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Abstract

The number of ad-nilpotent ideals of the Borel subalgebra of the classical Lie algebra

of type Bn is determined using combinatorial arguments involving a generalization of

Dyck-paths. We also solve a similar problem for the untwisted affine Lie algebra of

type B̃n, where we instead enumerate a certain class of ideals called basic ideals. This

leads to an explicit formula for the number of basic ideals in B̃n, which gives rise to a

new integer sequence.

1 Introduction

Catalan numbers enumerate many objects appearing in various parts of mathematics, see
Stanley [11]. One algebraic example comes from Lie theory, where Catalan numbers enumer-
ate ad-nilpotnet ideals contained in the Borel subalgebra of sln(C), see for example Cellini
and Papi [5]. In the present paper we solve a similar enumeration problem and arrive at
a new integer sequence which gives the number of so called basic ideals in a certain family
of simple Lie algebras. More specifically, let g be a finite dimensional simple complex Lie
algebra with a fixed triangular decomposition

g = n− ⊕ h⊕ n+

and let b = h⊕n+ be the corresponding Borel subalgebra. An ideal i of b is called ad-nilpotent

provided that the adjoint action of each element of i on b is nilpotent. When g = sln(C),
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the set of strictly upper triangular matrices is a typical example of an ad-nilpotent ideal,
but there are many other such ideals contained in this one. This leads to the problem of
enumerating ad-nilpotent ideals, which has been done in various contexts. See for example
the work of Cellini and Papi [5, 6], Shi [9], Athanasiadis [1, 2] and Krattenthaler, Orsina, and
Papi [8]. For example, as mentioned above, when g = sln(C), the number of ad-nilpotent
ideals in b is given by the n’th Catalan number 1

n+1

(

2n
n

)

.
In the case when g is an untwisted affine Lie algebra (as defined in Section 2), any

ad-nilpotent ideal of b is contained in the center of g, and the latter is 1-dimensional, so
the corresponding enumeration problem becomes trivial. Baur and Mazorchuk [3] formulated
another problem, where instead of ad-nilpotent ideals, one considers the so called basic ideals

(see the definition in Section 4). The enumeration problem for basic ideals was solved for
the affine algebra s̃ln which led to a new integer sequence.

In the present paper we solve the enumeration problem for basic ideals for untwisted
affine Lie algebras of affine type B̃n. We prove the following statement.

Theorem 1. The number b̃n of basic ideals in the Lie algebra of type B̃n is given by the

formula

b̃n = (3n+ 5)22n−2 − 2(3n− 1)

(

2n− 2

n− 1

)

.

To prove Theorem 1 we establish a combinatorial scheme in which basic ideals for type B
are encoded using certain pairs of type B-analogues for Dyck-paths. This gives an explicit
but complicated formula for the number of basic ideals. The simplification of this expres-
sion to the simple form in Theorem 1 is a nontrivial combinatorial computation which was
performed by Christian Krattenthaler. The above simple formula, in particular, implies that
the sequence b̃n satisfies the following non-homogeneous linear recurrence relation.

b̃n − 8b̃n−1 + 16b̃n−2 =
24

n− 1

(

2n− 6

n− 2

)

, n ≥ 4.

We do not have any direct combinatorial explanation for this recursion.
The paper is organized as follows. Section 2 contains some of the established Lie theory

regarding ideals and the structure of affine untwisted Lie algebras. The concepts of basic
and combinatorial ideals are also introduced here following the definition of Bauer and Ma-
zorchuk [3]. In Section 3 we focus on finite dimensional Lie algebras of type B. We introduce
B-paths, an analogue for Dyck paths in type B, and show that the set of such paths bijec-
tively corresponds to the set of ad-nilpotent ideals in type B. We use this to show that the
number of ad-nilpotent ideals in the Lie algebra of type Bn equals

(

2n
n

)

, the type B Catalan
number, which agrees with a previous result [9, 5, 2]. After this we want to generalize these
ideas to the affine case. In Section 4 we study the root system structure of the affine Lie
algebras of type B and in Section 5 we show that there is a bijective correspondence between
basic ideals and a certain set of pairs of B-paths called admissible pairs. This reduces our
problem to an enumeration of the admissible pairs. Finally, in Section 6 we write down an
explicit formula for the number of admissible pairs by considering a number of cases. We
then proceed to simplify this expression using a number of combinatorial lemmas, and after
a lot of simplification we arrive at the short expression of Theorem 1.
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2 Preliminaries

Throughout this section, let g be a finite dimensional simple Lie algebra with Cartan sub-
algebra h. Let Φ denote the corresponding (finite) root system and let ∆ be a fixed base of
Φ. Then the Lie algebra is the direct sum of its root spaces g = h ⊕

(
⊕

α∈Φ gα
)

, moreover
these root spaces are all one-dimensional.

2.1 Presentation of ideals

The set Φ is ordered by defining α ≺ β whenever β − α ∈ spanZ+(∆), in other words,
whenever β − α is a sum of simple roots. The set of roots splits into two parts with respect
to this order. By defining Φ+ := {α ∈ Φ|α ≻ 0} and Φ− := {α ∈ Φ|α ≻ 0} and letting n−
and n+ be the sum of the corresponding root spaces, we have g = n−⊕h⊕n+ which is called
a triangular decomposition of g. The subalgebra b = h⊕ n+ is called the Borel subalgebra.
If i is a nonzero ideal of b it is h-stable, hence it is the direct sum of entire root spaces.
Now, if x ∈ gα ⊂ i and y ∈ gβ, then i also contains [x, y] which lies in gα+β so i ⊃ gα+β.
Continuing this inductively letting β vary over simple roots we see that in fact x ∈ gα ⊂ i

and β ≻ α implies i ⊃ gβ. This shows that ad-nilpotent ideals of the Borel-subalgebra
corresponds to coideals of the poset Φ+. This fact is used in Section 3 to enumerate the
number of ad-nilpotent ideals when the Lie algebra is of type B.

2.2 Affine Lie algebras

Given the Lie algebra g there is a natural way of constructing a corresponding infinite-
dimensional Lie algebra g̃. The algebra g̃ is obtained as follows. First consider the loop
algebra g⊗C[t, t−1] endowed with the bracket [x⊗ tm, y⊗ tn] = [x, y]⊗ tm+n. The universal
central extension of the Loop algebra is explicitly, (g ⊗ C[t, t−1]) ⊕ Cc where the bracket is
modified as follows:

[x⊗ tm + λc, y ⊗ tn + µc] = [x, y]⊗ tm+n +m(x|y)δm+n,0c

where (·|·) is the Killing form of gn. The algebra g̃ is now obtained by extending the latter by
a derivation d which acts as follows [d, (x⊗tm)] = m(x⊗tm) and [d, c] = 0. The resulting Lie
algebra g̃ is called the untwisted affine Kac-Moody algebra corresponding to g. The algebra
g̃ has a triangular decomposition g̃ = ñ− ⊕ h̃⊕ ñ+, where

ñ+ = Span({x⊗ 1|x ∈ n+} ∪ {x⊗ tk|x ∈ g, k > 0})

ñ− = Span({y ⊗ 1|y ∈ n−} ∪ {y ⊗ tk|y ∈ g, k < 0})

h̃ = Span({c, d} ∪ {h⊗ 1|h ∈ h}).

