

On Lower Order Extremal Integral Sets Avoiding Prime Pairwise Sums

Ram Krishna Pandey Department of Mathematics Indian Institute of Technology, Patna Patliputra Colony, Patna - 800013 India **ram@iitp.ac.in**

Abstract

Let A be a subset of $\{1, 2, ..., n\}$ such that the sum of no two distinct elements of A is a prime number. Such a subset is called a prime-sumset-free subset of $\{1, 2, ..., n\}$. A prime-sumset-free subset is called an extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ if $A \cup \{a\}$ is not a prime-sumset-free subset for any $a \in \{1, 2, ..., n\} \setminus A$. We prove that if $n \ge 10$ then there is no any extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of order 2 and if $n \ge 13$ then there is no any extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of order 3. Moreover, we prove that for each integer $k \ge 2$, there exists a n_k such that if $n \ge n_k$ then there does not exist any extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of length k. Furthermore, for some small values of n, we give the orders of all extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ along with an example of each order, and we give all extremal prime-sumset-free subsets of $\{1, 2, ..., n\}$ of orders 2 and 3 for $n \le 13$.

1 Introduction

Let A be a subset of $\{1, 2, ..., n\}$. Then a combinatorial problem posed by Chen [1] is to study the subsets A such that

$$(A\hat{+}A) \cap P = \emptyset, \tag{1}$$

where $A + A = \{a + b : a, b \in A, a \neq b\}$ and P is the set of all prime numbers. Such a set is called a *prime-sumset-free subset* of the set $\{1, 2, ..., n\}$. If we replace the set P above by a given set T of positive integers then A is called a *T-sumset-free set*. Chen [1] determined

all prime-sumset-free subsets of $\{1, 2, ..., n\}$ with the largest cardinality. Let the largest cardinality be U_n . Chen [1] proved the following theorem.

Theorem 1. For all $n \ge 1$ we have $U_n = \lfloor \frac{1}{2}(n+1) \rfloor$. Furthermore, if $A \subset \{1, 2, ..., n\}$ is a prime-sumset-free set with $|A| = U_n$, then all elements of A have the same parity.

With this, the natural and more challenging question coming in mind is that what is the largest cardinality of $A \subset \{1, 2, ..., n\}$ satisfying (1) when A contains elements of both parities?

A prime-sumset-free subset A of $\{1, 2, ..., n\}$ is called an extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ if $A \cup \{a\}$ is not a prime-sumset-free subset for any $a \in \{1, 2, ..., n\} \setminus A$. Let $(PF_k(n))_{k\geq 1}$ be the sequence of cardinalities of all the extremal prime-sumset-free subsets of $\{1, 2, ..., n\}$ with $PF_1(n) > PF_2(n) > \cdots$. Then by the theorem of Chen we have $PF_1(n) = U_n = \lfloor \frac{1}{2}(n+1) \rfloor$.

In this paper we provide the sequence $(PF_k(n))$ for a few small values of n and we study the finite monotonic strictly decreasing sequence $PF_k(n)$ with the largest term $\lfloor \frac{1}{2}(n+1) \rfloor$ and the smallest term 2 (if it exists) from the lower end of the sequence for all sufficiently large values of n. In particular, we show that if $n \ge 10$ then there is no extremal prime-sumset-free subset of $\{1, 2, \ldots, n\}$ of order 2 and if $n \ge 13$ then there is no extremal prime-sumset-free subset of $\{1, 2, \ldots, n\}$ of order 3. That is in the case $n \ge 10$ the sequence $PF_k(n)$ will not take the value 2 and hence will terminate at 3 (if it exists) and in the case $n \ge 13$ the sequence $PF_k(n)$ will not take the value 3 and hence will terminate at 4 (if it exists) as $PF_k(n) \ne 1$ for any n. We also prove that for each integer $k \ge 2$, there exists a n_k such that if $n \ge n_k$ then there does not exist any extremal prime-sumset-free subset of $\{1, 2, \ldots, n\}$ of length k.

