(

π
(

2m+ 1
)

σ
)

2m+ 1
=

1

2
log

∣

∣

∣

∣

cot
(π

2
σ
)

∣

∣

∣

∣

.

The following formula, which follows directly from Formula 5 by integrating both sides

over the interval
[

0, 1
2

]

, is also well-known (see, for example, [2, p. 239]):

Formula 6.

G =

∫ π/4

θ=0

log
(

cot θ
)

dθ.

By applying integration by parts to the latter integral, we obtain

Corollary 7.

G =
1

2

∫ 1/2

α=0

π2 α

sin
(

π α
) dα.

The following formula is also well-known (see, for example, [8, p. 155]):

Formula 8. Let α ∈ R \ Z and s ∈
(

− 1
2
, 1
2

)

. Then

cos
(

2παs
)

=
sin
(

πα
)

π

( 1

α
+ 2α

∞
∑

m=1

(

− 1
)m

α2 −m2
cos
(

2πms
)

)

.

Setting s = 0 in Formula 8 gives:

3



Corollary 9. Let α ∈ R \ Z. Then

1 =
sin
(

πα
)

π

( 1

α
+ 2α

∞
∑

m=1

(

− 1
)m

α2 −m2

)

.

Lemma 10. Let m ∈ Z, m ≥ 1. Then

∫ 1/2

α=0

α2

α2 −m2
dα =

1

2
+

m

2
log

2m− 1

2m+ 1
.

Proof. This is straightforward:

∫ 1/2

α=0

α2

α2 −m2
dα =

1

2

∫ 1/2

α=0

(

2 +
m

α−m
− m

α +m

)

dα

=
1

2

[

2α + m log
(

− α +m
)

− m log
(

α +m
)

]1/2

α=0

=
1

2
+

m

2
log

2m− 1

2m+ 1
.

We now proceed with the proof of formula (4). By Corollary 9, we have

π2α

sin
(

πα
) = π + 2πα2

∞
∑

m=1

(

− 1
)m

α2 −m2
.

Integrating both sides with respect to α over the interval
[

0, 1
2

]

gives

∫ 1/2

α=0

π2α

sin
(

πα
) dα =

π

2
+ 2π

∫ 1/2

α=0

(

∞
∑

m=1

(−1)m α2

α2 −m2

)

dα. (7)

Consider the sequence of functions

fm
(

α
)

=

(

− 1
)m

α2

α2 −m2

on the interval I = [0, 1
2
], where m = 1, 2, . . . . Since α ∈ I, we clearly have

∣

∣fm
(

α
)∣

∣ =
α2

∣

∣α2 −m2
∣

∣

≤
1
4

m2 − 1
4

=
1

4m2 − 1
≤ 1

2m2
,

for all m. Since
∞
∑

m=1

1

2m2
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converges, it follows from the Weierstrass M -test that the series

∞
∑

m=1

fm
(

α
)

converges uniformly on I, and, by well-known principles, (see, for example, [1, Thm. 9.9, p.
226]), can therefore be integrated term by term. In other words, if we set

am =
(

− 1
)m
(

1 + m log
2m− 1

2m+ 1

)

,

then (7) and Lemma 10 imply that

∫ 1/2

α=0

π2α

sin
(

πα
) dα =

π

2
+ π

∞
∑

m=1

am. (8)

The left-hand side of (8) is a definite integral of the continuous function π2α

sin
(

πα
) over the

interval [0, 1
2
]. Hence the left-hand side of (8) is a real number which implies that

lim
m→∞

am = 0.

Keeping this in mind, define

An =
n
∑

m=1

am.