Define δ ∈ h̃∗ by δ(d) = 1, δ(c) = 0 and δ(h⊗ tk) = 0 for any h ∈ h, t ∈ Z. Then δ is a
root of g̃, called the indivisible positive imaginary root. For x ∈ gα we see that x ⊗ tk lies
in the root space g̃α+kδ (where we identify α ∈ h∗ with its trivial extension to h̃∗). Thus the
root system of g̃ is (∆+Zδ)∪Nδ ∪−Nδ, in particular the root system is infinite. If αmax is
the maximal root of Φ, then {δ − αmax} ∪∆ is a basis for the root system of g̃.

We shall need the following lemma regarding the ordering of the roots.
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Lemma 2. If α, β are positive roots of g and let αmax be the maximal root of g, then

δ − α ≻ β if and only if α + β ≺ αmax, and equality holds in the latter relation if and only

if δ − α covers β.

Proof. We have δ − α ≻ β if and only if α + β ≺ α0 + αmax. Writing each root of this
inequality in the base given above we see that the α0 coordinate is 0 on the left and 1 to
the right, hence this is equivalent to α+ β ≺ αmax. Moreover α+ β = αmax is equivalent to
δ − α = β + α0, in other words, δ − α covers β.

The corresponding Borel subalgebra b̃ = h̃ ⊕ ñ+ does not contain any nontrivial ad-
nilpotent ideals (outside the center Z(b) of b). For, if such an ideal i existed, containing
an element x ∈ b \ Z(b) we could commute it with positive root elements to obtain y ∈ i

lying in a root space corresponding to a positive root: y ∈ gα + kδ with k ≥ 0. If α ≻ 0 we
can commute further with a positive root vector from gδ−α to see that i includes g(k+1)δ. If
α ≺ 0, k is positive and by commuting with a positive root vector from g−α we see that i

includes gkδ. If α = 0 we have k > 0 and it is obvious that i includes gkδ. In any case, i
contains an element z belonging to an imaginary root space. But then ad z is clearly not
nilpotent, contradicting the existence of nontrivial ad-nilpotent ideals of b̃n.

2.3 Combinatorial and basic ideals

Lacking ad-nilpotent ideals we can instead consider a combinatorial analogue, called combi-

natorial ideals which were introduced by Bauer and Mazorchuk [3]. A combinatorial ideal
of b is an ideal i of b̃ contained in ñ+ which has finite codimension and is the union of entire
root spaces: i ∩ g̃α ∈ {{0}, g̃α} for each positive root α. For any combinatorial ideal i we
define supp(i), called the support of i, to be the set of positive roots whose root spaces are
are contained in i, that is, supp(i) = {α ∈ h̃∗|g̃α ⊂ i}.

The set of combinatorial ideal is infinite. This leads us to consider an equivalence rela-
tion on the set of combinatorial ideals by defining i =

⊕

α∈supp(i) gα to be equivalent to all

combinatorial ideals of form
⊕

α∈supp(i) gα+kδ for k ∈ Z. We define the finite subset D of

the root system by D := {δ} ∪ Φ+ ∪ (Φ− + δ). Note that D is precisely the principal order
ideal generated by δ. The combinatorial ideals whose support intersects D non trivially are
called basic ideals. One can easily show [3] that the set of basic ideals contains precisely
one element of each equivalence class of combinatorial ideals defined above. The set of basic
ideals is clearly finite as its elements can be identified with a subsets of D, and in this paper
we determine its size when g is a simple Lie algebra of type B and rank n, see Section 4 and
onward.

3 The simple Lie algebra of type B

3.1 Root system structure

Following the notation of Bourbaki [4], the root system of type Bn can be constructed in R
n

as follows. Let {ei}
n
i=1 be the standard orthogonal basis for R

n. For 1 ≤ i ≤ n − 1 define
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αi = ei − ei+1, and let αn = en. Then the (simple roots) α1, . . . , αn constitutes a base for a
root system of type Bn where the positive roots are given by

∑

j≤i≤k

αi, 1 ≤ j ≤ k ≤ n;
∑

j≤i≤k

αi +
∑

k+1≤i≤n

2αi, 1 ≤ j < k < n.

We identify each such root with the integer pair (r, s), such that r is the minimal value of i
for which the αi-coefficient of the root in the simple basis is non-zero, and s = r+h−1 where
h is the height of the root (the sum of its coefficients in the simple basis). For example, in
B7 we write (3, 10) for the root (0, 0, 1, 1, 2, 2, 2), and (2, 5) for (0, 1, 1, 1, 1, 0, 0).

Positive roots are partially ordered via

α ≺ β ⇐⇒ β − α is a Z≥0-linear combination of simple roots.

This order can of course be extended to all of h∗. It is easy to check that (r, s) ≺ (r̂, ŝ) if and
only if r̂ ≤ r and ŝ ≥ s. The (≺)-poset structure on positive roots can now be visualized in a
modified version of the Hasse-diagram. Consider a diagram consisting of rows and columns.
If (i, j) is a root then we write it in the i’th row (from top to bottom) and j’th column (from
left to right), in other words, we write (i, j) in the (i, j)’th position. Then ≺-greater roots
are always in the north and east directions.

Not all positions in the diagram will contain roots. We obviously have i ≥ 1 and j ≥ 1.
We must also have i ≤ j, since positive roots have positive height, and we must have
i ≤ 2n− j (compare the original expression of a general positive root). Thus, all roots lie in
a triangular scheme. For example, in B4 the positive roots are ordered as in Figure 1.

(1, 1) // (1, 2) // (1, 3) // (1, 4) // (1, 5) // (1, 6) // (1, 7)

(2, 2) //

OO

(2, 3) //

OO

(2, 4) //

OO

(2, 5) //

OO

(2, 6)

OO

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4)

OO

Figure 1: Positive roots in B4

Here α → β means that β covers α with respect to ≺, that is β is a minimal element of
the set {γ|α ≺ γ}. Thus we have α ≺ β if and only if there is a directed path from α to β.

Any ad-nilpotent ideal i in n+ can be decomposed as a direct sum of some root spaces
corresponding to positive roots. If i contains some nonzero x from a root space Lγ, it contains
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all of Lγ since the root spaces are one-dimensional. Successively commuting x with elements
from different root spaces Lαi

we can obtain elements from any root space Lγ′ where γ′ ≻ γ,
and hence i also contains all of these root spaces. This shows that an ad-nilpotent ideal in the
Borel subalgebra of Bn corresponds precisely to a coideal of the poset structure above (recall
that a coideal of a poset is subposet S such that α ∈ S and β ≥ α implies β ∈ S). Since all
the arrows above point either up or right, such a subset can be specified by choosing a path
in the diagram, going in the south and east directions partitioning the roots. Counting the
ad-nilpotent ideals then corresponds to counting the number of such paths.

