On Lower Order Extremal Integral Sets Avoiding Prime Pairwise Sums

Ram Krishna Pandey
Department of Mathematics
Indian Institute of Technology, Patna
Patliputra Colony, Patna - 800013
India
ram@iitp.ac.in

Abstract

Let A be a subset of $\{1,2, \ldots, n\}$ such that the sum of no two distinct elements of A is a prime number. Such a subset is called a prime-sumset-free subset of $\{1,2, \ldots, n\}$. A prime-sumset-free subset is called an extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ if $A \cup\{a\}$ is not a prime-sumset-free subset for any $a \in\{1,2, \ldots, n\} \backslash A$. We prove that if $n \geq 10$ then there is no any extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order 2 and if $n \geq 13$ then there is no any extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order 3 . Moreover, we prove that for each integer $k \geq 2$, there exists a n_{k} such that if $n \geq n_{k}$ then there does not exist any extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of length k. Furthermore, for some small values of n, we give the orders of all extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ along with an example of each order, and we give all extremal prime-sumset-free subsets of $\{1,2, \ldots, n\}$ of orders 2 and 3 for $n \leq 13$.

1 Introduction

Let A be a subset of $\{1,2, \ldots, n\}$. Then a combinatorial problem posed by Chen [1] is to study the subsets A such that

$$
\begin{equation*}
(A \hat{+} A) \cap P=\emptyset, \tag{1}
\end{equation*}
$$

where $A \hat{+} A=\{a+b: a, b \in A, a \neq b\}$ and P is the set of all prime numbers. Such a set is called a prime-sumset-free subset of the set $\{1,2, \ldots, n\}$. If we replace the set P above by a given set T of positive integers then A is called a T-sumset-free set. Chen [1] determined
all prime-sumset-free subsets of $\{1,2, \ldots, n\}$ with the largest cardinality. Let the largest cardinality be U_{n}. Chen [1] proved the following theorem.

Theorem 1. For all $n \geq 1$ we have $U_{n}=\left\lfloor\frac{1}{2}(n+1)\right\rfloor$. Furthermore, if $A \subset\{1,2, \ldots, n\}$ is a prime-sumset-free set with $|A|=U_{n}$, then all elements of A have the same parity.

With this, the natural and more challenging question coming in mind is that what is the largest cardinality of $A \subset\{1,2, \ldots, n\}$ satisfying (1) when A contains elements of both parities?

A prime-sumset-free subset A of $\{1,2, \ldots, n\}$ is called an extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ if $A \cup\{a\}$ is not a prime-sumset-free subset for any $a \in\{1,2, \ldots, n\} \backslash A$. Let $\left(P F_{k}(n)\right)_{k \geq 1}$ be the sequence of cardinalities of all the extremal prime-sumset-free subsets of $\{1,2, \ldots, n\}$ with $P F_{1}(n)>P F_{2}(n)>\cdots$. Then by the theorem of Chen we have $P F_{1}(n)=U_{n}=\left\lfloor\frac{1}{2}(n+1)\right\rfloor$.

In this paper we provide the sequence $\left(P F_{k}(n)\right)$ for a few small values of n and we study the finite monotonic strictly decreasing sequence $P F_{k}(n)$ with the largest term $\left\lfloor\frac{1}{2}(n+1)\right\rfloor$ and the smallest term 2 (if it exists) from the lower end of the sequence for all sufficiently large values of n. In particular, we show that if $n \geq 10$ then there is no extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order 2 and if $n \geq 13$ then there is no extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order 3 . That is in the case $n \geq 10$ the sequence $P F_{k}(n)$ will not take the value 2 and hence will terminate at 3 (if it exists) and in the case $n \geq 13$ the sequence $P F_{k}(n)$ will not take the value 3 and hence will terminate at 4 (if it exists) as $P F_{k}(n) \neq 1$ for any n. We also prove that for each integer $k \geq 2$, there exists a n_{k} such that if $n \geq n_{k}$ then there does not exist any extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of length k.

2 Main Results

Sometimes we use $[n]$ for $\{1,2, \ldots, n\}$ and PSFS for prime-sumset-free subset in this section. Observe that any proper subset of an extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order l can not be an extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$. Thus if we have extremal prime-sumset-free subsets of $\{1,2, \ldots, n\}$ of both orders k and l where $k<l$ then the extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order k will not be a subset of the extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ of order l. In the table below we provide the sequence $\left(P F_{k}(n)\right)$ and an example of extremal prime-sumset-free subset of $[n]$ for each term of the sequence for all $1 \leq n \leq 14$.