Then, by (8), we have

∫ 1/2

α=0

π2α

sin
(

πα
) dα =

π

2
+ π lim

n→∞
An =

π

2
+ π lim

N→∞
A2N =

π

2
+ π lim

N→∞

N
∑

m=1

(a2m−1 + a2m)

= π
(1

2
+ lim

N→∞

N
∑

m=1

(

− (2m− 1) log
4m− 3

4m− 1
+ 2m log

4m− 1

4m+ 1

))

= π
(1

2
+ lim

N→∞
log

N
∏

m=1

(

4m− 1
)4m−1

(

4m− 3
)2m−1 (

4m+ 1
)2m

)

= π
(1

2
+ log

∞
∏

m=1

(

4m− 1
)4m−1

(

4m− 3
)2m−1 (

4m+ 1
)2m

)

.

By Corollary 7, the left-hand side equals 2G, therefore

2G

π
− 1

2
= log

∞
∏

m=1

(

4m− 1
)4m−1

(

4m− 3
)2m−1 (

4m+ 1
)2m .

Therefore,

5



e
2G
π

−
1
2 = lim

m→∞

33

11 · 52 · 77

53 · 94 · 1111

95 · 136 · · ·
(4m− 1)4m−1

(4m− 3)2m−1(4m+ 1)2m

= lim
m→∞

33 · 77 · 1111 · · · (4m− 1)4m−1

55 · 99 · 1313 · · · (4m− 3)4m−3 · (4m+ 1)2m

= lim
m→∞

(1

3

)−1(3

5

)2(5

7

)−3

· · ·
(4m− 1

4m+ 1

)2m

= lim
m→∞

2m
∏

n=1

(

1− 2

2n+ 1

)n(−1)n

,

and this completes the proof of formula (4). Multiplying both sides of the latter formula by
e and using the fact that

e = lim
m→∞

(

1− 2

4m+ 3

)−(2m+1)

gives formula (5). Finally, multiplying formulas (4) and (5) together and expanding gives
formula (6).

3 Proof of Proposition 1

We will first prove formula (1).

Lemma 11. Let m ∈ N and δ ∈
(

0, 1
2

)

. Then

π2

∫ 1/2

σ=δ

(1

2
− σ

) cos
(

π
(

2m+ 1
)

σ
)

2m+ 1
dσ

=
cos
(

π(2m+ 1)δ
)

(

2m+ 1
)3 +

π
(

δ − 1
2

)

sin
(

π
(

2m+ 1
)

δ
)

(

2m+ 1
)2 .

Proof. This is straightforward integration by parts:

∫ 1/2

σ=δ

(1

2
− σ

) cos
(

π
(

2m+ 1
)

σ
)

2m+ 1
dσ

=

[

(1

2
− σ

)sin
(

π
(

2m+ 1
)

σ
)

π
(

2m+ 1
)2

]1/2

σ=δ

+

∫ 1/2

σ=δ

sin
(

π
(

2m+ 1
)

σ
)

π
(

2m+ 1
)2 dσ

=
(

δ − 1

2

) sin
(

π
(

2m+ 1
)

δ
)

π
(

2m+ 1
)2 −

[

cos
(

π
(

2m+ 1
)

σ
)

π2
(

2m+ 1
)3

]1/2

σ=δ

,

and the claim follows.

Corollary 12. Let m ∈ N. Then

π2

∫ 1/2

σ=0

(1

2
− σ

) cos
(

π
(

2m+ 1
)

σ
)

2m+ 1
dσ =

1
(

2m+ 1
)3 .

6



Proof. In Lemma 11, let δ → 0+.

We now recall the following basic formula:

∞
∑

m=0

1
(

2m+ 1
)3 =

7

8
ζ
(

3
)

. (9)

We will establish the following:

Formula 13.

ζ
(

3
)

=
4

7
π G − 2

7
π2

∫ 1/2

σ=0

πσ2

sin
(

πσ
) dσ.