3.2 B-paths

To formalize this idea of a path, for the algebra of type Bn, consider a (2n− 1)×n rectangle
in R

2 with the north-west corner in (0, 0) and the south-east corner in (2n − 1,−n). This
rectangle contains the triangular shape above in the natural way if we think of the roots
as 1 × 1-boxes in the Z × Z-lattice. For example, in the case B4 we have the diagram in
Figure 2.

(0,0)

(7,-4)

Figure 2: Diagram for B4

Definition 3. A Bn-path or just a B-path if n is understood, is a word of length 2n on the
alphabet {r, f} such that each prefix of this word contains at least as many r’s as f ’s.

Note that this generalizes what is known as a Dyck-path. A Dyck-path is a B-path with
an equal number of f ’s and r’s, see Grimaldi [7].

Example 4. rrffrrfrrr is a B5-path and rrrrrrrr is a B4-path, but rrfrffrffrrrrr is
not a B7-path since the first 9 letters contain more f ’s than r’s.

We shall sometimes use the notation rrrrr = r5 and so on.
Let gn be a Lie algebra of type Bn and let bn be a Borel subalgebra in gn.

Proposition 5. There is a 1-1 correspondence between the set of all ad-nilpotent ideals of

bn and the set of all Bn-paths.
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Proof. Let i be an ad-nilpotent ideal in bn. Consider the (2n − 1) × n rectangular picture
described above in which boxes are identified with positive roots of gn. If i contains a root
element for some root α, the fact that i is an ideal implies that i contains root elements for
all roots β such that β ≻ α. From this it follows that there is a unique path p = p(i) which
has the following properties.

• p starts at (−1, 0);

• each step of p goes to the right (along (1, 0)) or down (along (0,−1));

• p terminates at a point of the form (2n− 1− x,−x), x ∈ {0, 1, . . . , n};

• p separates all boxes corresponding to elements of i from all other boxes.

Substituting each (1, 0)-step in p with r and each (0,−1)-step in p with f , we obtain a
Bn-path.

Conversely, given a Bn-path we make the reverse substitution and obtain a path satisfying
the first three conditions above. It is easy to see that the linear span of root elements
corresponding to the roots lying to the northeast of this path is an ad-nilpotent ideal of bn.
The claim follows.

Here is an explicit example in type B4. The B4-path rrrfrfrr is drawn below; it corre-
sponds to the ideal spanned by the root spaces of the roots (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),
(2, 4), (2, 5) and (2, 6). Also note that any pair of (non-zero) elements from the root spaces
of the roots (1, 3) and (2, 4) generates this ideal.

Figure 3: An example of the B4-path rrrfrfrr

The path rfrfrfrf gives the improper coideal containing all the roots, i.e. the one
corresponding to the Borel subalgebra. The path rrrrrrrr corresponds to the empty coideal
containing no roots.

We can now state a corollary regarding the number of ad-nilpotent ideals in Bn. This
result was proved in a similar way (but less detailed) by Krattenthaler, Orsina, and Papi [8].

Corollary 6. The number of Bn-paths, hence also the number of ad-nilpotent ideals in bn,

equals
(

2n
n

)

.
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Proof. A Bn-path can be extended to a Bn+1-path by appending two letters on the right, and
it is clear that any Bn+1-path can be obtained this way. There are four possible choices of
what to append, namely rr, rf , fr, ff and each of these gives a Bn+1-path, except when the
original word consisted of as many f ’s as r’s — in this case fr and ff violate the condition
of being a B-path (compare with the figure below where the top path rrrrrfrr may be
completed in 4 ways, but the bottom path rfrrrfff in only 2 ways, when n increases from
4 to 5).

Figure 4: Two paths

A Bn-path where there are an equal number of f ’s and r’s is precisely a Dyck-path of
semilength n, and there are 1

n+1

(

2n
n

)

of these (see for example Grimaldi [7]).

Assuming we have
(

2n
n

)

Bn-paths, the number of Bn+1-paths is thus given by

4

(

2n

n

)

−
2

n+ 1

(

2n

n

)

=

(

2(n+ 1)

n+ 1

)

.

Hence, by induction, the proof is complete once we note that it is true for B2, and it is easy
to check that we have precisely

(

4
2

)

= 6 paths then. This completes the proof.

4 Root system structure in Affine type B̃n

To increase readability we shall sometimes identify a root system with its type. Recall that
ad-nilpotent ideals in the Borel algebra for type Bn were uniquely determined by the coideals
of the poset of positive roots. Both Bn and B̃n are partially ordered with respect to the order
≺ defined with respect to the corresponding sets of simple roots.

Let α1, . . . , αn be the base of Bn as in Section 3 and let δ ∈ B̃n be the indivisible positive
imaginary root. Let αmax be the maximal root in Bn and define α0 = δ − αmax. Then
α0, α1, . . . , αn is a base for B̃n. Let D1 = {δ}, let D2 be the set of positive roots of Bn, and
let D3 be the set of roots of form δ+γ where γ is a negative root of Bn. These three sets are
disjoint, and we define D := D1 ∪D2 ∪D3 as in Section 2. The positive roots of B̃n are the
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roots of form d+ kδ for d ∈ D, k ≥ 0, and the negative roots correspond to k < 0 (except 0
which is not a root at all).

We now describe the poset structure of D in terms of its partition above. We have
D1 = {δ} and δ is the maximum element of the poset D. D2 is the set of positive roots of
Bn which is fully embedded into D as a poset. Thus the poset structure on D2 is precisely
as in Section 3. D3 consists of roots of form δ − α where α is a positive root of Bn.
These are ordered in the reversed way, since α ≺ β ⇔ δ − α ≻ δ − β. The roots of D3

can be organized into a digram similarly to how we organized positive roots of Bn but
reflected with respect to the horizontal line. More explicitly, in the position (i, j) we write
δ − (n − i + 1, 2n − j) whenever (n − i + 1, 2n − j) is a positive root. Then for î ≤ i and
ĵ ≥ j, δ − (n− î+ 1, 2n− ĵ) ≻ δ − (n− i+ 1, 2n− j), so greater elements are again in the
north and east directions. Putting the diagrams D2 and D3 together we obtain a diagram
which is illustrated below in the case n = 4.

