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Abstract

We examine relationships between two minors of order n of some matrices of n

rows and n + r columns. This is done through a class of determinants, here called

n-determinants, the investigation of which is our objective.

As a consequence of our main result we obtain a generalization of theorem of the

product of two determinants.

We show the upper Hessenberg determinants, with −1 on the subdiagonal, belong

to our class. Using such determinants allow us to represent terms of various recurrence

sequences in the form of determinants. We illustrate this with several examples. In

particular, we state a few determinants, each of which equals a Fibonacci number.

Also, several relationships among terms of sequences defined by the same recurrence

equation are derived.

1 Introduction

In the second section of this paper we define n-determinants and derive a relationship between
n-determinants and recurrence sequences. We apply the result on a particular kind of n-
determinants to obtain an extension of the theorem of the product of two determinants.

In Section 3 we consider 1-determinants, which appear to be the upper Hessenberg deter-
minants. Some important mathematical objects may be represented as 1-determinants. This
is found to be the case for the Catalan numbers, the Bell numbers, the Fibonacci numbers,
the Fibonacci polynomials, the generalized Fibonacci numbers, the Tchebychev polynomi-
als of both kinds, the continuants, the derangements, the factorials and the terms of any
homogenous linear recurrence equation. We also find several 1-determinants, each of which
equals a Fibonacci number.
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The case n = 2 is examined in Section 4. We show that, in a particular case, 2-
determinants produce relationships between two sequences given by the same recurrence
equation, with possibly different initial conditions. In this sense, we prove a formula for the
Fibonacci polynomials from which several well-known formulas follow. For example, this is
the case with the Ocagne’s formula and the index reduction formula. Analogous formulas
for the Tchebychev polynomials are then stated. Also, we derive a result for the continu-
ants, generalizing the fundamental theorem of convergents. Another result generalizes the
standard recurrence equation for the derangements.

In Section 5, we consider 3-determinants which connect terms of three sequences given
by the same recurrence equation.

The obtained results are concerned with several sequences from [5].

2 n-determinants

In this section we define n-determinants and give its relationships with recurrence sequences.
We also consider a particular class of n-determinants which leads to a generalization of the
theorem of the product of determinants. Note that entries of the considered matrices may
belong to arbitrary commutative ring.

Let n and r be positive integers. We consider the following n + r − 1 by r matrix

P =





p1,1 p1,2 · · · p1,r−1 p1,r

p2,1 p2,2 · · · p2,r−1 p2,r

...
... · · ·

...
...

pn,1 pn,2 · · · pn,r−1 pn,r

−1 pn+1,2 · · · pn+1,r−1 pn+1,r

0 −1 · · · pn+2,r−1 pn+2,r

...
... · · ·

...
...

0 0 · · · pn+r−2,r−1 pn+r−2,r

0 0 · · · −1 pn+r−1,r





. (1)

Note that entries (n + i, i), (i = 1, . . . , r − 1) in P equal −1.

Definition 1. If Q is a submatrix of order r of P, we say that det Q is an n-determinant.

We connect matrix (1) with a recursively given sequence of vector-columns in the following
way: Let A be a square matrix of order n. We define a block matrix Ar = [A|An+1| · · · |An+r]
of n rows and n + r columns (where An+j, (j = 1, 2, . . . , r) are vector -columns) as follows:

An+j =

n+j−1∑

i=1

pi,jAi, (j = 1, 2, . . . , r). (2)

We shall establish a relationship of n-determinants and minors of order n of Ar.

For a sequence 1 ≤ j1 < j2 < · · · < jr < n + r of positive integers, we let M =
M(ĵ1, ĵ2, . . . , ĵr) denote the minor of Ar of order n, obtained by deleting columns j1, j2, . . . , jr
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of Ar. We shall also write M(ĵ1, . . . , ĵr, Ai1 , Ai2 , . . . , Aik) if we want to stress that M contains
i1, i2, . . . , ik columns of Ar.

Note that the last column of Ar cannot be deleted.
The sign σ(M) of M is defined as

σ(M) = (−1)nr+j1+j2+···+jr+
(r−1)r

2 .

We let Q = Q(j1, . . . , jr) denote the submatrix of order r, laying in j1, j2, . . . , jr rows of P.

Hence, det Q is an n-determinant.
We now prove the following result.

Theorem 2. Let 1 ≤ j1 < · · · < jr < r + n be a sequence of positive integers. Then,

M(ĵ1, . . . , ĵr) = σ(M) · det Q · det A. (3)

Proof. The proof is by induction on r. For r = 1, we have 1 ≤ j1 ≤ n, since the case j1 > r

makes no sense. It follows that M = M(ĵ1). Taking i = 1 in (2), we obtain

An+1 =
n∑

m=1

pm,1Am.

Hence, we obtain M(ĵ1) as a sum of n terms. It is clear that this sum reduces to a single
term, in which m = j1. We conclude that

M(ĵ1) = pj1,1M(ĵ1, Aj1),

where M(ĵ1, Aj1) denotes the minor of order n of Ar, in which the j1th column is shifted

at the nth place. In M(ĵ1, Aj1), we interchange the last column with the preceding one and
repeat this until the j1th column takes the j1th place. For this, we need n− j1 interchanges.
It follows that

M(ĵ1) = (−1)n+j1pj1,1 · det A.

On the other hand, we obviously have detQ = pj1,1, and σ(M) = (−1)n+j1 , which proves the
theorem, for r = 1.