Proof. First, we may rewrite Formula 6 as

G =

∫ 1/2

σ=0

π

2
log

(

cot
(π

2
σ
)

)

dσ. (10)

Second, by (9) and Corollary 12, we have

7

8
ζ
(

3
)

=
∞
∑

m=0

π2

∫ 1/2

σ=0

(1

2
− σ

) cos
(

π
(

2m+ 1
)

σ
)

2m+ 1
dσ. (11)

Fix δ ∈
(

0, 1
2

)

. For each n ∈ N, define the function

Fn

(

σ
)

=
n
∑

m=0

(1

2
− σ

) cos
(

π(2m+ 1)σ
)

2m+ 1

on the interval I =
[

δ,
1

2

]

. The sequence

{

n
∑

m=0

cos
(

π
(

2m+ 1
)

σ
)}

n∈N

of functions is uniformly bounded on I by (2 sin(πδ))−1 (see [1, Formula (15), p. 198] or [6,
Item 185.5, p. 316]), whereas the sequence

{(1

2
− σ

) 1

2m+ 1

}

m∈N

clearly tends monotonically to 0 uniformly on I. Hence by applying Dirichlet’s test for
uniform convergence (see [1, Thm. 9.15, p. 230] or or [6, p. 347]), it follows that the
sequence of functions Fn

(

σ
)

converges uniformly on I. Therefore, the series

∞
∑

m=0

(1

2
− σ

) cos
(

π(2m+ 1)σ
)

2m+ 1

can be integrated term by term on I. Hence, Lemma 11 establishes the following

7



Formula 14.

π2

∫ 1/2

σ=δ

∞
∑

m=0

(1

2
− σ

) cos
(

π(2m+ 1)σ
)

2m+ 1
dσ

=
∞
∑

m=0

cos
(

π(2m+ 1)δ
)

(

2m+ 1
)3 + π

(

δ − 1

2

)

∞
∑

m=0

sin
(

π
(

2m+ 1
)

δ
)

(

2m + 1
)2 .

Now take the limits of both sides of the latter formula as δ → 0+. By the Weierstrass
M -test, both series on the right-hand side of Formula 14 are uniformly convergent series of
functions of δ on the interval I = [δ, 1

2
]. Therefore, we can interchange limits and infinite

sums on the right-hand side of Formula 14 (see [1, Thm. 9.7, p. 220]). By (11), it follows
that

π2

∫ 1/2

σ=0

∞
∑

m=0

(1

2
− σ

) cos
(

π(2m+ 1)σ
)

2m+ 1
=

7

8
ζ
(

3
)

. (12)

Combining (10), (12) and Formula 5 gives

7

8
ζ
(

3
)

= π2

∫ 1/2

σ=0

(1

2
− σ

) 1

2
log

(

cot
(π

2
σ
)

)

dσ

=
π2

4

(

∫ 1/2

σ=0

log

(

cot
(π

2
σ
)

)

dσ −
∫ 1/2

σ=0

2σ log

(

cot
(π

2
σ
)

)

dσ
)

=
π

2
G − π2

2

∫ 1/2

σ=0

σ log

(

cot
(π

2
σ
)

)

dσ.

In short,

ζ
(

3
)

=
4

7
π G − 4

7
π2

∫ 1/2

σ=0

σ log

(

cot
(π

2
σ
)

)

dσ. (13)

Formula 13 now follows because

∫ 1/2

σ=0

σ log

(

cot
(π

2
σ
)

)

dσ

=

[

σ2

2
log

(

cot
(π

2
σ
)

)

]1/2

σ=0

−
∫ 1/2

σ=0

σ2

2

1

cot
(

π
2
σ
)

−1
(

sin
(

π
2
σ
))2

π

2
d σ

= 0 +

∫ 1/2

σ=0

σ2

2

1

cos
(

π
2
σ
)

sin
(

π
2
σ
)

π

2
dσ =

1

2

∫ 1/2

σ=0

πσ2

sin
(

πσ
) σ.

The following statement is similar to Lemma 10.

8



Lemma 15. Let m ∈ Z, m ≥ 1. Then

∫ 1/2

σ=0

σ3

σ2 − m2
dσ =

1

8
+

m2

2
log

4m2 − 1

4m2
.