2 Main Results

Sometimes we use [n] for $\{1, 2, ..., n\}$ and PSFS for prime-sumset-free subset in this section. Observe that any proper subset of an extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of order l can not be an extremal prime-sumset-free subset of $\{1, 2, ..., n\}$. Thus if we have extremal prime-sumset-free subsets of $\{1, 2, ..., n\}$ of both orders k and l where k < l then the extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of order k will not be a subset of the extremal prime-sumset-free subset of $\{1, 2, ..., n\}$ of order l. In the table below we provide the sequence $(PF_k(n))$ and an example of extremal prime-sumset-free subset of [n] for each term of the sequence for all $1 \le n \le 14$.

n	Sequence $PF_k(n)$ with an extremal prime-sumset-free subset of $[n]$ for each term
1	not defined
2	not defined
3	$(PF_k(3)) \equiv (2); (\{1,3\})$
4	$(PF_k(4)) \equiv (2); (\{1,3\})$
5	$(PF_k(5)) \equiv (3,2); (\{1,3,5\}, \{2,4\})$
6	$(PF_k(6)) \equiv (3,2); (\{1,3,5\}, \{4,5\})$
7	$(PF_k(7)) \equiv (4,3,2); (\{1,3,5,7\}, \{2,4,6\}, \{4,5\})$
8	$(PF_k(8)) \equiv (4,3,2); (\{1,3,5,7\}, \{2,7,8\}, \{4,5\})$
9	$(PF_k(9)) \equiv (5, 4, 3, 2); (\{1, 3, 5, 7, 9\}, \{2, 4, 6, 8\}, \{2, 7, 8\}, \{4, 5\})$
10	$(PF_k(10)) \equiv (5,3); (\{1,3,5,7,9\},\{2,7,8\})$
11	$(PF_k(11)) \equiv (6, 5, 4, 3); (\{1, 3, 5, 7, 9, 11\}, \{2, 4, 6, 8, 10\}, \{4, 5, 10, 11\}, \{1, 7, 8\})$
12	$(PF_k(12)) \equiv (6,4,3); (\{1,3,5,7,9,11\}, \{4,5,10,11\}, \{1,7,8\})$
13	$(PF_k(13)) \equiv (7, 6, 4); (\{1, 3, 5, 7, 9, 11, 13\}, \{2, 4, 6, 8, 10, 12\}, \{1, 7, 8, 13\})$
14	$(PF_k(14)) \equiv (7, 5, 4); (\{1, 3, 5, 7, 9, 11, 13\}, \{1, 7, 11, 13, 14\}, \{3, 9, 12, 13\})$

Table 1: $PF_k(n)$ and extremal-prime-sumset-free subset of [n] for $1 \le n \le 14$

After having a look at the above table a natural question coming in mind is that for a given positive integer n does there exist an extremal prime-sumset-free subset of [n] of each order l, where $2 \leq l < \lfloor \frac{1}{2}(n+1) \rfloor$? We shall see that if $n \geq 10$ then there is no extremal prime-sumset-free subset of [n] of order 2 and if $n \geq 13$ then there is no extremal prime-sumset-free subset of [n] of order 3. Before we prove these results we give all extremal prime-sumset-free subset of [n] of order 2 and 3 for each n where $1 \leq n \leq 13$ in the following table.