δ − (4, 4)

δ − (3, 5) // δ − (3, 4) //

OO

δ − (3, 3)

δ − (2, 6) // δ − (2, 5) //

OO

δ − (2, 4) //

OO

δ − (2, 3) //

OO

δ − (2, 2)

δ − (1, 7) // δ − (1, 6) //

OO

δ − (1, 5) //

OO

δ − (1, 4) //

OO

δ − (1, 3) //

OO

δ − (1, 2) //

OO

δ − (1, 1)

(1, 1) // (1, 2) // (1, 3) // (1, 4) // (1, 5) // (1, 6) // (1, 7)

(2, 2) //

OO

(2, 3) //

OO

(2, 4) //

OO

(2, 5) //

OO

(2, 6)

OO

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4)

OO

Figure 5: D2 and D3

However, we have yet to consider ≺-relations betweenD2 andD3 in the diagram. Because
of the α0-coordinate, a root in the upper part can not be ≺-smaller than a root in the lower
part. Applying Lemma 2 we obtain the following result which specifies precisely when a root
in the lower part is ≺-smaller than a root in the upper part.

Corollary 7. For i > 1 we have (i, j) ≺ δ − (̂i, ĵ) if and only if ĵ ≤ 2n − j, while (1, j) ≺
δ − (̂i, ĵ) if and only if ĵ ≤ 2n− j and î > 1.

Let us translate this result to our diagram above. Since the (i, j)’th position in the upper
part contains the root δ− (n− i+1, 2n− j), any element in the j’th column (except the one
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in the first row) at the lower part is ≺-smaller than all elements in the j’th column in the
upper part. The root (1, j) in the first row and j’th column is ≺-smaller than all elements in
the j’th column above, except for the one in the bottom row. For example, our B̃4 diagram
is now completed as follows.

δ − (4, 4)

δ − (3, 5) // δ − (3, 4) //

OO

δ − (3, 3)

δ − (2, 6) // δ − (2, 5) //

OO

δ − (2, 4) //

OO

δ − (2, 3) //

OO

δ − (2, 2)

δ − (1, 7) // δ − (1, 6) //

OO

δ − (1, 5) //

OO

δ − (1, 4) //

OO

δ − (1, 3) //

OO

δ − (1, 2) //

OO

δ − (1, 1)

(1, 1) // (1, 2) //

KK

(1, 3) //

KK

(1, 4) //

KK

(1, 5) //

KK

(1, 6) //

KK

(1, 7)

(2, 2) //

OO

SS

(2, 3) //

OO

SS

(2, 4) //

OO

SS

(2, 5) //

OO

SS

(2, 6)

OO

SS

(3, 3) //

OO

(3, 4) //

OO

(3, 5)

OO

(4, 4)

OO

Figure 6: Completed B̃4 diagram

Here again, a root is ≺-smaller than another root if and only if there is a path of arrows
from the first one to the second one. Note that the top row of the bottom part is linked to
the second to bottom row in the upper part and vice versa.

Our goal is now the express the number of coideals in such a poset (for an arbitrary n)
in terms of pairs of paths. To this end, construct again a rectangle in R

2, this time with the
northwest corner in (0, n + 1) and the southeast corner in (2n− 1,−n), where 1× 1-blocks
correspond to roots of D \ {δ}. The rectangle contains the two triangles in a natural way as
illustrated below in the case n = 4.

We have drawn two paths in the picture, a red one and a blue one. These paths together
specify a coideal of the poset in the following way: we take all roots corresponding to boxes
to the northeast of the blue path together with all roots corresponding to boxes from the
lower triangle to the northeast of the red path. Every coideal can be obtained this way, but
the converse is not true, some choices of paths do not correspond to coideals. For example,
in the above diagram, since the red path specifies that the root in box marked by (1) belongs
to the coideal, the root in the box marked by (2) in the top triangle should be in the coideal
as well. Thus the blue path can not be taken “too high” given the red path. The choice in
the picture above indeed does corresponds to a coideal. A pair of paths which do correspond
to a coideal will be called an admissible pair of paths.
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(1)

(2)

Figure 7: Coideal of a poset

5 Admissible pairs of paths

We now formalize the correspondence between basic ideals in bn and admissible pairs of
Bn-paths by generalizing what was done in Proposition 5.

Let i be a basic ideal in bn. Let Di := D∩supp(i) where D = D1∪D2∪D3 as in Section 4.
Then Di = (D1 ∩ supp(i)) ∪ (D2 ∩ supp(i)) ∪ (D3 ∩ supp(i)). Since i is assumed to be basic,
and δ is the maximum element in the poset D, we have D1 ∩ supp(i) = {δ} ∩ supp(i) = {δ}.
So the sets D2 ∩ supp(i) and D3 ∩ supp(i) determine the basic ideal. Now, consider again
the geometric scheme discussed above in which we have a rectangle in R

2 with northwest
corner in (0, n + 1) and the southeast corner in (2n − 1,−n) which contains 1 × 1-boxes
corresponding to elements of D\{δ}. The basic ideal i corresponds to a subset of such boxes
(the empty subset in case supp(i) ∩D = {δ}). By the same arguments as in Proposition 5
it follows that there exists a unique pair of paths (p, q) which has the following properties.

• p starts at (−1, 0);

• each step of p goes to the right (along (1, 0)) or down (along (0,−1));

• p terminates at a point of the form (2n− 1− x,−x), x ∈ {0, 1, . . . , n};

• p separates all boxes corresponding to elements of D2∩ supp(i) from boxes correspond-
ing to elements of D2 \ supp(i).

• q starts at (2n, 1);
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• each step of q goes to the left (along (−1, 0)) or up (along (0, 1));

• q terminates at a point of the form (y, y + 1), y ∈ {0, 1, . . . , n};

• q separates all boxes corresponding to elements of D3∩ supp(i) from boxes correspond-
ing to elements of D3 \ supp(i).

By substituting each (1, 0)-step in p with r and each (0,−1)-step in p with f we obtain
a Bn-path p(i), and by substituting each (−1, 0)-step in q with r and each (0, 1)-step in q

with f we obtain another Bn-path q(i). Thus, with the basic ideal i we have associated a
pair of Bn-paths (p(i), q(i)). It is also clear that different basic ideals give rise to different
pairs of paths.

However, as mentioned before, not every pair (p, q) corresponds to a basic ideal. All
pairs of the form (p(i), q(i)) for some basic ideal i are called admissible. For example, the
pair (rrrfrfrr, rrrrrrff) is admissible; it is precisely the pair from the previous picture.

We now specify the conditions for a pair (p, q) of Bn-paths to be admissible.
For 1 ≤ i < j ≤ 2n define Bn(i, j) as the set of all Bn-paths in which the first and

the second occurrences of f (reading the word from left to right) are at the positions i and
j. Also, for 1 ≤ i ≤ 2n let Bn(i) be the set of paths where the first occurrence of f is at
position i. For example rrrfrfff ∈ B4(4, 6) ⊂ B4(4) and rrrfff ∈ B3(4, 5) ⊂ B3(4).
Note that Bn paths also are defined for n = 1, and we have |B1(2)| = |B1(3)| = 1. We
shall also abuse notation by defining {rr · · · rr} = Bn(2n+ 1), that is, if a path contains no
f , its first f can be thought of to be one step after the last letter of the path. Similarly,
write {rr · · · rr} = Bn(2n + 1, 2n + 2) and rr · · · rfr · · · rr ∈ Bn(k, 2n + 1) (here the only
occurrence of f is at place k).