Assume that the theorem is true for 1 ≤ k < r. The last column of the minor M(ĵ1, . . . , ĵr)
is column n + r of Ar. The condition (2) implies

M(ĵ1, . . . , ĵr) =
n+r−1∑

m=1

pm,rM(ĵ1, . . . , ĵr, Am).

Note that the column Am is the last column in each minor on the right-hand side of the
preceding equation. Hence, in the sum on the right-hand side only terms obtained for
jm ∈ {j1, . . . , jr} remain. They are of the form:

S(t) = pjt,rM(ĵ1, . . . , ĵt, . . . ĵr, Ajt
), (t = 1, 2, . . . , r),

that is,
S(t) = (−1)n+r−1−jtpjt,rM(ĵ1, . . . , Ajt

, . . . ĵr).
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Applying the induction hypothesis yields

S(t) = (−1)n+t−1−jtσ(M(ĵ1, . . . , Ajt
, . . . ĵr))pjt,rQ(j1, . . . , ĵt, . . . , jr) · det A.

By a simple calculation, we obtain

(−1)n+t−1−jtσ(M(ĵ1, . . . , Ajt
, . . . ĵr)) = (−1)r+tσ(M),

hence,
S(t) = σ(M)(−1)r+tQ(j1, . . . , ĵt, . . . , jr) · det A.

Summing over all t gives

r∑

t=1

S(t) = σ(M)

[ r∑

t=1

(−1)r+tpjt,rQ(j1, . . . , ĵt, . . . , jr)

]
· det A.

The expression in the square brackets is the expansion of detQ by elements of the last
column, and the theorem is proved.

We now investigate a particular class of n-determinants, arising from an n + r − 1 by r

block-matrix P of the form

P =

[
S

T

]
, (4)

where

S =





p1,1 p1,2 · · · p1,r−1 p1,r

p2,1 p2,2 · · · p2,r−1 p2,r

...
... · · ·

...
...

pn,1 pn,2 · · · pn,r−1 pn,r




, T =




−1 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · −1 0



 .

Proposition 3. Each n-determinant of the matrix (4) equals, up to the sign, a minor of S.

Proof. We obtain an n-determinant by deleting n − 1 rows of P. It follows that each n-
determinant must contain at least one row of S. Let 1 ≤ j1 < j2 < · · · < jk ≤ n < jk+1 <

· · · < jr < n + r, (k ≥ 1) be arbitrary, and consider the submatrix Q laying in j1, j2, . . . , jr

rows of P. It has the following form

Q =

(
Q1

Q2

)
,

where Q1 lies in rows j1, j2, . . . , jk of S, and Q2 lies in rows jk+1−n, . . . , jr −n of T. If k = r,

then Q = Q1, therefore det Q is a minor of S.

Thus, we may assume that k < r. We calculate det Q by expansion across the rows of
Q2. The matrix Q2 has a unique nonzero minor D of order r − k, which lies in k + 1, . . . , r
rows of Q. Its value obviously equals (−1)r−k. The sum of the indices of rows of Q, in which
D lies, is

(k + 1) + (k + 2) + · · · + r =
(r − k)(r + k + 1)

2
.
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The sum of indices of columns in which D lies equals

(jk+1 − n) + · · · + (jr − n) = jk+1 + · · · + jr − (r − k)n.

We thus obtain that
det Q = (−1)τ det Q4,

where τ = (r−k)(k+r+3−2n)
2

+ jk+1 + · · ·+ jr, and det Q4 is the complement minor of D, laying
in columns different from jk+1, . . . , jr. Clearly, det Q4 is a minor of S, and the proposition is
true.

As a consequence of Theorem (3) we obtain

Proposition 4. Let A be arbitrary matrix of order n, let B be arbitrary n by r matrix.
Consider the block matrix Ar = [A|AB]. Let 1 ≤ j1 < j2 < · · · < jk ≤ n < jk+1 < · · · < jr <

n + r, (k ≥ 1) be arbitrary. If M(ĵ1, . . . , ĵr) has the same meaning as before, then

(−1)σM = det A · det Q4, (5)

where σ = k2
−2kn+k

2
+ j1 + j2 + · · ·+ jk, and the submatrix Q4 lies in j1, j2, . . . , jk rows, and

in columns different from jk+1, jk+2, . . . , jr of B.

Proof. It is easy to see that the matrix Ar, corresponding to the matrix (4), has the form

Ar = [A|AB].

After a simple calculation we obtain σ = k2
−2kn+k

2
+ j1 + j2 + · · · + jk, and the assertion

follows from the preceding proposition.

Remark 5. Note that equation (5) is a generalization of the theorem of the product of two
determinants.

Namely, in the case r = n = k, and ji = i, (i = 1, 2, . . . , n), we have det Q = det B, M =
det AB, and σ(M) = 1, so that equation (5) becomes

det(AB) = det A · det B.

3 1-determinants

In this case, A is a matrix of order 1, that is, a single element. We also have j1 = 1, j2 =
2, . . . , jr = r, hence, the minor M(ĵ1, ĵ2, . . . , ĵr) must be of the form: M(1̂, 2̂, . . . , r̂). We
easily obtain that σ(M) = 1. The matrix P is as follows:

P =





p1,1 p1,2 p1,3 · · · p1,r−1 p1,r

−1 p2,2 p2,3 · · · p2,r−1 p2,r

0 −1 p3,3 · · · p3,r−1 p3,r

...
...

...
. . .

...
...

0 0 0 · · · pr−1,r−1 pr−1,r

0 0 0 · · · −1 pr,r





. (6)

We see that Q = P. Therefore, each 1-determinant is an upper Hessenberg determinant.
Applying Theorem 2, we obtain the following result.
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Proposition 6. Let a1, a2, . . . be a sequence such that

a1+r =
r∑

i=1

pi,rai. (7)

Then,
ar+1 = a1 det P.