n	All extremal PSFSs of $[n]$ of order 2	All extremal PSFSs of $[n]$ of order 3
3	{1,3}	not defined
4	$\{1,3,\},\ \{2,4\}$	not defined
5	$\{2,4\}, \{4,5\}$	$\{1,3,5\}$
6	$\{6,3\}, \{4,5\}$	$\{1,3,5\}, \{2,4,6\}$
7	$\{2,7\}, \{6,3\}, \{4,5\}$	$\{2,4,6\}$
8	$\{6,3\}, \{4,5\}$	$\{1,7,8\}, \{2,7,8\}$
9	$\{4,5\}$	$\{1,7,8\}, \{2,7,8\}, \{3,6,9\}$
10	not exists	$\{1,7,8\}, \{2,7,8\}, \{3,6,9\}, \{4,5,10\}$
11	not exists	$\{1,7,8\}, \{2,7,8\}, \{3,6,9\}$
12	not exists	$\{1,7,8\}, \{2,7,8\}$
13	not exists	not exists

Table 2: Extremal prime-sumset-free subset of [n] of orders 2 and 3 for $1 \le n \le 13$ **Theorem 2.** If $n \ge 10$ then there does not exist any extremal prime-sumset-free subset of

[n] of order 2.

Proof. The proof is by induction on n. If n = 10 then there does not exist any extremal prime-sumset-free subset of [10] of order 2. Indeed, we know that if $n \ge 6$ then an extremal prime-sumset-free subset of order 2 (if exists) will contain integers of opposite parity. Therefore, the only possibilities of two elements subsets of [10] to be an extremal prime-sumset-free subset are the following sets:

$$\{1, 8\}, \{3, 6\}, \{5, 4\}, \{5, 10\}, \{7, 2\}, \{7, 8\}, \{9, 6\}$$

But none of the above sets is an extremal prime-sumset-free subset as each one is a subset of some prime-sumset-free subsets of order 3 given below.

$$\{1, 8, 7\}, \{3, 6, 9\}, \{5, 4, 10\}, \{7, 2, 8\}.$$

Hence the theorem is true for n = 10. Now let the theorem is true for $k \ge 10$. Without loss of generality we can assume that k is odd. Take all subsets $\{k + 1, a\}$ where a is odd and $1 \le a \le k$ such that k + 1 + a is a composite integer. We shall show that there exists an integer t such that $t \in [k + 1] \setminus \{k + 1, a\}$ and both k + 1 + t and a + t are composite.

CASE I: $1 \le a \le k - 1$. By induction the subset $\{k, a + 1\}$ is not an extremal primesumset-free subset of [k]. Hence there exists an integer $l \in [k] \setminus \{k, a + 1\}$ such that all l + k, k + a + 1 and a + 1 + l are composite integers. Now if l is odd then taking t = l + 1and if l is even then taking t = l - 1, we see that $\{k + 1, a, t\}$ is a prime-sumset-free subset of [k + 1]. Hence the theorem is true in this case.

CASE II: a = k. The subset $\{k + 1, a\}$ becomes $\{k + 1, k\}$. In this case the integer t is given in the following table depending on k.

Units digit of k	t
1	4
3	2
5	10
7	8
9	6

Table 3: t as a function of k

This completes the proof of the theorem.

Theorem 3. If $n \ge 13$ then there does not exist any extremal prime-sumset-free subset of [n] of order 3.

Proof. Let $A = \{a_1, a_2, a_3\}$ be a prime-sumset-free subset of [n] of order 3. We are required to show that A is not an extremal prime-sumset-free subset of [n]. If all elements of A are of same parity then clearly, A is not an extremal prime-sumset-free subset of [n] as $n \ge 13$. So, let us assume that A contains elements of both parities.

CASE I: A contains two odd integers and an even integer. Without loss of generality let a_1 be even.