Using the notation above we can state the following criterion for a pair of Bn-paths (p, q)
to be admissible.

Proposition 8. Let p ∈ Bn(a, b) where 3 ≤ a < b ≤ 2n. Then (p, q) is an admissible pair

of paths if and only if q ∈ Bn(i, j) where i ≥ 2n+ 4− b and j ≥ 2n+ 4− a.

Proof. Let 3 ≤ a < b ≤ 2n and p ∈ Bn(a, b). Realize (p, q) as a pair of paths in the
diagram described above. By Proposition 5, the path p specifies a coideal of the poset D2

and q specifies a coideal of the poset D3, so we need only consider ≺-arrows between the
two triangles. Such arrows originate from the two upper rows of the lower diagram. The
root corresponding to the box whose northwest corner is in (a − 2, 0) is in the coideal, and
it (≺)-covers the root corresponding to the box with northwest corner in (a − 2, 3), so this
latter root must also belong to the coideal. Similarly, since the root corresponding to the
box with northwest corner (b − 3,−1) is in the coideal, the root corresponding to the box
with northwest corner in (b − 3, 2) must also be in the coideal. Thus, for p as above, (p, q)
is admissible if and only if the two boxes with northwest corners (a − 2, 3) and (b − 3, 2)
respectively lie to the northwest of the path q. This is equivalent to q ∈ Bn(i, j) with
i ≥ 2n+ 4− b and j ≥ 2n+ 4− a.

We illustrate the proposition above with an example.
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Example 9. Let n = 6 and let p = rrrrfrrfrffr ∈ B6(5, 8). The path p is drawn in red
in the bottom triangle of the following picture.

(1)

(1’)

(2)

(2’)

Figure 8: A pair of paths

The box marked by (1) is linked to the box marked (1′) linked via the ≺-relation, and the
box marked by (2) is linked to the box marked (2′) linked via the ≺-relation. Hence q must
be chosen such that the boxes marked (1′) and (2′) are both to the northeast of the path q.
In other words, q ∈ B6(i, j) where i ≥ 2n+4− b = 8 and j ≥ 2n+4− a = 11. The smallest
coideal allowed for this choice of the path p is of course given by q = (rrrrrrrfrrff), and
the largest ideal corresponds to when q = rrrrrrrrrrrr. All paths “between” these also give
admissible pairs (p, q). One such choice, q = rrrrrrrrfrrr, is drawn in blue color in the
picture.

Corollary 10. For p ∈ Bn(a, b) where 3 ≤ a < b ≤ 2n, the number of q’s such that (p, q) is
admissible is given by

∑

i≥2n+4−b

∑

j≥2n+4−a

|Bn(i, j)|.
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Comparing with the picture of the poset though, we note that the argument above does
not make sense when a = 2 or when b = 2n+ 1, so unfortunately we need to consider a few
special cases as well.

6 Counting paths

In this section we prove Theorem 1. We start with the following lemma.

Lemma 11. For n ≥ 2 and 2 ≤ i < j ≤ 2n+ 1 we have

|Bn(i, j)| = |Bn−1(j − 2)|.

Proof. For such i, j and n, define a map φ : Bn(i, j) → Bn−1(j − 2) which just deletes the
first (leftmost) r and the first f from a given path. It is easy to check that φ(p) ∈ Bn−1(j−2)
and that φ is a bijection (its inverse just appends an r to the left and inserts an f at position
i). Hence the sets have the same cardinality.

The numbers |Bn(i)| are given explicitly by the following lemma.

Lemma 12. For n ≥ 2 and 1 ≤ i ≤ 2n we have

|Bn(i)| =























n−1
∑

k=1

2k

(

(

2n− i− k − 1

n− i

)

−

(

2n− i− k − 1

n− i− k

)

)

, if i ≤ n;

22n−i, if i > n.

Proof. Each path of Bn(i) can be specified by first choosing a Dyck-path starting with ri−1f ,
and then replacing its tail consisting of some number of f ’s by any sequence of r and f of
the same length. Baur and Mazorchuk [3, Proposition 13] showed that the number of Dyck-
paths of semilength n with the first peak at height i and the last peak at height k is given
by the expression

(

2n− i− k − 2

n− i− 1

)

−

(

2n− i− k − 2

n− i− k − 1

)

.

Since a Dyck-path having the last peak at height k ends with fk, it gives rise to 2k possible
B-paths. Summing over k we obtain the number of all such B-paths. When i > n, this
argument degenerates, but a path starting with ri−1f with i > n can clearly be completed
by choosing the remaining symbols arbitrarily, which gives 22n−i possibilities. Here is a
geometric illustration.
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Figure 9: Modication of the Dyck path rfrrrfrfff

The red path in Figure 9 corresponds to the Dyck-path rfrrrfrfff . It can be modified
to a B-path by replacing the three f ’s at the end by any three letter word on {r, f}. There
are 23 such choices, the choice rfr gives the B-path rfrrrfrrfr which is displayed as a
dashed path in the figure.

To proceed we need a number of lemmas.

6.1 Lemmata

Lemma 13. For integers n ≥ 0 we have

n
∑

k=0

k2n−k = 2n+1 − n− 2.

Proof. Induction on n.

Lemma 14. For integers n ≥ 0 we have

n
∑

k=0

k22n−k = 6 · 2n − n2 − 4n− 6.

Proof. Induction on n.

Lemma 15. For integers 0 ≤ m ≤ n we have

n
∑

s=m

(

s

m

)

=

(

n+ 1

m+ 1

)

.

Proof. This follows from Pascal’s rule.

Lemma 16. For all positive integers A and B with A ≥ B, we have

A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=
A−B
∑

s=0

(

A+ 1

s

)

.
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Proof. We first convert the sum on the left into standard hypergeometric notation, as given
by

pFq

[

a1, . . . , ap
b1, . . . , bq

; z

]

=
∞
∑

ℓ=0

(a1)ℓ, . . . , (ap)ℓ
ℓ!(b1)ℓ, . . . , (bq)ℓ

zℓ,

where the Pochhammer symbol (α)ℓ is defined by

(α)ℓ := α(α + 1) · · · (α + ℓ− 1)

for ℓ ≥ 1, and (α)0 := 1.
In this notation we have

A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=

(

A

B

)

2F1

[

1,−A+ B

−A
; 2

]

.

We now apply the following transformation formula for hypergeometric functions, see
Slater [10, (1.8.10)].