This result is known. For instance, it follows from Theorem 4.20,[1].

Remark 7. In the paper [3], we found a combinatorial interpretation for the coefficients of
the characteristic polynomials of some 1-determinants.

We give a number of examples for sequences given by the formula (7). Some of them are
well-known. In all examples, we take a1 = 1.

1◦ Catalan numbers (A000108). We let Cn denote the nth Catalan number. If we take
pi,j = Cj−i, then equation (7) becomes

a1+r =
r∑

i=1

Cr−iai.

The Segner’s recurrence formula for Catalan numbers implies that ar+1 = Cr. Hence,
a way to write the Segner’s formula in terms of determinants is

Cr =

∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 C1 C2 · · · Cr−2 Cr−1

−1 C0 C1 · · · Cr−3 Cr−1

0 −1 C0 · · · Cr−4 Cr−3
...

...
...

. . .
...

...
0 0 0 · · · C0 C1

0 0 0 · · · −1 C0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

2◦ Bell numbers (A000110). If one takes pi,j =
(

j−1
i−1

)
in (6), then (7) becomes the

recursion for the Bell numbers. Thus, a determinantal expression for the Bell number
Br is

Br =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
0
0

) (
1
0

) (
2
0

)
· · ·

(
r−2
0

) (
r−1
0

)

−1
(

1
1

) (
2
1

)
· · ·

(
r−2
1

) (
r−1
1

)

0 −1
(

2
2

)
· · ·

(
r−2
2

) (
r−1
2

)

...
...

...
. . .

...
...

0 0 0 · · ·
(

r−2
r−2

) (
r−1
r−2

)

0 0 0 · · · −1
(

r−1
r−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The order of the determinant equals r.
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3◦ Eigensequences for Stirling numbers (A003659). If
{

n

k

}
is the Stirling number

of the second kind, and pi,j =
{

j−1
i−1

}
in (6), then (7) becomes the recursion for the so-

called eigensequence (E1, E2, . . .) of the Stirling number of the second kind. Therefore,

Er =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
0
0

} {
1
0

} {
2
0

}
· · ·

{
r−2
0

} {
r−1
0

}

−1
{

1
1

} {
2
1

}
· · ·

{
r−2
1

} {
r−1
1

}

0 −1
{

2
2

}
· · ·

{
r−2
2

} {
r−1
2

}

...
...

...
. . .

...
...

0 0 0 · · ·
{

r−2
r−2

} {
r−1
r−2

}

0 0 0 · · · −1
{

r−1
r−1

}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that analogous identity holds for the unsigned Stirling numbers of the first kind
(A143805).

4◦ Factorials (A000142). Let k be a positive integer. Consider the following 1-determi-
nant D of order r > 1:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
−1 k k k · · · k k

0 −1 k + 1 k + 1 · · · k + 1 k + 1
0 0 −1 k + 2 · · · k + 2 k + 2
...

...
...

. . .
...

...
...

0 0 0 · · · −1 k + r − 3 k + r − 3
0 0 0 · · · 0 −1 k + r − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In this case, the formula (7) becomes

ar+1 = 1 +
r∑

i=2

(k + i − 2)ai.

Subtracting the equation

ar+2 = 1 +
r+1∑

i=2

(k + i − 2)ai

from the preceding easily yields

ar+2 = (k + r)ar+1,

which is the recursion for the falling factorials. Hence,

D =
(k + r − 1)!

k!
.
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5◦ Derangements (A000166). We let Dr denote the number of derangements of r. The
recurrence equation for the derangements is

D2 = 1, D3 = 2, Dr = (r − 1)(Dr−2 + Dr−1), (r ≥ 4).

Hence,

Dr+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
−1 1 2 0 · · · 0 0
0 −1 2 3 · · · 0 0
0 0 −1 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 r − 1 r

0 0 0 · · · 0 −1 r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

6◦ Fibonacci polynomials. In this case, we consider the recurrence equation

a1 = 1, a2 = x, ak+1 = ak−1 + xak, (k ≥ 2)

for Fibonacci polynomials. Hence, for Fibonacci polynomial Fr+1(x) we have

Fr+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 · · · 0 0
−1 x 1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 1
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The order of the determinant equals r. Taking x = 1,, in particular, we obtain the
well-known determinantal expression for Fibonacci numbers.

7◦ Tchebychev polynomials of the first kind. The recurrence relation for the Tcheby-
chev polynomials of the first kind is

T0(x) = 1, T1(x) = x, Tk(x) = −Tk−2(x) + 2xTk−1(x), (k > 2).

Theorem 6 now implies the following equation:

Tr(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0
−1 2x −1 · · · 0 0
0 −1 2x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2x −1
0 0 0 · · · −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The order of the determinant is r. A similar formula holds for Tchebychev polynomials
Ur(x) of the second kind.
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8◦ Hermite polynomials. For the Hermite polynomials Hr(x), we have the following
recurrence equation:

H0(x) = 1, H1(x) = 2x, Hr+1(x) = −2rHr−1(x) + 2xHr(x), (r ≥ 2).

Applying Theorem 6, we obtain the following expression:

Hr(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x −2 0 · · · 0 0
−1 2x −4 · · · 0 0
0 −1 2x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2x −2(r − 1)
0 0 0 · · · −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

9◦ Continuants. Take in (7) pk,k = pk, pk−1,k = 1, and pi,j = 0 otherwise. We obtain
the recursion:

a1 = 1, p1, a1+k = ak−1 + pkak, (k = 2, . . .).