Proof. This is straightforward:

∫ 1/2

σ=0

σ3

σ2 − m2
dσ =

∫ 1/2

σ=0

(

σ + m2 σ

σ2 −m2

)

dσ

=

[

1

2
σ2 + m2 1

2
log
(

− σ2 +m2
)

]1/2

σ=0

=
1

8
+

m2

2
log

m2 − 1
4

m2
.

Lemma 16.

lim
n→∞

en
(

1 + 1
n

)n2 = lim
n→∞

e−n

(

1− 1
n

)n2 =
√
e.

Proof. By taking logarithms, it suffices to show that

lim
n→∞

(

n − n2 log
(

1 +
1

n

))

=
1

2
= lim

n→∞

(

− n − n2 log
(

1 − 1

n

))

.

This follows by substituting x = ± 1
n
in the Maclaurin series of the function log

(

1 + x
)

and using continuity.

We now proceed with the proof of formula (1). By Corollary 9, we have

π σ2

sin
(

πσ
) = σ + 2σ3

∞
∑

m=1

(

− 1
)m

σ2 −m2
.

Integrating both sides with respect to σ over the interval
[

0, 1
2

]

and using formula (4) (and

its proof) and Lemma 15 gives

9



∫ 1/2

σ=0

πσ2

sin
(

πσ
) dσ =

∫ 1/2

σ=0

(

σ + 2σ3

∞
∑

m=1

(

− 1
)m

σ2 −m2

)

dσ

=

∫ 1/2

σ=0

σ dσ + 2

∫ 1/2

σ=0

(

∞
∑

m=1

(

− 1
)m σ3

σ2 −m2

)

dσ

=
1

8
+ 2

∞
∑

m=1

(

− 1
)m

∫ 1/2

σ=0

σ3

σ2 −m2
dσ

=
1

8
+ 2

∞
∑

m=1

(

− 1
)m
(1

8
+

m2

2
log

4m2 − 1

4m2

)

=
1

8
+

∞
∑

m=1

(

− 1
)m
(1

4
+ m2 log

4m2 − 1

4m2

)

,

which equals

1

8
+

∞
∑

ℓ=1

(

−
(1

4
+
(

2ℓ− 1
)2

log
4
(

2ℓ− 1
)2 − 1

4
(

2ℓ− 1
)2

)

+
(1

4
+
(

2ℓ
)2

log
4
(

2ℓ
)2 − 1

4
(

2ℓ
)2

))

=
1

8
+

∞
∑

ℓ=1

(

−
(

2ℓ− 1
)2

log
4
(

2ℓ− 1
)2 − 1

4
(

2ℓ− 1
)2

+
(

2ℓ
)2

log
4
(

2ℓ
)2 − 1

4
(

2ℓ
)2

)

=
1

8
+

∞
∑

ℓ=1

log
(

(

4ℓ− 1
)4ℓ−1 (

4ℓ+ 1
)(2ℓ)2 (

4ℓ− 2
)2(2ℓ−1)2

(

4ℓ
)2(2ℓ)2 (

4ℓ− 3
)(2ℓ−1)2

)

=
1

8
+

∞
∑

ℓ=1

log
(

(

4ℓ− 1
)4ℓ−1

(

4ℓ− 3
)2ℓ−1 (

4ℓ+ 1
)2ℓ

)

+
∞
∑

ℓ=1

log
(

(

4ℓ+ 1
)4ℓ2+2ℓ (

4ℓ− 2
)2(2ℓ−1)2

(

4ℓ
)2(2ℓ)2 (

4ℓ− 3
)4ℓ2−6ℓ+2

)

=
2G

π
− 3

8
+ 2

∞
∑

ℓ=1

log
(

(

4ℓ+ 1
)2ℓ2+ℓ (

4ℓ− 2
)(2ℓ−1)2

(

4ℓ
)(2ℓ)2 (

4ℓ− 3
)2ℓ2−3ℓ+1

)

.
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Therefore, by Formula 13, it follows that

7

4π2
ζ
(

3
)