2F1

[

a,−N

c
; z

]

= (1− z)N
(a)N
(c)N

2F1

[

−N, c− a

1− a−N
;

1

1− z

]

,

where N is a nonnegative integer.
Choosing a = 1 + ε, N = A−B, c = −A+ ε and z = 2 gives the formula

2F1

[

1,−A+ B

−A
; 2

]

= (−1)A−B lim
ε→0

(1 + ε)A−B

(−A+ ε)A−B
2F1

[

−A+ B,−A− 1
−A+ B − ε

;−1

]

.

Applying this formula to our previous expression we obtain

A−B
∑

ℓ=0

2ℓ
(

A− ℓ

B

)

=

(

A

B

)

lim
ε→0

(1 + ε)A−B

(B + 1− ε)A−B
2F1

[

−A+ B,−A− 1
−A+ B − ε

;−1

]

=
A−B
∑

s=0

(−A− 1)s
s!

(−1)s

=
A−B
∑

s=0

(

A+ 1

s

)

.

We are now ready to prove Theorem 1. The proof will occupy the remainder of the paper,
so we shall divide it into a number of parts.

Layout of the proof: The number b̃n equals the number of admissible pairs of Bn-paths.
We shall count these by counting the numbers of admissible pairs (p, q) where p ∈ B(a, b)
and q ∈ B(i, j) and then taking the sum over all relevant such integer quadruples (a, b, i, j).
We partition these quadruples into four disjoint classes and we proceed by separately com-
puting the number of admissible pairs belonging to each class. The rest of the proof is a
simplification of the obtained expression.

16



6.2 Case I

Consider those (a, b, i, j) where a ≥ 3, 4 ≤ b ≤ 2n and i ≤ 2n + 1. This is the most general
case. For each such a and b, we have |Bn(a, b)| = |Bn−1(b − 2)| choices for p, and for
each such choice we choose j between (2n + 4− a) and 2n + 1, and for such a, b, j we have
(b+ j − 2n− 4) ways to choose i, and then |Bn(i, j)| = |Bn−1(j − 2)| ways to complete the
path. So for this case, the number of admissible paths can be written

s1 =
2n
∑

b=4

|Bn−1(b− 2)|
b−1
∑

a=3

2n+1
∑

j=2n+4−a

(b+ j − 2n− 4)|Bn−1(j − 2)|.

Here is an attempt of illustration: when n = 4, the p’s for which the number of (p, q) are
counted in this case are all drawn on top of each other in the picture below.

Figure 10: Case I

6.3 Case II

Next consider the case when a ≥ 3, b = 2n+1 and i ≤ 2n+1, that is, the case when p only
contains one f . The path p is then determined by the choice of a, and the path q can be
chosen as in Case I, except that there are now less restriction on i: any number 2 ≤ i ≤ j−1
will do, so there are (j − 2) choices.

s2 =
2n
∑

a=3

2n+1
∑

j=2n+4−a

(j − 2)|Bn−1(j − 2)|.

Again, an illustration for n = 4:
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Figure 11: Case II

6.4 Case III

Next consider the case when a = 2, b ≤ 2n and i ≤ 2n+ 1 (which corresponds to the paths
p starting with rf). When b is chosen, and the number of p is counted, the possibilities for
q are very restricted. We have one choice for j, and (b− 3) choices for i, that is

s3 =
2n
∑

b=4

|Bn−1(b− 2)|(b− 3).

This is illustrated by the following picture.

Figure 12: Case III

6.5 Case IV

This case considers all remaining admissible pairs of paths. When a = 2, b = 2n + 1 and
i ≤ 2n + 1, the path p is fixed and q is determined by its parameter i for which there are
(2n− 1) choices.

Everything up to now has been restricted by the condition i ≤ 2n + 1. It remains to
consider the case when q = rr · · · rr. In this case we have

(

2n
n

)

possibilities for p.

Similarly, we have to consider the case p = rr · · · rr, where we also have
(

2n
n

)

possibilities
for q. Here the single case (p, q) = (rr · · · rr, rr · · · rr) has to be subtracted though, in order
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not to count it twice.

s4 = (2n− 1) +

(

2n

n

)

+

(

2n

n

)

− 1.

6.6 Simplification of the total sum

All in all, in summing up we have b̃n = s1 + s2 + s3 + s4, or explicitly

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|
b−1
∑

a=3

2n+1
∑

j=2n+4−a

(b+ j − 2n− 4)|Bn−1(j − 2)|

+
2n
∑

a=3

2n+1
∑

j=2n+4−a

(j − 2)|Bn−1(j − 2)|

+
2n
∑

b=4

|Bn−1(b− 2)|(b− 3)

+ 2

(

2n

n

)

+ (2n− 2).

In the first and second term (row) the variable a only determines the index of a sum, so
we can eliminate this variable.

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|
2n+1
∑

j=2n−b+5

(b+ j − 2n− 4)2|Bn−1(j − 2)|

+
2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

+
2n
∑

b=4

|Bn−1(b− 2)|(b− 3)

+ 2

(

2n

n

)

+ (2n− 2).

We next replace j by j−2n+ b−3 as index variable in the first expression, and the third
and first terms are factored together. This gives

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3) +
b−2
∑

j=2

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ 2

(

2n

n

)

+ (2n− 2).
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In the sum going from j = 2 to b− 2 we can sum from 1 instead since the new first term
will be 0. The last term is (b− 3)2, and (b− 3)2 + (b− 3) = (b− 3)(b− 2) so

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n+1
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ 2

(

2n

n

)

+ (2n− 2).

Similarly we take out the last term of the last sum and write

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|

(

(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+

(

2n
∑

j=4

(j − 3)(j − 2)|Bn−1(j − 2)|

)

+ (2n− 2)(2n− 1) + 2

(

2n

n

)

+ (2n− 2).

Now the last sum over j can be absorbed into the first term, and we can factor two terms
at the end to obtain

b̃n =
2n
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+ 4n(n− 1) + 2

(

2n

n

)

.

Next we want to apply Lemma 12 to rewrite the functions B in a more explicit form.
Since B is a piecewise defined function, we first split up our sums in the corresponding way.

b̃n =
n+1
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+
2n
∑

b=n+2

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

+ 4n(n− 1) + 2

(

2n

n

)

=
n+1
∑

b=4

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)
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+
2n
∑

b=n+2

|Bn−1(b− 2)|

(

2(b− 3)(b− 2) +

( b−n−2
∑

j=1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

+
b−3
∑

j=b−n−1

(j − 1)2|Bn−1(j + 2n− b+ 1)|

)

)

+ 4n(n− 1) + 2

(

2n

n

)

.

Now the sums are partitioned properly and we can apply Lemma 12. To avoid using a lot
of binomial coefficients we temporarily introduce the notation

D(n, i, j) :=

(

2n− i− j − 2

n− i− 1

)

−

(

2n− i− j − 2

n− i− j − 1

)

.