n	Sequence $P F_{k}(n)$ with an extremal prime-sumset-free subset of $[n]$ for each term
1	not defined
2	not defined
3	$\left(P F_{k}(3)\right) \equiv(2) ;(\{1,3\})$
4	$\left(P F_{k}(4)\right) \equiv(2) ;(\{1,3\})$
5	$\left(P F_{k}(5)\right) \equiv(3,2) ;(\{1,3,5\},\{2,4\})$
6	$\left(P F_{k}(6)\right) \equiv(3,2) ;(\{1,3,5\},\{4,5\})$
7	$\left(P F_{k}(7)\right) \equiv(4,3,2) ;(\{1,3,5,7\},\{2,4,6\},\{4,5\})$
8	$\left(P F_{k}(8)\right) \equiv(4,3,2) ;(\{1,3,5,7\},\{2,7,8\},\{4,5\})$
9	$\left(P F_{k}(9)\right) \equiv(5,4,3,2) ;(\{1,3,5,7,9\},\{2,4,6,8\},\{2,7,8\},\{4,5\})$
10	$\left(P F_{k}(10)\right) \equiv(5,3) ;(\{1,3,5,7,9\},\{2,7,8\})$
11	$\left(P F_{k}(11)\right) \equiv(6,5,4,3) ;(\{1,3,5,7,9,11\},\{2,4,6,8,10\},\{4,5,10,11\},\{1,7,8\})$
12	$\left(P F_{k}(12)\right) \equiv(6,4,3) ;(\{1,3,5,7,9,11\},\{4,5,10,11\},\{1,7,8\})$
13	$\left(P F_{k}(13)\right) \equiv(7,6,4) ;(\{1,3,5,7,9,11,13\},\{2,4,6,8,10,12\},\{1,7,8,13\})$
14	$\left(P F_{k}(14)\right) \equiv(7,5,4) ;(\{1,3,5,7,9,11,13\},\{1,7,11,13,14\},\{3,9,12,13\})$

Table 1: $P F_{k}(n)$ and extremal-prime-sumset-free subset of $[n]$ for $1 \leq n \leq 14$

After having a look at the above table a natural question coming in mind is that for a given positive integer n does there exist an extremal prime-sumset-free subset of $[n]$ of each order l, where $2 \leq l<\left\lfloor\frac{1}{2}(n+1)\right\rfloor$? We shall see that if $n \geq 10$ then there is no extremal prime-sumset-free subset of [n] of order 2 and if $n \geq 13$ then there is no extremal prime-sumset-free subset of $[n]$ of order 3. Before we prove these results we give all extremal prime-sumset-free subset of $[n]$ of order 2 and 3 for each n where $1 \leq n \leq 13$ in the following table.

n	All extremal PSFSs of $[n]$ of order 2	All extremal PSFSs of $[n]$ of order 3
3	$\{1,3\}$	not defined
4	$\{1,3\},,\{2,4\}$	not defined
5	$\{2,4\},\{4,5\}$	$\{1,3,5\}$
6	$\{6,3\},\{4,5\}$	$\{1,3,5\},\{2,4,6\}$
7	$\{2,7\},\{6,3\},\{4,5\}$	$\{2,4,6\}$
8	$\{6,3\},\{4,5\}$	$\{1,7,8\},\{2,7,8\}$
9	$\{4,5\}$	$\{1,7,8\},\{2,7,8\},\{3,6,9\}$
10	not exists	$\{1,7,8\},\{2,7,8\},\{3,6,9\},\{4,5,10\}$
11	not exists	$\{1,7,8\},\{2,7,8\},\{3,6,9\}$
12	not exists	$\{1,7,8\},\{2,7,8\}$
13	not exists	not exists

Table 2: Extremal prime-sumset-free subset of [n] of orders 2 and 3 for $1 \leq n \leq 13$

Theorem 2. If $n \geq 10$ then there does not exist any extremal prime-sumset-free subset of
[n] of order 2.
Proof. The proof is by induction on n. If $n=10$ then there does not exist any extremal prime-sumset-free subset of [10] of order 2 . Indeed, we know that if $n \geq 6$ then an extremal prime-sumset-free subset of order 2 (if exists) will contain integers of opposite parity. Therefore, the only possibilities of two elements subsets of [10] to be an extremal prime-sumset-free subset are the following sets:

$$
\{1,8\},\{3,6\},\{5,4\},\{5,10\},\{7,2\},\{7,8\},\{9,6\}
$$

But none of the above sets is an extremal prime-sumset-free subset as each one is a subset of some prime-sumset-free subsets of order 3 given below.

$$
\{1,8,7\},\{3,6,9\},\{5,4,10\},\{7,2,8\}
$$

Hence the theorem is true for $n=10$. Now let the theorem is true for $k \geq 10$. Without loss of generality we can assume that k is odd. Take all subsets $\{k+1, a\}$ where a is odd and $1 \leq a \leq k$ such that $k+1+a$ is a composite integer. We shall show that there exists an integer t such that $t \in[k+1] \backslash\{k+1, a\}$ and both $k+1+t$ and $a+t$ are composite.

