Journal of Integer Sequences, Vol. 15 (2012),

Asymptotic Formulae for the n-th Perfect Power

Rafael Jakimczuk
División Matemática
Universidad Nacional de Luján
Buenos Aires
Argentina
jakimczu@mail.unlu.edu.ar
In memory of my sister Fedra Marina Jakimczuk (1970-2010)

Abstract

Let P_{n} be the n-th perfect power. In this article we prove asymptotic formulae for P_{n}. For example, we prove the following formula $$
P_{n}=n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{4 / 3}-2 n^{9 / 7}+2 n^{6 / 5}-2 n^{13 / 11}+o\left(n^{13 / 11}\right)
$$

1 Introduction

A natural number of the form m^{n} where m is a positive integer and $n \geq 2$ is called a perfect power. The first few terms of the integer sequence of perfect powers are

$$
1,4,8,9,16,25,27,32,36,49,64,81,100,121,125,128 \ldots
$$

and they form sequence A001597 in Sloane's Encyclopedia.
Let P_{n} be the n-th perfect power. That is, $P_{1}=1, P_{2}=4, P_{3}=8, P_{4}=9, \ldots$.
In this article we prove asymptotic formulae for P_{n}. For example,

$$
P_{n}=n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{4 / 3}-2 n^{9 / 7}+2 n^{6 / 5}-2 n^{13 / 11}+o\left(n^{13 / 11}\right) .
$$

This formula is a corollary of our main theorem (Theorem 6), which can give as many terms in the expansion as desired.

There exist various theorems and conjectures on the sequence P_{n}. For example, the following theorem:

$$
\sum_{n=2}^{\infty} \frac{1}{P_{n}}=\sum_{k=2}^{\infty} \mu(k)(1-\zeta(k))=0,87446 \ldots
$$

where $\mu(k)$ is the Möbius function and $\zeta(k)$ is the Riemann zeta function.
We also have the following theorem called the Goldbach-Euler theorem:

$$
\sum_{n=2}^{\infty} \frac{1}{P_{n}-1}=1
$$

This result was first published by Euler in 1737. Euler attributed the result to a letter (now lost) from Goldbach.

Mihăilescu $[4,5,6]$ proved that the only pair of consecutive perfect powers is 8 and 9 , thus proving Catalan's conjecture.

The Pillai's conjecture establish the following limit

$$
\lim _{n \rightarrow \infty}\left(P_{n+1}-P_{n}\right)=\infty
$$

This is an unsolved problem.
There exist algorithms for detecting perfect powers [1, 2].
Let $N(x)$ be the number of perfect powers not exceeding x. M. A. Nyblom [7] proved the following asymptotic formula

$$
N(x) \sim \sqrt{x}
$$

M. A. Nyblom [8] also obtained a formula for the exact value of $N(x)$ using the inclusionexclusion principle.

Let p_{h} be the h-th prime. Consequently we have,

$$
p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, p_{6}=13, \ldots
$$

Jakimczuk [3] proved the following theorem where more precise formulae for $N(x)$ are established. This theorem will be used later.

Theorem 1. Let p_{h} be the h-th prime with $h \geq 2$, where h is an arbitrary but fixed positive integer. Then

$$
\begin{equation*}
N(x)=\sum_{k=1}^{h-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\ p_{i_{1}} \cdots p_{i_{k}}<p_{h}}} x^{\frac{1}{p_{i_{1}} \cdots p_{p_{k}}}}+(1+o(1)) x^{1 / p_{h}} \tag{1}
\end{equation*}
$$

where the inner sum is taken over the k-element subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of the set $\{1,2, \ldots, h-1\}$ such that the inequality $p_{i_{1}} \cdots p_{i_{k}}<p_{h}$ holds.

If $h=5$ then Theorem 1 becomes,

$$
\begin{equation*}
N(x)=\sqrt{x}+\sqrt[3]{x}+\sqrt[5]{x}-\sqrt[6]{x}+\sqrt[7]{x}-\sqrt[10]{x}+(1+o(1)) \sqrt[11]{x} \tag{2}
\end{equation*}
$$

Note that equation (2) include the cases $h=2,3,4$. In general, equation (1) for a certain value of $h=k$ include the cases $h=2,3, \ldots, k-1$. This fact is a direct consequence of equation (1).

2 Some Lemmas

The following lemma is an immediate consequence of the binomial theorem.
Lemma 2. We have

$$
\begin{gathered}
(1+x)^{\alpha}=1+(\alpha+o(1)) x \quad(x \rightarrow 0), \\
(1+x)^{\alpha}=1+\alpha x+O\left(x^{2}\right) \quad(x \rightarrow 0) \\
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+O\left(x^{3}\right) \quad(x \rightarrow 0) .
\end{gathered}
$$

Lemma 3. Let P_{n} be the n-th perfect power. We have

$$
P_{n} \sim n^{2} .
$$

Proof. Equation (2) gives $N(x) \sim \sqrt{x}$. Consequently $N\left(P_{n}\right)=n \sim \sqrt{P_{n}}$. Therefore $P_{n} \sim$ n^{2}.