Lemma 12 now gives

b̃n =
n+1
∑

b=4

n−2
∑

k=1

2kD(n− 1, b− 3, k)

(

2(b− 3)(b− 2) +
b−3
∑

j=1

(j − 1)22b−j−3

)

+
2n
∑

b=n+2

22n−b

(

2(b− 3)(b− 2) +

( b−n−2
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, 2n+ j − b, k)

+
b−3
∑

j=b−n−1

(j − 1)22b−j−3

)

)

+ 4n(n− 1) + 2

(

2n

n

)

Changing summation variables such that both sums over b goes up to n− 2 we obtain

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)

(

2b(b+ 1) +
b
∑

j=1

(j − 1)22b−j

)

+
n−2
∑

b=0

2n−b−2

(

2(b+ n− 1)(b+ n) +

( b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

+
b+n−1
∑

j=b+1

(j − 1)22b+n−j−1

)

)

+ 4n(n− 1) + 2

(

2n

n

)

.
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Using Lemma 14 (and changing variables) we simplify the following two expressions:

b
∑

j=1

(j − 1)22b−j = 3 · 2b − b2 − 2b− 3

b+n−1
∑

j=b+1

(j − 1)22b+n−j−1 = 2n−1(b2 + 2b+ 3)− n2 − b2 − 2bn− 2.

Inserting this into our expression for b̃n we have

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

2(b+ n− 1)(b+ n) +

( b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

+ 2n−1(b2 + 2b+ 3)− n2 − b2 − 2bn− 2

)

)

+ 4n(n− 1) + 2

(

2n

n

)

.

This can be rewritten as

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

)

+
n−2
∑

b=0

(

22n−b−3(b2 + 2b+ 3) + 2n−b−2(n2 + b2 + 2bn− 2b− 2n− 2)
)

+ 4n(n− 1) + 2

(

2n

n

)

.

Here the last sum over b equals 22n+1 − 2n(n+ 3)− 4n(n− 1) which is easily proved by
application of Lemma 13 and Lemma 14. Canceling the term 4n(n− 1) we have
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b̃n =
n−2
∑

b=1

n−2
∑

k=1

2kD(n− 1, b, k)(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2kD(n− 1, n+ j − b− 2, k)

)

+ 22n+1 − 2n(n+ 3) + 2

(

2n

n

)

.

Expanding our function D we more explicitly have

b̃n =
n−2
∑

b=1

n−2
∑

k=1

2k
((

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− b− k − 2

))

(3 · 2b + b2 − 3)

+
n−2
∑

b=0

2n−b−2

(

b
∑

j=1

(j − 1)2
n−2
∑

k=1

2k
((

n+ b− j − k − 2

b− j

)

−

(

n+ b− j − k − 2

b− j − k

))

)

+ 22n+1 − 2n(n+ 3) + 2

(

2n

n

)

.

Changing order of summation to merge the two sums over k, and rewriting some binomial
coefficients we obtain

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)

((

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

))

(1)

+ 2n−b−2

b
∑

j=1

(j − 1)2
((

n+ b− j − k − 2

n− k − 2

)

−

(

n+ b− j − k − 2

n− 2

))

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

.

6.7 Further simplification

The remaining simplification of the above expression, including the proof of Lemma 16 above,
is due to Christian Krattenthaler.

We continue by simplifying the sum over j in (1). For this purpose we write

(j−1)2 = (n+b−j−k)(n+b−j−k−1)−(n+b−j−k−1)(2n+2b−2k−3)+(n+b−k−2)2
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and use this to simplify the binomial coefficients. Thus the sum over j becomes

(n− k)(n− k − 1)
b
∑

j=1

(

n+ b− j − k

n− k

)

− n(n− 1)
b
∑

j=1

(

n+ b− j − k

n

)

− (2n+ 2b− 2k − 3)
(

(n− k − 1)
b
∑

j=1

(

n+ b− j − k − 1

n− k − 1

)

− (n− 1)
b
∑

j=1

(

n+ b− j − k − 1

n− 1

)

)

+ (n+ b− k − 2)2
(

b
∑

j=1

(

n+ b− j − k − 2

n− k − 2

)

−

b
∑

j=1

(

n+ b− j − k − 2

n− 2

)

)

.

Changing variables in each sum and then removing zero-terms we obtain

(n− k)(n− k − 1)
n+b−k−1
∑

j=n−k

(

j

n− k

)

− n(n− 1)
n+b−k−1
∑

j=n−k

(

j

n

)

−(2n+ 2b− 2k − 3)
(

(n− k − 1)
n+b−k−2
∑

j=n−k−1

(

j

n− k − 1

)

− (n− 1)
n+b−k−2
∑

j=n−k−1

(

j

n− 1

)

)

+(n+ b− k − 2)2
(

n+b−k−3
∑

j=n−k−2

(

j

n− k − 2

)

−

n+b−k−3
∑

j=n−k−2

(

j

n− 2

)

)

= (n− k)(n− k − 1)
n+b−k−1
∑

j=n−k

(

j

n− k

)

− n(n− 1)
n+b−k−1
∑

j=n

(

j

n

)

−(2n+ 2b− 2k − 3)
(

(n− k − 1)
n+b−k−2
∑

j=n−k−1

(

j

n− k − 1

)

− (n− 1)
n+b−k−2
∑

j=n−1

(

j

n− 1

)

)

+(n+ b− k − 2)2
(

n+b−k−3
∑

j=n−k−2

(

j

n− k − 2

)

−

n+b−k−3
∑

j=n−2

(

j

n− 2

)

)

.

Here we apply Lemma 15 six times. This gives
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(n− k)(n− k − 1)

(

n+ b− k

n− k + 1

)

− n(n− 1)

(

n+ b− k

n+ 1

)

− (2n+ 2b− 2k − 3)

(

(n− k − 1)

(

n+ b− k − 1

n− k

)

− (n− 1)

(

n+ b− k − 1

n

)

)

+ (n+ b− k − 2)2

(

(

n+ b− k − 2

n− k − 1

)

−

(

n+ b− k − 2

n− 1

)

)

.

This simplifies to

(

n+ b− k − 1

n− k + 1

)

+

(

n+ b− k − 2

n− k + 1

)

−

(

n+ b− k − 1

n+ 1

)

−

(

n+ b− k − 2

n+ 1

)

. (2)

So inserting (2) back into (1) we now have

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)(

(

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 2n−b−2
(

(

n+ b− k − 1

n− k + 1

)

+

(

n+ b− k − 2

n− k + 1

)

−

(

n+ b− k − 1

n+ 1

)

−

(

n+ b− k − 2

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (3)

On the second line we reverse the order of the b-summation, that is, we replace b by n−1− b

which yields

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(

(3 · 2b + b2 − 3)(

(

2n− b− k − 4

n− b− 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 2b−1
(

(

2n− b− k − 2

n− k + 1

)

+

(

2n− b− k − 3

n− k + 1

)

−

(

2n− b− k − 2

n+ 1

)

−

(

2n− b− k − 3

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

.
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Introducing a new summation variable ℓ = b+ k we can write this as

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+
n−2
∑

k=1

2n−2
∑

ℓ=k+1

2ℓ

(

3

(

2n− ℓ− 4

n− k − 2

)

+ 3

(

2n− ℓ− 4

n− 2

)

+
1

2

(

(

2n− ℓ− 2

n− k + 1

)

+

(

2n− ℓ− 3

n− k + 1

)

−

(

2n− ℓ− 2

n+ 1

)

−

(

2n− ℓ− 3

n+ 1

)

)

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

.