=
3

16
+ log

∞
∏

ℓ=1

(

4ℓ
)(2ℓ)2 (

4ℓ− 3
)2ℓ2−3ℓ+1

(

4ℓ+ 1
)2ℓ2+ℓ (

4ℓ− 2
)(2ℓ−1)2

. (14)

Now the latter infinite product can be written as

lim
N→∞

N
∏

ℓ=1

24ℓ−1

(

2ℓ
)(2ℓ)2

(

2ℓ− 1
)(2ℓ−1)2

(

4
(

ℓ− 1
)

+ 1
)2(ℓ−1)2+(ℓ−1)

(

4ℓ+ 1
)2ℓ2+ℓ

,

which equals

lim
N→∞

(

2

4N + 1

)2N2+N N
∏

ℓ=1

(

2ℓ
)(2ℓ)2

(

2ℓ− 1
)(2ℓ−1)2

= lim
N→∞

22N
2+N

(

2N + 1
)(2N+1)2

(

4N + 1
)2N2+N

N
∏

ℓ=1

(

2ℓ
)(2ℓ)2

(

2ℓ+ 1
)(2ℓ+1)2

= lim
N→∞

(

22N
2+N

(

2N + 1
)(2N+1)2

(

4N + 1
)2N2+N

2
(

2N + 2
)(2N+1)(N+1)

×
N
∏

ℓ=1

(

2ℓ
)(2ℓ+1)ℓ (

2ℓ+ 2
)(2ℓ+1)(ℓ+1)

(

2ℓ+ 1
)(2ℓ+1)2

)

= lim
N→∞

(

e
N+1

2

(

4N + 2

4N + 1

)2N2+N (
2N + 1

2N + 2

)(2N+1)(N+1)
2√
e

×
N
∏

ℓ=1

(

2ℓ
)(2ℓ+1)ℓ (

2ℓ+ 2
)(2ℓ+1)(ℓ+1)

√
e
(

2ℓ+ 1
)(2ℓ+1)2

)

.

We claim that

lim
N→∞

e
N+1

2

(

1− 1
4N+2

)(2N+1)N (

1 + 1
2N+1

)(2N+1)(N+1)
= e−

3
16 . (15)

Indeed, by Lemma 16, we have
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lim
N→∞

eN+ 1
4

(

1 + 1
2N+1

)

(2N+1)2

2

= 1 = lim
N→∞

e
1
2

(

1 + 1
2N+1

)
2N+1

2

and

lim
N→∞

e−
N
2
−

5
16

(

1− 1
4N+2

)

(4N+2)2

8

= 1 = lim
N→∞

e
1
4

(

1− 1
4N+2

)−
4N+2

4

,

hence (15) follows. Combining (14) with (15) gives

e
7ζ(3)

4π2 =
2√
e

∞
∏

l=1

(2l)(2l+1)l (2l + 2)(2l+2)(l+1)

√
e (2l + 1)2l+1)2

.

Therefore,

e
7ζ(3)

4π2 =
2√
e

lim
m→∞

m
∏

n=1

(2n)(2n+1)n (2n+ 2)(2n+2)(n+1)

√
e (2n+ 1)(2n+1)2

=
(2m+ 2)(2m+1)(m+1)

e
m+1

2

22
2 · 442 · 662 · · · (2m)(2m)2

332 · 552 · 772 · · · (2m+ 1)(2m+1)2

= e−
1
4 lim

m→∞

2m+1
∏

n=1

1
4
√
e

(

1− 1

n+ 1

)

n(n+1)
2

(−1)n

.

and this completes the proof of formula (1).
It remains to prove formulas (2) and (3). Note that

2m
∏

n=1

4
√
e
(

1− 1

n+ 1

)

n(n+1)
2

(−1)n

=

(

1− 1
2m+2

)(2m+1)(m+1)

e−(m+ 1
4
)

2m+1
∏

n=1

1
4
√
e

(

1− 1

n+ 1

)

n(n+1)
2

(−1)n

.