The terms of this sequence are the continuants, and are denoted by (p1, p2, . . . , pr). We
thus obtain the following well-known formula:

(p1, p2, . . . , pr) =

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 · · · 0 0
−1 p2 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · pr−1 1
0 0 0 · · · −1 pr

∣∣∣∣∣∣∣∣∣∣∣

. (8)

10◦ Linear homogenous recurrence equation. Let b1, b2, . . . , bk be given elements.
Consider the sequence 1, a2, a3, . . . defined as follows:

a2 = b1, . . . , ak+1 = bk, ar+1 =
r∑

i=r−k+1

pi,rai, (r > k).

We thus have a linear homogenous recurrence equation of order k. From Theorem 2
follows

ar+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 b2 · · · bk 0 0 · · · · · · 0
−1 0 · · · 0 pk+1,1 0 · · · · · · 0
0 −1 · · · 0 pk+1,2 pk+2,2 · · · · · · 0
...

... · · ·
...

...
... · · · · · ·

...
0 0 · · · 0 pk+1,k−1 pk+2,k−1 · · · · · · 0
0 0 · · · −1 pk+1,k pk+2,k · · · · · · 0
...

... · · ·
...

...
... · · · · · · 0

0 0 · · · 0
...

... · · · · · · · · ·

0 0 · · · 0
...

... · · · −1 pk,r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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11◦ Generalized Fibonacci numbers. Taking in the preceding formula that each pi,j

equals 1, we obtain k-step Fibonacci numbers dependent on the initial conditions. The
standard k-step Fibonacci numbers F

(k)
n+k are obtained for b1 = b2 = · · · = bk−1 =

0, bk = 1. We thus have

F
(k)
r+k =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0 · · · 0 0 0
−1 1 · · · 1 1 · · · 0 0 0
0 −1 · · · 1 1 · · · 0 0 0
...

... · · ·
...

... · · ·
...

...
...

0 0 · · · 0 0 · · · · · ·
...

...
0 0 · · · 0 0 · · · · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the size of the determinant is r + k.

12◦ Fibonacci numbers (A000045) Consider the sequence given by

a1 = 1, a2 = 1, ar =
r−2∑

i=1

ai, (r > 2).

This, in fact, is a recursion for the Fibonacci numbers. To show this, we first replace
r by r + 1 to obtain

ar+1 =
r−1∑

i=1

ai.

Subtracting two last equations yields

ar+1 = ar + ar−1,

which is the standard recursion for the Fibonacci numbers.

Proposition 6 implies

Fr−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 · · · 1 1
−1 0 · · · 1 · · · 1 1
0 −1 · · · 1 · · · 1 1
...

... · · ·
... · · ·

...
...

0 0 · · · 0 · · · 0 1
0 0 · · · 0 · · · −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The order of the determinant equals r.

13◦ Fibonacci numbers. We define a matrix Qr = (qij) of order r as follows:

qij =






−1, if i = j + 1;

i + j + 1 mod 2, if i ≤ j;

0, otherwise.
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We find the recursion which, as in Proposition 6, produces this matrix. Obviously,
a1 = 1, a2 = 1, a3 = 1, a4 = 2, and

a2r = a1 + · · · + a2r−1.

Also,
a2r+2 = a1 + · · · + a2r−1 + a2r+1.

Subtracting two last equation yields a2r+2 = a2r+1 + a2r. Similarly, a2r+1 = a2r + a2r−1.

The recursion for the Fibonacci numbers is thus obtained. It follows that Fr−1 =
det Qr, (r > 1).

14◦ Fibonacci numbers with odd indices (A001519). Define a matrix Qr = (qij) of
order r as follows:

qij =






−1, if i = j + 1,

2, if i = j,

1, if i < j,

0, otherwise.

.

In this case, we have the recursion a1 = 1, a2 = 2, a3 = 5, ar+1 =
∑r−1

i=1 +2ar, (r ≥ 2).
From this, we easily obtain the recursion

ar+2 = 3ar+1 − ar.

The identity 7, proved in [2], shows that we have a recursion for the Fibonacci numbers
with odd indices. It follows that F2r+1 = det Qr.

Note that we described in [3] a connection of this determinant with a particular kind
of composition of natural numbers.

15◦ Fibonacci numbers with even indices (A001906 ). For the matrix

Qr =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · r − 1 r

−1 1 2 · · · r − 2 r − 1
0 −1 1 · · · r − 3 r − 2
...

...
...

...
...

...
0 0 0 · · · 1 2
0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

the corresponding recursion has the form:

a1 = 1, a2 = 3, a1+r =
r∑

i=1

(r − i + 1)ai, (r ≥ 2).

Also,

a2+r =
r+1∑

i=1

(r − i + 1)ai +
r+1∑

i=1

ai.
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Subtracting this equation from the preceding one, we obtain

a2+r − a1+r =
r+1∑

i=1

ai.

In the same, way we obtain

a3+r − a2+r =
r+2∑

i=1

ai.

Again, we subtract this equation from the preceding one to obtain

a3+r = 3a2+r − a1+r.

This is a recursion for Fibonacci numbers, by Identity 7 in [2]. Taking into count the
initial conditions, we have detQr = F2r.

4 2-determinants

In this section we consider the case n = 2. We first investigate the case that pi,j = 0, (j > i).
Then, P has at most three nonzero diagonals, and may be written in the form:

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 0 0 · · · 0 0
c2 b2 0 · · · 0 0
−1 c3 b3 · · · 0 0
0 −1 c4 · · · 0 0
...