Next we apply Lemma 16 to all the sums over ℓ. This gives

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 3
n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n− k − 4

s

)

− 3
n−2
∑

k=1

2k+1

n−k−3
∑

s=0

(

2n− k − 4

s

)

+
n−2
∑

k=1

2k
n−4
∑

s=0

(

2n− k − 2

s

)

+
n−2
∑

k=1

2k
n−5
∑

s=0

(

2n− k − 3

s

)

−

n−2
∑

k=1

2k
n−k−4
∑

s=0

(

2n− k − 2

s

)

−

n−2
∑

k=1

2k
n−k−5
∑

s=0

(

2n− k − 3

s

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (4)

To simplify (4) we first note that

(1 + 1)2n−k−2 =
2n−k−2
∑

s=0

(

2n− k − 2

s

)

=
n+1
∑

s=0

(

2n− k − 2

s

)

+
2n−k−2
∑

s=n+2

(

2n− k − 2

s

)

=
n+1
∑

s=0

(

2n− k − 2

s

)

+
n−k−4
∑

s=0

(

2n− k − 2

n− k − 4− s

)

=
n+1
∑

s=0

(

2n− k − 2

s

)

+
n−k−4
∑

s=0

(

2n− k − 2

s

)

.
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Hence we have
n−k−4
∑

s=0

(

2n− k − 2

s

)

= 22n−k−2 −
n+1
∑

s=0

(

2n− k − 2

s

)

.

Using this, and similar identities, we transform the expression (4) to

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ 3
n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n− k − 4

s

)

− 3(n− 2)22n−3 + 3
n−2
∑

k=1

2k+1

n−2
∑

s=0

(

2n− k − 4

s

)

+
n−2
∑

k=1

2k
n−4
∑

s=0

(

2n− k − 2

s

)

+
n−2
∑

k=1

2k
n−5
∑

s=0

(

2n− k − 3

s

)

− (n− 2)22n−2 +
n−2
∑

k=1

2k
n+1
∑

s=0

(

2n− k − 2

s

)

− (n− 2)22n−3 +
n−2
∑

k=1

2k
n+1
∑

s=0

(

2n− k − 3

s

)

− 2n(n+ 3) + 22n+1 + 2

(

2n

n

)

. (5)

In the second, third and fourth line we can interchange summations over k and s and
apply Lemma 16 again. However, one has to be a bit careful since the sums over k are in fact
shorter than required by the lemma. For example, the first of these sums can be simplified
as follows.

3
n−2
∑

k=1

2k+1

n−3
∑

s=0

(

2n− k − 4

s

)

= 3
n−3
∑

s=0

n−2
∑

k=1

2k+1

(

2n− k − 4

s

)

= 3
n−3
∑

s=0

(

2n−s−4
∑

k=1

2k+1

(

2n− k − 4

s

)

−
2n−s−4
∑

k=n−1

2k+1

(

2n− k − 4

s

)

)

= 3
n−3
∑

s=0

(

4
2n−s−5
∑

k=0

(

2n− 4

k

)

− 2n
n−s−3
∑

k=0

(

n− 2

k

)

)

= 12
n−3
∑

k=0

(n− 2)

(

2n− 4

k

)

+ 12
n−3
∑

k=0

(n− k − 2)

(

2n− 4

n+ k − 2

)

− 3 · 2n
n−3
∑

k=0

(n− k − 2)

(

n− 2

k

)

= 6(n− 2)
(

22n−4 −

(

2n− 4

n− 2

)

)

+ 6(n− 2)22n−4 − 3 · 2n(n− 2)2n−3

= 3(n− 2)22n−3 − 6(n− 2)

(

2n− 4

n− 2

)

.
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We treat the other double sums over k and s in (5) similarly, and after many, many calcu-
lations we arrive at the expression

b̃n =
n−2
∑

k=1

2k
n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

+ (3n+ 5)22n−2 + (n2 − 1)2n−1 − 4(1− 7n+ 7n2 + 3n3)
(2n− 3)!

(n− 2)!(n+ 1)!
. (6)

Now we turn to the sum over b. By expressing

b2 = (2n− b− k − 2)(2n− b− k − 3)− (4n− 2k − 5)(2n− b− k − 3) + (2n− k − 3)2

and proceeding by application of Lemma 15 as in the beginning of this section, and then
rewriting the binomial coefficients we obtain

n−2
∑

b=1

(b2 − 3)(

(

2n− b− k − 4

n− k − 2

)

−

(

2n− b− k − 4

n− 2

)

)

=(n− k)(n− k − 1)

(

2n− k − 2

n− k + 1

)

− n(n− 1)

(

2n− k − 2

n+ 1

)

− (4n− 2k − 5)(n− k − 1)

(

2n− k − 3

n− k

)

+ (4n− 2k − 5)(n− 1)

(

2n− k − 3

n

)

+ ((2n− k − 3)2 − 3)

(

2n− k − 4

n− k − 1

)

− ((2n− k − 3)2 − 3)

(

2n− k − 4

n− 1

)

=− 2n2

(

2n− k − 2

n+ 1

)

+ (2n2 − 1)

(

2n− k − 3

n

)

− 3

(

2n− k − 4

n− 3

)

+ 3

(

2n− k − 4

n− 1

)

+ (2n− 5)

(

2n− k − 3

n− 3

)

− 2(n− 2)2
(

2n− k − 3

n− 2

)

− 2(n− 1)(n− 2)

(

2n− k − 3

n− 1

)

+ 2(n+ 1)(n− 1)

(

2n− k − 3

n+ 1

)

+ 2

(

2n− k − 2

n− 3

)

− 2(n− 2)

(

2n− k − 2

n− 2

)

+ 2(n− 2)(n− 1)

(

2n− k − 2

n− 1

)

.

Inserting this into (6) we can apply Lemma 16 again to all the sums over k. After
considerable simplification we arrive at

b̃n = (3n+ 5)22n−2 − 2(3n− 1)

(

2n− 2

n− 1

)

.

This concludes the proof.
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7 The resulting sequence

The above formula yields the integer sequence {b̃n}n≥2, which could not be found in OEIS [12].
Its first entries are

n 2 3 4 5 6 7 8 9 10

b̃n 24 128 648 3160 14984 69536 317264 1427912 6355080.
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