Therefore, formula (2) will follow from formula (1) once we show that

lim
m→∞

e−(2m+ 1
2
)

(

1− 1
2m+2

)(2m+2)(2m+1)
= e.

This follows by writing (2m+ 2)(2m+ 1) as (2m+ 2)2 − (2m+ 2) and using Lemma 16.
Now multiplying formulas (1) and (2) together and squaring gives

e
7ζ(3)

π2 = lim
m→∞

1√
e

(2m+ 1

2m+ 2

)−(2m+1)(2m+2)
2m
∏

n=1

(

1− 1

n+ 1

)2n(n+1)(−1)n

= lim
m→∞

1√
e

((2m+ 2)2m+2

(2m+ 1)6m+2

)2m+1 ( 22
2 · 442 · 662 · · · (2m)(2m)2

112 · 332 · 552 · · · (2m− 1)(2m−1)2

)4
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Formula (3) is now a consequence of the equality

1√
e
= lim

m→∞

(2m+ 1

2m+ 2

)m+2

.

4 Proof of Facts 3 and 4

By formula (3) and its proof, it suffices to show that the total exponent of k+1 in the infinite

product expansion given by Guillera and Sondow [5, Example 5.3] equals
(

− 1
)k+1 (

k+1
)2
,

for all k ∈ N. The exponent in question equals

(

− 1
)k+1

∞
∑

n=k

(

n

k

)

n2 + n

2n+3
=

(

− 1
)k+1

8 ·
(

k!
)

∞
∑

n=k

(

n+ 1
)

n2
(

n− 1
)

· · ·
(

n− k + 1
)

2n

=

(

− 1
)k+1

8 ·
(

k!
)

(

∞
∑

n=k

(

n+ 2
) (

n+ 1
)

· · ·
(

n− k + 1
)

2n
− 2

∞
∑

n=k

(

n+ 1
)

n · · ·
(

n− k + 1
)

2n

)

=

(

− 1
)k+1

8 ·
(

k!
)

( 1

2k

∞
∑

m=0

(

m+ k + 2
) (

m+ k + 1
)

· · ·
(

m+ 1
)

2m

− 1

2k−1

∞
∑

m=0

(

m+ k + 1
) (

m+ k
)

· · ·
(

m+ 1
)

2m

)

.

We have the following lemma:

Lemma 17. For all k ∈ N, we have

∞
∑

m=0

(

m+ k + 1
) (

m+ k
)

· · ·
(

m+ 1
)

2m
= 2(k+2) ·

((

k + 1
)

!
)

.

Proof. This follows by term-by-term
(

k + 1
)

-fold differentiation of the geometric series

∞
∑

n=0

xn = (1− x)−1

and subsequent evaluation at x = 1
2
.

Therefore, by Lemma 17, the exponent in question equals

(−1)k+1

8 · (k!)

(

8 ·
((

k + 2
)

!
)

− 8 ·
((

k + 1
)

!
))

= (−1)k+1 (k + 1)2,

which completes the proof of Fact 3.
We will now show that, apart from the factor e−

1
2 on the left-hand side of formula (4), the

product expansion given by the latter formula and the product expansion given by Guillera
and Sondow [5, Example 5.5] are equivalent. In other words, we will show that the total

13



exponent of 2k + 1 in the infinite product expansion of e
G
π given by Guillera and Sondow

[5, Example 5.5] equals (−1)k+1 (k + 1
2
), for all k ∈ N. Since the infinite series involved is

only conditionally convergent, the discrepancy involving e−
1
2 can be explained by means of

Riemann’s theorem on rearrangements of conditionally convergent series. The exponent in
question equals

(

− 1
)k+1

∞
∑

n=k

(

n

k

)

n

2n+2
=

(

− 1
)k+1

4 ·
(

k!
)

∞
∑

n=k

n2
(

n− 1
)

· · ·
(

n− k + 1
)

2n

=

(

− 1
)k+1

4 ·
(

k!
)

(

∞
∑

n=k

(

n+ 1
)

n · · ·
(

n− k + 1
)

2n
−

∞
∑

n=k

n
(

n− 1
)

· · ·
(

n− k + 1
)

2n

)

=

(

− 1
)k+1

4 ·
(

k!
)

( 1

2k

∞
∑

m=0

(

m+ k + 1
) (

m+ k
)

· · ·
(

m+ 1
)

2m

− 1

2k

∞
∑

m=0

(

m+ k
) (

m+ k − 1
)

· · ·
(

m+ 1
)

2m

)

.