Subcase (i): $2 \le a_1 \le 10$. First let $a_2, a_3 \in \{1, 3, 5, \ldots, 13\}$. In this case the only possibilities of the set A for each a_1 is $\{2, 7, 13\}$, $\{4, 5, 11\}$, $\{6, 3, 9\}$, $\{8, 1, 7\}$, $\{8, 1, 13\}$, $\{8, 7, 13\}$, $\{10, 5, 11\}$. None of the above subsets is an extremal prime-sumset-free subset because of the following prime-sumset-free subsets.

$$\{2, 7, 13, 8\}, \{4, 5, 11, 10\}, \{6, 3, 9, 12\}, \{8, 1, 7, 13\}.$$

Secondly, let a_2, a_3 be any odd numbers in A not necessarily from the set $\{1, 3, 5, \ldots, 13\}$ and the set A be distinct from the sets given in the above list: $\{2, 7, 13\}$, $\{4, 5, 11\}$, $\{6, 3, 9\}$, $\{8, 1, 7\}$, $\{8, 1, 13\}$, $\{8, 7, 13\}$, $\{10, 5, 11\}$. We have the following: $2 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{7, 13\}$, $4 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{5, 11\}$, $6 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{3, 9\}$,

 $8 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{1, 7, 13\}$,

 $10 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{5, 11\}$.

Consequently, A is not an extremal prime-sumset-free subset. Thus we have seen that if $2 \le a_1 \le 10$ then A is not an extremal prime-sumset-free subset.

Subcase (ii): $12 \le a_1 \le 28$. In the list below, for each a_1 we provide at least three distinct odd integers from [n] such that their sum with a_1 give composite integers. Hence if $12 \le a_1 \le 28$, we do not have extremal prime-sumset-free subsets of [n] of length 3.

List: $\{12, 3, 9, 13\}$, $\{14, 1, 7, 11\}$, $\{16, 5, 9, 11\}$, $\{18, 3, 7, 9\}$, $\{20, 1, 5, 15\}$, $\{22, 3, 5, 13\}$, $\{24, 1, 3, 11\}$, $\{26, 1, 9, 19\}$, $\{28, 5, 7, 17\}$.

Subcase (iii): $a_1 \ge 30$. Depending on a_1 we have at least three distinct odd integers from [n] such that their sum with a_1 give composite integers. Hence if $a_1 \ge 30$, we do not have extremal prime-sumset-free subsets of [n] of length 3.

Units digit of a_1	Three distinct odd integers
0	$5,\!15,\!25$
2	3,13,23
4	1,11,21
6	9,19,29
8	7,17,27

Table 4: Examples for Subcase (iii)

CASE II: A contains two even integers and an odd integer. Without loss of generality let a_1 be odd.

Subcase (i): $1 \le a_1 \le 11$. First let $a_2, a_3 \in \{2, 4, 6, \dots, 12\}$. In this case the only possibility of the set A for each a_1 is $\{3, 6, 12\}, \{5, 4, 10\}, \{7, 2, 8\}, \{9, 6, 12\}, \{11, 4, 10\}$. None

of the above subsets is an extremal prime-sumset-free subset because of the following primesumset-free subsets.

 $\{3, 6, 12, 9\}, \{5, 4, 10, 11\}, \{7, 2, 8, 13\}.$

Secondly, let a_2, a_3 be any even numbers of A not necessarily from the set $\{2, 4, \ldots, 12\}$ and the set A be distinct from the sets given in the above list: $\{3, 6, 12\}$, $\{5, 4, 10\}$, $\{7, 2, 8\}$, $\{9, 6, 12\}$, $\{11, 4, 10\}$. We have the following:

 $1 \in A$ and $A = \{1, 8, 14\}$ then A is not an extremal prime-sumset-free subset because $\{1, 8, 14, 7\}$ is a prime-sumset-free subset.

 $1 \in A$ and $A \neq \{1, 8, 14\} \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{8, 14\}$,

 $3 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{6, 12\}$,

- $5 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{4, 10\}$,
- $7 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{2, 8\}$,
- $9 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{6, 12\}$,
- $11 \in A \Rightarrow A \cup \{a\}$ is a prime-sumset-free subset for some $a \in \{4, 10\}$.

Consequently, A is not an extremal prime-sumset-free subset.