...
... · · ·

...
...

0 0
... · · · cr br

0 0
... · · · −1 cr+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (9)

The corresponding 2-determinant detQ is a lower triangular block determinant of the form:

∣∣∣∣
Q11 0
Q12 Q22

∣∣∣∣ . (10)

Here, Q11 is a lower triangular determinant lying in the first k rows and the first k columns
of Q. It follows that Q11 = b1 · · · bk. The order of Q22 is r − k and it is of the same form as
the determinant of the matrix P in (6).

As a consequence of Theorem 2, we obtain

Proposition 8. Let (b1, b2, . . .), (c2, c3, . . .) be any two sequences. Let

(a
(i)
1 , a

(i)
2 , . . .) (i = 1, 2)

be two sequences defined by the same recurrence equation of the second order:

a(i)
r = br−2a

(i)
r−2 + cr−1a

(i)
r−1, (r > 2), (i = 1, 2)..

12



Then, ∣∣∣∣∣
a

(1)
k+1 a

(1)
r+2

a
(2)
k+1 a

(2)
r+2

∣∣∣∣∣ = (−1)kb1 · · · bk · dr−k+1 ·

∣∣∣∣∣
a

(1)
1 a

(1)
2

a
(2)
1 a

(2)
2

∣∣∣∣∣ ,

where
d1 = 1, d2 = ck+2, di = bk+i−1di−2 + ck+idi−1, (i > 2)..

We illustrate the preceding proposition with some examples.

1◦ Fibonacci polynomials. Take x
(1)
1 = Fu(x), x

(1)
2 = Fu+1(x), x

(2)
1 = Fv(x), x

(2)
2 =

Fv+1(x), bi = 1, ci+1 = x, (i = 1, 2, . . .).

Note that, in this case, the 2-determinant equals the Fibonacci polynomial Fr−k(x).
From Proposition 8, we obtain the following identity:

∣∣∣∣
Fu+k(x) Fu+r(x)
Fv+k(x) Fv+r(x)

∣∣∣∣ = (−1)kFr−k(x) ·

∣∣∣∣
Fu(x) Fu+1(x)
Fv(x) Fv+1(x)

∣∣∣∣ . (11)

Several well-known formulas may be obtained from this.

Taking u = 1, v = 0 yields

Fk+1(x)Fr(x) − Fk(x)Fr+1(x) = (−1)kFr−k(x),

which is the Ocagne’s identity for the Fibonacci polynomials. Applying this identity
on the right-hand side of (11), we obtain

∣∣∣∣
Fu+m(x) Fu+r(x)

Fv+m Fv+r(x)

∣∣∣∣ = (−1)m+u+1Fr−m(x)Fv−u(x).

We now may easily derive the index-reduction formula for the Fibonacci polynomials.
Namely, replacing m by m − t and r by r − t, we get

∣∣∣∣
Fu+k−t(x) Fu+r−t(x)
Fv+k−t(x) Fv+r−t(x)

∣∣∣∣ = (−1)k−t+u+1Fr−k(x)Fv−u(x).

Comparing the last two equations produces
∣∣∣∣
Fu+k−t(x) Fu+r−t(x)
Fv+k−t(x) Fv+r−t(x)

∣∣∣∣ = (−1)t

∣∣∣∣
Fu+k(x) Fu+r(x)
Fv+k(x) Fv+r(x)

∣∣∣∣ ,

which is the index reduction formula.

Note that such a formula for the Fibonacci numbers is proved in [4].

2◦ Fibonacci and Lucas polynomials. The Lucas polynomials Lr(x) satisfy the same
recurrence relation as do the Fibonacci polynomials with different initial conditions. In
this case, also, the 1-determinant equals a Fibonacci polynomial. We state two equa-
tions, one for mixed Lucas and Fibonacci polynomials, another for Lucas polynomials:

∣∣∣∣
Fu+k(x) Fu+r(x)
Lv+k(x) Lv+r(x)

∣∣∣∣ = (−1)kFr−k(x) ·

∣∣∣∣
Fu(x) Fu+1(x)
Lv(x) Lv+1(x)

∣∣∣∣ ,
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and ∣∣∣∣
Lu+k(x) Lu+r(x)
Lv+k(x) Lv+r(x)

∣∣∣∣ = (−1)kFr−k(x) ·

∣∣∣∣
Lu(x) Lu+1(x)
Lv(x) Lv+1(x)

∣∣∣∣ .

3◦ Tchebychev polynomials. Tchebychev polynomials of the first and second kind also
satisfy the same recursion with different initial conditions. Here, the 1-determinant
equals a Tchebychev polynomial of the second kind. We state the following three
identities, which are a consequence of Proposition 8.

∣∣∣∣
Uu+k(x) Uu+r(x)
Uv+k(x) Uv+r(x)

∣∣∣∣ = Ur−k−1(x)

∣∣∣∣
Uu(x) Uu+1(x)
Uv(x) Uv+1(x)

∣∣∣∣ ,

∣∣∣∣
Tu+k(x) Tu+r(x)
Tv+k(x) Tv+r(x)

∣∣∣∣ = Ur−k−1(x)

∣∣∣∣
Tu(x) Tu+1(x)
Tv(x) Tv+1(x)

∣∣∣∣ ,

∣∣∣∣
Uu+k(x) Uu+r(x)
Tv+k(x) Tv+r(x)

∣∣∣∣ = Ur−k−1(x)

∣∣∣∣
Uu(x) Uu+1(x)
Tv(x) Tv+1(x)

∣∣∣∣ .