By Lemma 17, this equals

(−1)k+1

4 ·
(

k!
)

(

4 ·
((

k + 1
)

!
)

− 2 ·
(

k!
))

=
(

− 1
)k+1 (

k +
1

2

)

,

as required, and this completes the proof of Fact 4.

5 Concluding remarks

Remark 18. The identities

∞
∑

n=k

(

n

k

)

n2 + n

2n+3
= (k + 1)2 ,

∞
∑

n=k

(

n

k

)

n

2n+2
= k +

1

2

which were used in the proofs of Facts 3 and 4 can also be very easily established by the
Wilf-Zeilberger method via the use of Zeilberger’s Maple package EKHAD (see [9]).

Remark 19. One way to account for the fact that the products discussed in this paper are
so closely tied to the ones studied by Guillera and Sondow in [5] is by noticing that they
are related via Euler transformations. For instance, using the latter formula in the previous
remark, one has

lim
m→∞

2m
∑

k=1

(−1)kk log
2k − 1

2k + 1
= lim

m→∞

2m
∑

k=1

(−1)k log
2k − 1

2k + 1

∞
∑

n=k

(

n

k

)

n− 1

2n+2
.

If we interchange the summation on the right-hand side (an Euler transformation) the rela-
tion between formula (4) and the formula given in Fact 4 becomes evident.
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Remark 20. The formulas in Propositions 2 and 1 are reminiscent of some powerful state-
ments that deserve to be more widely known. We refer the reader to Finch’s book [4] for a
wealth of information regarding such statements involving classical constants. For instance,
the following function (first introduced by Borwein and Dykshoorn in [3]):

D(x) = lim
m→∞

2m+1
∏

n=1

(

1 +
x

n

)n(−1)n+1

= ex lim
m→∞

2m
∏

n=1

(

1 +
x

n

)n(−1)n+1

.

Certain values of this function are related to some classical constants. Melzak proved in [7]
that D(2) = πe

2
. In [3], Borwein and Dykshoorn generalized Melzak’s result and explicitly

determined the values of D(x) at all rational x having denominator 1, 2 or 3. Interestingly
enough, some of the resulting evaluations involve Catalan’s constant, the Glaisher-Kinkelin
constant and Γ(1

4
). We have not been able to show that any of the formulas in Propositions

2 or 1 is a direct consequence of the latter evaluations.

6 Acknowledgment

We are much obliged to the referee for providing valuable references and insightful remarks
on a previous version of this paper.

References

[1] T. Apostol, Mathematical Analysis, Addison Wesley, 1974.

[2] J. Borwein and D. Bailey, Mathematics by Experiment, A. K. Peters, 2004.

[3] P. Borwein and W. Dykshoorn, An interesting infinite product, J. Math. Anal. Appl.,
179 (1993), 203–207.

[4] S. R. Finch, Mathematical Constants, Cambridge University Press, 2003.

[5] J. Guillera and J. Sondow, Double integrals and infinite products for some classical
constants via analytic continuations of Lerch’s transcendent, Ramanujan J. 16 (2008),
243–270.

[6] K. Knopp, Theory and Application of Infinite Series, Dover, 1990.

[7] Z. A. Melzak, Infinite products for πe and π/e, Amer. Math. Monthly, 68 (1961), 39–41.

[8] P. Nahin, Dr. Euler’s Fabulous Formula: Cures Many Mathematical Ills, Princeton Uni-
versity Press, 2006.
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