Subcase (ii): $13 \le a_1 \le 29$. In the list below, for each a_1 we provide at least three distinct even integers from [n] such that their sum with a_1 give composite integers. Hence if $13 \le a_1 \le 29$, we do not have extremal prime-sumset-free subsets of [n] of length 3.

List: $\{13, 2, 8, 12\}$, $\{15, 6, 10, 12\}$, $\{17, 4, 8, 10\}$, $\{19, 6, 8, 16\}$, $\{21, 4, 6, 14\}$, $\{23, 2, 4, 12\}$, $\{25, 2, 10, 20\}$, $\{27, 8, 18, 6\}$, $\{29, 4, 6, 16\}$.

Subcase (iii): $a_1 \ge 31$. Depending on a_1 we have at least three distinct even integers from [n] such that their sum with a_1 give composite integers. Hence if $a_1 \ge 31$, we do not have extremal prime-sumset-free subsets of [n] of length 3.

Units digit of a_1	Three distinct even integers
1	4,14,24
3	2,12,22
5	10,20,30
7	8,18,28
9	6,16,26

Table 5: Examples for Subcase (iii)

This completes the proof of the theorem.

Inspired by the above two theorems, we have the following:

Theorem 4. For each integer $k \ge 2$, there exists a n_k such that if $n \ge n_k$ then there does not exist any extremal prime-sumset-free subsets of [n] of length k.

One can consult [2] for definitions, notation and results used in the proof below.

Proof. Suppose that $A = \{a_1, a_2, \ldots, a_k\}$ be a prime-sumset-free subset of [n]. Clearly, by the definition of psfs we have that $a_i + a_j = m_{ij}$ is a composite integer for each $1 \le i, j \le k$. Let $1 < m_j^i < m_{ij}$ and $m_j^i | m_{ij}$ for each fixed $1 \le i \le k$ and for each $1 \le j \le k$. Let us consider the following k simultaneous congruences

$$x \equiv -a_1 \pmod{m_1^i}$$
$$x \equiv -a_2 \pmod{m_2^i}$$
$$\vdots$$
$$x \equiv -a_k \pmod{m_k^i}$$

for each $1 \leq i \leq k$. Each one of the k simultaneous congruences is consistent being a_i is the common solution for the *i*th simultaneous congruence for each $1 \leq i \leq k$. Set

$$a_{k+1}^i = a_i + t[m_1^i, m_2^i, \dots, m_k^i],$$

for each $1 \leq i \leq k$ and $t \geq 0$. We see that a_{k+1}^i is a solution of the *i*th simultaneous congruence and hence all $a_1 + a_{k+1}^i, a_2 + a_{k+1}^i, \ldots, a_k + a_{k+1}^i$ are composite integers for each $1 \leq i \leq k$. Choosing t minimum such that $a_{k+1}^i \notin \{a_1, a_2, \ldots, a_k\}$, we see that for $n \geq n_k = \max_i a_{k+1}^i := a_{k+1}$ we have all $a_1 + a_{k+1}, a_2 + a_{k+1}, \ldots, a_k + a_{k+1}$ are composite integers. Consequently, the set $\{a_1, a_2, \ldots, a_{k+1}\}$ is a prime-sumset-free subset of [n] and hence A is not an extremal prime-sumset-free subset of [n] of length k. This proves the theorem. \Box

3 Acknowledgments

The author is very much thankful to the anonymous referee for his/her useful comments/suggestions (especially for the proof of the last theorem) to make the paper in a better format.

References

- Y. G. Chen, Integer sequences avoiding prime pairwise sums, J. Integer Sequences, 11 (2008), Article 08.5.6.
- [2] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, 1991.

2000 Mathematics Subject Classification: Primary 11A41, Secondary 11B75, 05D05. *Keywords:* primes, sumsets, simultaneous congruences.

Received March 16 2012; revised version received June 1 2012. Published in *Journal of Integer Sequences*, June 12 2012.

Return to Journal of Integer Sequences home page.