4◦ Continued fractions. Up until now, the division was not used. We might therefore
assume that the elements of the concerned sequences belong to any commutative ring
with 1. In this part, we suppose that they are positive real numbers. Let A2 be the
identity matrix of order 2, and let (c1, c2, . . .) be an arbitrary sequence of positive real
numbers. Form the matrix Ar by the following rule:

A2+k = Ak + ckAk+1, (k = 1, 2, . . . , r).

It is easy to see that Ar has the form:

Ar =

(
1 0 1 c2 . . . (c2, c3, . . . , cr)
0 1 c1 (c1, c2) . . . (c1, c2, c3, . . . , cr)

)
,

where (cm, cm+1, . . . , cp) are the continuants. The 1-determinant equals the continuant
(ck+2, ck+3, . . . , cr).

The fundamental recurrence relation for the continued fractions gives an expression for
the difference between two consecutive convergents. Equation 8 allows us to derive a
formula for the difference between two arbitrary convergents. The following formula
holds:

∣∣∣∣
(c2, c3, . . . , ck) (c2, c3, . . . , cr)

(c1, c2, c3, . . . , ck) (c1, c2, c3, . . . , cr)

∣∣∣∣ = (−1)k+1(ck+2, ck+3, . . . , cr),

or, equivalently,

(c1, c2, c3, . . . , cr)

(c2, c3, . . . , cr)
−

(c1, c2, c3, . . . , ck)

(c2, c3, . . . , ck)
= (−1)k+1 (ck+2, ck+3, . . . , cr)

(c2, c3, . . . , ck) · (c2, c3, . . . , cr)
,

with the convention that for r = k + 1 the expression (ck+2, ck+3, . . . , cr) equals 1.

If r < k + 1, then the proof follows from Proposition 8. If r = k + 1, then we take
(ck+2, ck+3, . . . , cm) = 1, as then there is no matrix Q22. Hence, our formula becomes
the continued fraction fundamental recurrence relation.
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5◦ Derangements. Take A =

(
1 0
1 1

)
. Let the matrix Ar be formed by the recursion

A2+r = r(A1+r + Ar), (r ≥ 1).

It is obvious that the rth element of the first row of Ar equals Dr−1. Also, the rth term
of the second row of Ar equals (r − 1)!. It follows that

M(k + 1, r + 1) =

∣∣∣∣
Dk Dr

k! r!

∣∣∣∣ .

We thus obtain the following identity:

∣∣∣∣
Dk Dr

k! r!

∣∣∣∣ = (−1)kk!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k + 1 k + 2 0 · · · 0 0
−1 k + 2 k + 3 · · · 0 0
0 −1 k + 3 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · r − 1 r

0 0 0 · · · −1 r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular, for r = k + 1, we have the standard recursion Dk+1 = kDk + (−1)k for
the derangements.

The preceding identities are derived from homogenous recurrence equations of order two.
We shall now consider the case of a recurrence equation of order three.

Theorem 9. Let r be a positive integer, and let (ai), (bi+1), (ci+2), (i = 1, 2, . . .) be arbitrary
sequences. Let A be a matrix of order 2, and let the matrix Ar be defined as follows:

A3 = b1A1 + c2A2, A3+j = ajAj + bj+1Aj+1 + cj+2Aj+2, (1 < j < r − 2).

Then, the corresponding 2-determinant Q is determined by two homogenous recurrence equa-
tions of order 3.

Proof. In this case the matrix P has the following form:

P =





b1 a1 0 · · · 0 0 0
c2 b2 a2 · · · 0 0 0
−1 c3 b3 . . . 0 0 0
0 −1 c4 . . . 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · cr−1 br−1 ar−1

0 0 0 · · · −1 cr br

0 0 0 · · · 0 −1 cr+1





.
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The 2-determinant det Q is obtained from P by deleting the (k + 1)th row of P, where
(0 ≤ k < r). We let D(i1, . . . , it) denote the minor of P, the main diagonal of which is
(i1, i2, . . . , it). Hence,

det Q = D(b1, . . . , bk, ck+2, . . . , cr+1).

In the expansion of det Q across the first k rows all terms are zero, except eventually two.
Hence,

det Q = D(b1, . . . , bk)D(ck+2, . . . , cr+1) + akD(b1, . . . , bk−1)D(ck+3, . . . , cr+1).

Furthermore, we have

D(b1) = b1, D(b1, b2) =

∣∣∣∣
b1 a1

c2 b2

∣∣∣∣ , D(b1, b2, b3) =

∣∣∣∣∣∣

b1 a1 0
c2 b2 a2

−1 c3 b3

∣∣∣∣∣∣
.

Assume k > 3. Expanding D(b1, . . . , bk) by the elements of the last column, we obtain

D(b1, . . . , bk) = bkD(b1, . . . , bk−1) − ak−1ckD(b1, . . . , bk−2) − ak−1ak−2D(b1, . . . , bk−3). (12)

Also,

D(ck+2) = ck+2, D(ck+2, ck+3) =

∣∣∣∣
ck+2 bk+2

−1 ck+3

∣∣∣∣ ,

and

D(ck+2, ck+3, ck+4) =

∣∣∣∣∣∣

ck+2 bk+2 ak+2

−1 ck+3 bk+3

0 −1 ck+4

∣∣∣∣∣∣
.

If k > 3, then by expanding D(ck+2, . . . , cr+1) along the first column, we obtain

D(ck+2, . . . , cr+1)

= ck+3D(ck+3, . . . , cr+1) + bk+2D(ck+4, . . . , cr+1)

+ ak+2D(ck+5, . . . , cr+1).