CASE I: $1 \leq a \leq k-1$. By induction the subset $\{k, a+1\}$ is not an extremal prime-sumset-free subset of $[k]$. Hence there exists an integer $l \in[k] \backslash\{k, a+1\}$ such that all $l+k, k+a+1$ and $a+1+l$ are composite integers. Now if l is odd then taking $t=l+1$ and if l is even then taking $t=l-1$, we see that $\{k+1, a, t\}$ is a prime-sumset-free subset of $[k+1]$. Hence the theorem is true in this case.

CASE II: $a=k$. The subset $\{k+1, a\}$ becomes $\{k+1, k\}$. In this case the integer t is given in the following table depending on k.

Units digit of k	t
1	4
3	2
5	10
7	8
9	6

Table 3: t as a function of k

This completes the proof of the theorem.
Theorem 3. If $n \geq 13$ then there does not exist any extremal prime-sumset-free subset of [n] of order 3.

Proof. Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a prime-sumset-free subset of $[n]$ of order 3 . We are required to show that A is not an extremal prime-sumset-free subset of $[n]$. If all elements of A are of same parity then clearly, A is not an extremal prime-sumset-free subset of $[n]$ as $n \geq 13$. So, let us assume that A contains elements of both parities.

CASE I: A contains two odd integers and an even integer. Without loss of generality let a_{1} be even.

Subcase (i): $2 \leq a_{1} \leq 10$. First let $a_{2}, a_{3} \in\{1,3,5, \ldots, 13\}$. In this case the only possibilities of the set A for each a_{1} is $\{2,7,13\},\{4,5,11\},\{6,3,9\},\{8,1,7\},\{8,1,13\}$, $\{8,7,13\},\{10,5,11\}$. None of the above subsets is an extremal prime-sumset-free subset because of the following prime-sumset-free subsets.

$$
\{2,7,13,8\},\{4,5,11,10\},\{6,3,9,12\},\{8,1,7,13\}
$$

Secondly, let a_{2}, a_{3} be any odd numbers in A not necessarily from the set $\{1,3,5, \ldots, 13\}$ and the set A be distinct from the sets given in the above list: $\{2,7,13\},\{4,5,11\},\{6,3,9\}$, $\{8,1,7\},\{8,1,13\},\{8,7,13\},\{10,5,11\}$. We have the following:
$2 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{7,13\}$,
$4 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{5,11\}$,
$6 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{3,9\}$,
$8 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{1,7,13\}$,
$10 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{5,11\}$.
Consequently, A is not an extremal prime-sumset-free subset. Thus we have seen that if $2 \leq a_{1} \leq 10$ then A is not an extremal prime-sumset-free subset.

Subcase (ii): $12 \leq a_{1} \leq 28$. In the list below, for each a_{1} we provide at least three distinct odd integers from $[n]$ such that their sum with a_{1} give composite integers. Hence if $12 \leq a_{1} \leq 28$, we do not have extremal prime-sumset-free subsets of [n] of length 3 .

List: $\{12,3,9,13\},\{14,1,7,11\},\{16,5,9,11\},\{18,3,7,9\},\{20,1,5,15\},\{22,3,5,13\}$, $\{24,1,3,11\},\{26,1,9,19\},\{28,5,7,17\}$.

Subcase (iii): $a_{1} \geq 30$. Depending on a_{1} we have at least three distinct odd integers from $[n]$ such that their sum with a_{1} give composite integers. Hence if $a_{1} \geq 30$, we do not have extremal prime-sumset-free subsets of $[n]$ of length 3 .

Units digit of a_{1}	Three distinct odd integers
0	$5,15,25$
2	$3,13,23$
4	$1,11,21$
6	$9,19,29$
8	$7,17,27$

Table 4: Examples for Subcase (iii)

CASE II: A contains two even integers and an odd integer. Without loss of generality let a_{1} be odd.

Subcase (i): $1 \leq a_{1} \leq 11$. First let $a_{2}, a_{3} \in\{2,4,6, \ldots, 12\}$. In this case the only possibility of the set A for each a_{1} is $\{3,6,12\},\{5,4,10\},\{7,2,8\},\{9,6,12\},\{11,4,10\}$. None
of the above subsets is an extremal prime-sumset-free subset because of the following prime-sumset-free subsets.