(13)

It follows that the 2-determinant detQ is uniquely determined by the recurrence equations
(12) and (13).

We illustrate the preceding considerations with two particular cases. We first assume
that all a’s, b’s, and c’s equal 1. Then,

D(b1) = 1, D(b1, b2) = 0, D(b1, b2, b3) = −2,

and, for s > 3,

D(b1, b2, . . . , bs) = D(b1, . . . , bs−1) − D(b1, . . . , bs−2) − D(b1, . . . , bs−3).

This recursion designates the so-called reflected Tribonacci numbers (A057597). We
denote these numbers by RTi (i = 1, 2, . . .). Also,

D(c1) = 1, D(c1, c2) = 2, D(c1, c2, c3) = 4,
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and, for s > 3,

D(c1, c2, . . . , cs) = D(c1, . . . , cs−1) + D(c1, . . . , cs−2) + D(c1, . . . , cs−3).

Hence, if we denote by Ti, i = 0, 1, 2, . . . the Tribonacci numbers (A000073) we have

D(c1, c2, . . . , cs) = Ts+2, (s = 1, 2, . . .).

Hence, our 2-determinant Q consists of Tribonacci and reflected Tribonacci numbers. On the
other hand, if A is the identity matrix of order 2, then the first row of Ar consists of the above
Tribonacci numbers. The second rows consists of Tribonacci numbers T̃i, (i = 0, 1, . . .) with
the initial conditions given by T̃ (0) = 1, T̃ (1) = 0, T̃ (2) = 1, (A001590). As a consequence
of Theorem 2, we have

Corollary 10. Let k < r be nonnegative integers. The following identity holds

∣∣∣∣
T̃k+1 T̃r+2

Tk+1 Tr+2

∣∣∣∣ = (−1)k

∣∣∣∣
RTk−1 −RTk

Tr−k Tr−k−1

∣∣∣∣ .

Assume now that the b’s are all equal zero and the a’s and the c’s are all equal 1. Then the
recursion (12) gives the sequence x1, x2, . . . , such that xn = A077962(n). Also, the recursion
(13) produces the sequence y1, y2, . . . , such that yn = A000930(n).

Next, the rows of Ar form sequences a
(i)
1 , a

(i)
2 , . . . (i = 1, 2) such that, for n ≥ 4 we have

a
(1)
n = A000930(n − 4), a

(2)
n = A000930(n − 2). We thus obtain

Corollary 11. For integers 3 ≤ k < r we have

∣∣∣∣
yk−3 yr−2

yk−1 yr

∣∣∣∣ = (−1)k

∣∣∣∣
xk−1 −xk

yr−k yr−k−1

∣∣∣∣ .

5 3-determinants

In this section, the order of the matrix A is 3. We investigate in detail the particular case
when pi,j = 0, (j > i). Then, the matrix P is of order (r + 2) × r, may have at most four
nonzero diagonals, and has the form:

P =





a1 0 0 · · · 0 0 0
b2 a2 0 · · · 0 0 0
c3 b3 a3 . . . 0 0 0
−1 c4 b4 . . . 0 0 0
0 −1 c5 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · cr br ar

0 0 0 · · · −1 cr+1 br+1

0 0 0 · · · 0 −1 cr+2





.
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The corresponding 3-determinant detQ is obtained by deleting rows k + 1 and m + 1 of P,

where (0 ≤ k < m ≤ r + 1). The matrix Q is a lower triangular block matrix of the form
(10), with det Q11 = a1 · a2 · · · ak. The order of the matrix Q22 is r − k.

We denote det Q22 = Dk(s, r), where s = m− k. Note that s ≥ 1. For the columns of Ar

we have the following recursion:

A3+i = aiAi + bi+1A1+i + ci+2Ai+2, (i ≥ 1). (14)

It follows that the sequences in the rows of Ar satisfy recurrence equations of order 3, with
the initial conditions given by the rows of A. The set {j1, . . . , jr} equals {1, 2, . . . , k, k +
2, . . . ,m,m + 2, . . . , r + 2}. A simple calculation shows that σ(M) = (−1)m+k+1. As a con-
sequence of Theorem 2, we have

Proposition 12. Let A be any matrix of order 3, let (ai), (bi+1), (ci+2), (i = 1, 2, . . .) be any
sequences. Then,

M(k + 1,m + 1, r + 2) = (−1)m+k+1a1 · · · ak det Q · det A.

We next prove the following Proposition 12.

Proposition 13. The determinant det Q22 is determined with three recurrence relations.

Proof. The matrix Q22 has at most five nonzero diagonals. Assume that s ≥ 3. 1) The main
diagonal of Q22 is

bk+2, . . . , bk+s, ̂k + s + 1, ck+s+2, . . . , cr+2,

where there are s − 1 of b’s and r + 1 − k − s of a’s
2) The first superdiagonal is

ak+2, . . . , ak+s, ̂k + s + 1, bk+s+2 . . . , br+1,

where there are s − 1 of a’s and r − k − s of b’s.
3) The first subdiagonal is

ck+3, . . . , ck+s, ̂k + s + 1,−1, . . . ,−1,

where there are s − 2 of c’s and r + 1 − k − s of −1’s.
4) The second superdiagonal is

0, . . . , 0, ̂k + s + 1, ak+s+2, . . . , ar,

where there are s − 1 of 0’s and r − k − s − 1 of a’s.
5) The second subdiagonal is

−1, . . . ,−1, ̂k + s + 1, 0, . . . , 0,

where there are s − 3 of −1’s and r + 1 − k − s of 0’s.
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Case s = 1. We begin with

Dk(1, k) = 1, Dk(1, k + 1) = ck+3, Dk(1, k + 2) =

∣∣∣∣
ck+3 bk+3

−1 ck+4

∣∣∣∣ .

For t > 2, expanding Dk(1, k+t) by elements from the last row yields the following recursion:

Dk(1, k + t)

= ck+t+2Dk(1, k + t − 1) + bk+t+1Dk(1, k + t − 2)

+ ak+tDk(1, k + t − 3).

(15)

Case s = 2. We have

Dk(2, k + 1) = bk+2, Dk(2, k + 2) =

∣∣∣∣
bk+2 ak+2

−1 ck+4

∣∣∣∣ ,

Dk(2, k + 3) =

∣∣∣∣∣∣

bk+2 ak+2 0
−1 ck+4 bk+4

0 −1 ck+5

∣∣∣∣∣∣
.

For t ≥ 4, we calculate Dk(2, k + t) by the recursion (15).
Case s = 3. We now have Dk(3, k + 2) = bk+2,

Dk(3, k + 3) =

∣∣∣∣
bk+2 ak+2

ck+3 bk+3

∣∣∣∣ , Dk(3, k + 4) =

∣∣∣∣∣∣

bk+2 ak+2 0
ck+3 bk+3 ak+3

0 −1 ck+5

∣∣∣∣∣∣
,

Dk(3, k + 5) =

∣∣∣∣∣∣∣∣

bk+2 ak+2 0 0
ck+3 bk+3 ak+3 0
0 −1 ck+5 bk+5

0 0 −1 ck+6

∣∣∣∣∣∣∣∣
.

For t > 5, we calculate Dk(3, k + t) again by the recursion (15).
Case s ≥ 4. The minors Dk(s, k+s−1), . . . , Dk(s, k+2s−1) may be obtained as follows:

Dk(s, k + s − 1) = bk+2, Dk(s, k + s) =

∣∣∣∣
bk+2 ak+2

ck+3 bk+3

∣∣∣∣ ,

Dk(s, k + s + 1) =

∣∣∣∣∣∣

bk+2 ak+2 0
ck+3 bk+3 ak+3

−1 ck+4 bk+4

∣∣∣∣∣∣
.

When 1 < t ≤ s − 1, we have the following recursion:

Dk(s, k + s + t)

= bt+k+2Dk(s, k + s + t − 1) − at+k+1ct+k+2Dk(s, k + s + t − 2)

− at+k+1at+kDk(s, k + s + t − 3).

(16)
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Next, we have

Dk(s, k + 2s) = cs+k+2Dk(s, k + 2s − 1) + as+kDk(s, k + 2s − 2).

If s < r − k, then

Dk(s, k + 2s + 1) = cs+k+3Dk(s, k + 2s) + bs+k+2Dk(s, k + 2s − 1).

If s + 1 < r − k, then for t, where s + 1 < t ≤ r − k, we have the recursion (15).
The recursion with respect to k is backward. The minimal value that r can take is r = k.

Then,
Dk(1, k) = 1, Dk(2, k + 1) = Dk(3, k + 2) = bk+2.

Assume that s > 3. Expanding Dk(s, r) by elements of the first row, we obtain the following
recursion:

Dk(s, r) = bk+2Dk+1(s − 1, r − 1)

− ak+2ck+3Dk+2(s − 2, r − 2)

− ak+2ak+3Dk+3(s − 3, r − 3)

. (17)

We have thus proved that detQ is uniquely determined by the formulas (15), (16), and
(17).

We state some particular cases.

1◦ All a’s equal 0. It follows from (12) that all minors M(k + 1,m + 1, r + 3) are zeros,
except the case k = 0, when we have the same situation as in the preceding section.

2◦ All b’s equal 0, and all a’s and c’s equal 1. The formula (14) has the form:

A3+i = Ai + Ai+2, (i ≥ 1).

If A is the identity matrix, then the rows of Ar make the so-called middle sequence

(A000930). For a fixed k the first three rows of the array detQ22 are obtained by the
recursion (15), hence they are also formed from the numbers of the middle sequence.
If s > 3, then the first s− 1 elements in row s are obtained by the recursion (16). The
remaining terms are again obtained from (15). Therefore, Proposition (12) gives an
identity for the numbers of the middle sequence.

3◦ All c’s equal 0, and all a’s and b’s equal 1. In this case, we have

A3+i = Ai + Ai+1, (i ≥ 1),

which is the recursion for the Padovan sequence (A000931). From Proposition 12, we
obtain an assertion for the Padovan numbers.
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4◦ All a’s, b’s and c’s equal 1. The rows of Ar are made of Tribonacci numbers, with
the initial conditions given by the rows of A. Proposition 12 produces an identity for
Tribonacci numbers.

Assume that A is the identity matrix of order 3. Let Tt1,t2,t3(n), (n = 1, 2, . . .) denote
Tribonacci numbers with initial conditions Tt1,t2,t3(1) = t1, Tt1,t2,t3(2) = t2, Tt1,t2,t3(3) =
t3.

We then have

Proposition 14. Let 0 ≤ k < m < r + 2 be integers. Then,
∣∣∣∣∣∣

T1,0,0(k) T1,0,0(m) T1,0,0(r + 2)
T0,1,0(k) T0,1,0(m) T0,1,0(r + 2)
T0,0,1(k) T0,0,1(m) T0,0,1(r + 2)

∣∣∣∣∣∣
= (−1)m+k+1Dk(m − k, r).

Note that the nature of numbers Dk(m − k, r) depends on values of k,m − k and r.
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