$$
\{3,6,12,9\},\{5,4,10,11\},\{7,2,8,13\}
$$

Secondly, let a_{2}, a_{3} be any even numbers of A not necessarily from the set $\{2,4, \ldots, 12\}$ and the set A be distinct from the sets given in the above list: $\{3,6,12\},\{5,4,10\},\{7,2,8\}$, $\{9,6,12\},\{11,4,10\}$. We have the following:
$1 \in A$ and $A=\{1,8,14\}$ then A is not an extremal prime-sumset-free subset because $\{1,8,14,7\}$ is a prime-sumset-free subset.
$1 \in A$ and $A \neq\{1,8,14\} \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{8,14\}$,
$3 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{6,12\}$,
$5 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{4,10\}$,
$7 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{2,8\}$,
$9 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{6,12\}$,
$11 \in A \Rightarrow A \cup\{a\}$ is a prime-sumset-free subset for some $a \in\{4,10\}$.
Consequently, A is not an extremal prime-sumset-free subset.
Subcase (ii): $13 \leq a_{1} \leq 29$. In the list below, for each a_{1} we provide at least three distinct even integers from $[n]$ such that their sum with a_{1} give composite integers. Hence if $13 \leq a_{1} \leq 29$, we do not have extremal prime-sumset-free subsets of $[n]$ of length 3 .

List: $\{13,2,8,12\},\{15,6,10,12\},\{17,4,8,10\},\{19,6,8,16\},\{21,4,6,14\},\{23,2,4,12\}$, $\{25,2,10,20\},\{27,8,18,6\},\{29,4,6,16\}$.

Subcase (iii): $a_{1} \geq 31$. Depending on a_{1} we have at least three distinct even integers from $[n]$ such that their sum with a_{1} give composite integers. Hence if $a_{1} \geq 31$, we do not have extremal prime-sumset-free subsets of $[n]$ of length 3 .

Units digit of a_{1}	Three distinct even integers
1	$4,14,24$
3	$2,12,22$
5	$10,20,30$
7	$8,18,28$
9	$6,16,26$

Table 5: Examples for Subcase (iii)
This completes the proof of the theorem.
Inspired by the above two theorems, we have the following:
Theorem 4. For each integer $k \geq 2$, there exists a n_{k} such that if $n \geq n_{k}$ then there does not exist any extremal prime-sumset-free subsets of $[n]$ of length k.

One can consult [2] for definitions, notation and results used in the proof below.

Proof. Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a prime-sumset-free subset of $[n]$. Clearly, by the definition of psfs we have that $a_{i}+a_{j}=m_{i j}$ is a composite integer for each $1 \leq i, j \leq k$. Let $1<m_{j}^{i}<m_{i j}$ and $m_{j}^{i} \mid m_{i j}$ for each fixed $1 \leq i \leq k$ and for each $1 \leq j \leq k$. Let us consider the following k simultaneous congruences

$$
\begin{array}{rll}
x & \equiv-a_{1} & \left(\bmod m_{1}^{i}\right) \\
x & \equiv-a_{2} & \left(\bmod m_{2}^{i}\right) \\
& \vdots & \\
x & \equiv-a_{k} & \left(\bmod m_{k}^{i}\right)
\end{array}
$$

for each $1 \leq i \leq k$. Each one of the k simultaneous congruences is consistent being a_{i} is the common solution for the i th simultaneous congruence for each $1 \leq i \leq k$. Set

$$
a_{k+1}^{i}=a_{i}+t\left[m_{1}^{i}, m_{2}^{i}, \ldots, m_{k}^{i}\right]
$$

for each $1 \leq i \leq k$ and $t \geq 0$. We see that a_{k+1}^{i} is a solution of the i th simultaneous congruence and hence all $a_{1}+a_{k+1}^{i}, a_{2}+a_{k+1}^{i}, \ldots, a_{k}+a_{k+1}^{i}$ are composite integers for each $1 \leq i \leq k$. Choosing t minimum such that $a_{k+1}^{i} \notin\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, we see that for $n \geq$ $n_{k}=\max _{i} a_{k+1}^{i}:=a_{k+1}$ we have all $a_{1}+a_{k+1}, a_{2}+a_{k+1}, \ldots, a_{k}+a_{k+1}$ are composite integers. Consequently, the set $\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}$ is a prime-sumset-free subset of $[n]$ and hence A is not an extremal prime-sumset-free subset of $[n]$ of length k. This proves the theorem.

3 Acknowledgments

The author is very much thankful to the anonymous referee for his/her useful comments/suggestions (especially for the proof of the last theorem) to make the paper in a better format.

References

[1] Y. G. Chen, Integer sequences avoiding prime pairwise sums, J. Integer Sequences, 11 (2008), Article 08.5.6.
[2] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley \& Sons, 1991.

2000 Mathematics Subject Classification: Primary 11A41, Secondary 11B75, 05D05.

Keywords: primes, sumsets, simultaneous congruences.

Received March 16 2012; revised version received June 1 2012. Published in Journal of Integer Sequences, June 122012.

Return to Journal of Integer Sequences home page.