Lemma 4. Let p_{h} be the h-th prime. If $h \geq 3$ then we have

$$
\frac{2}{p_{h-1}}-\frac{1}{3}<\frac{2}{p_{h}}
$$

Proof. We have

$$
\frac{2}{p_{h-1}}-\frac{1}{3}<\frac{2}{p_{h}} \Leftrightarrow \frac{2}{p_{h-1}}-\frac{2}{p_{h}}<\frac{1}{3} \Leftrightarrow \frac{1}{p_{h-1}}-\frac{1}{p_{h}}<\frac{1}{6} .
$$

Clearly, the last inequality is true if $h \geq 5$ since $p_{h-1} \geq 7$.
On the other hand, we have

$$
\begin{aligned}
& \frac{1}{p_{2}}-\frac{1}{p_{3}}=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}<\frac{1}{6} \\
& \frac{1}{p_{3}}-\frac{1}{p_{4}}=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}<\frac{1}{6}
\end{aligned}
$$

3 The Fundamental Lemma

The following lemma is a characterization of asymptotic formulae for P_{n}. The lemma prove the existence of asymptotic formulae for P_{n}.
Lemma 5. Let $p_{h}(h \geq 3)$ be the h-th prime. We have

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}+\sum_{i=1}^{m} d_{i} n^{g_{i}}+(-2+o(1)) n^{1+\frac{2}{p_{h}}} \tag{3}
\end{equation*}
$$

where $2>5 / 3>g_{1}>\cdots>g_{m}>1+\frac{2}{p_{h}}$, the d_{i} are rational coefficients and in equation (3) appear the terms $-2 n^{1+\frac{2}{p_{i}}}(i=2, \ldots, h-1)$. Besides the rational exponents $5 / 3$ and g_{i} $(i=1, \ldots, m)$ are of the form $\frac{b_{i}}{c_{i}}$ where b_{i} and c_{i} are relatively prime and the c_{i} are squarefree integers with prime divisors bounded by p_{h-1}.

Proof. We shall use mathematical induction. First, we shall prove that the lemma is true for $h=3$.

If $h=2$ then Theorem 1 becomes (see (2))

$$
N(x)=\sqrt{x}+(1+o(1)) \sqrt[3]{x}
$$

Substituting $x=P_{n}$ into this equation and using Lemma 3 we obtain

$$
N\left(P_{n}\right)=n=\sqrt{P_{n}}+(1+o(1)) \sqrt[3]{P_{n}}=\sqrt{P_{n}}+(1+o(1)) n^{2 / 3}
$$

That is

$$
\sqrt{P_{n}}=n+(-1+o(1)) n^{2 / 3} .
$$

Therefore

$$
\begin{align*}
P_{n} & =\left(n+(-1+o(1)) n^{2 / 3}\right)^{2} \\
& =n^{2}+2(-1+o(1)) n^{5 / 3}+(-1+o(1))^{2} n^{4 / 3} \\
& =n^{2}+(-2+o(1)) n^{5 / 3} . \tag{4}
\end{align*}
$$

If $h=3$ then Theorem 1 becomes (see (2))

$$
N(x)=\sqrt{x}+\sqrt[3]{x}+(1+o(1)) \sqrt[5]{x}
$$

Substituting $x=P_{n}$ into this equation and using equation (4), Lemma 3 and Lemma 2 we obtain

$$
\begin{aligned}
N\left(P_{n}\right) & =n=P_{n}^{1 / 2}+P_{n}^{1 / 3}+(1+o(1)) n^{2 / 5}=P_{n}^{1 / 2}+\left(n^{2}+(-2+o(1)) n^{5 / 3}\right)^{1 / 3} \\
& +(1+o(1)) n^{2 / 5}=P_{n}^{1 / 2}+n^{2 / 3}\left(1+(-2+o(1)) n^{-1 / 3}\right)^{1 / 3}+(1+o(1)) n^{2 / 5} \\
& =P_{n}^{1 / 2}+n^{2 / 3}\left(1+((-2 / 3)+o(1)) n^{-1 / 3}\right) \\
& +(1+o(1)) n^{2 / 5}=P_{n}^{1 / 2}+n^{2 / 3}+(1+o(1)) n^{2 / 5} .
\end{aligned}
$$

That is

$$
P_{n}^{1 / 2}=n-n^{2 / 3}+(-1+o(1)) n^{2 / 5} .
$$

Therefore

$$
P_{n}=\left(n-n^{2 / 3}+(-1+o(1)) n^{2 / 5}\right)^{2}=n^{2}-2 n^{5 / 3}+(-2+o(1)) n^{7 / 5}
$$

That is

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}+(-2+o(1)) n^{7 / 5} . \tag{5}
\end{equation*}
$$

Equation (5) is Lemma 5 for $h=3$. Consequently the lemma is true for $h=3$.
Suppose that the lemma is true for $h-1 \geq 3$. We shall prove that the lemma is also true for $h \geq 4$.

We have (see (1))

$$
\begin{align*}
N(x) & =\sum_{k=1}^{h-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\
p_{i} \cdots p_{i_{k}}<p_{h}}} x^{\frac{1}{p_{i_{1} \cdots p_{i_{k}}}}}+(1+o(1)) x^{1 / p_{h}}=x^{1 / 2} \\
& +\sum_{i=2}^{h-1} x^{1 / p_{i}}+\sum_{k=2}^{h-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\
p_{i_{1}} \cdots p_{i_{k}}<p_{h}}} x^{\frac{1}{p_{i_{1} \cdots p_{i}} \cdots p_{i_{k}}}} \\
& +(1+o(1)) x^{1 / p_{h}} \quad(h \geq 4) . \tag{6}
\end{align*}
$$

Substituting $x=P_{n}$ into (6) and using Lemma 3 we obtain

$$
\begin{align*}
n & =P_{n}^{1 / 2}+\sum_{i=2}^{h-1} P_{n}^{1 / p_{i}}+\sum_{k=2}^{h-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\
p_{i_{1}} \cdots p_{i_{k}}<p_{h}}} P_{n}^{\frac{1}{p_{i_{1} \cdots p_{i_{k}}}}} \\
& +(1+o(1)) n^{2 / p_{h}} \quad(h \geq 4) . \tag{7}
\end{align*}
$$

By inductive hypothesis we have

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}+(-2+o(1)) n^{1+\frac{2}{p_{h-1}}} \quad(h \geq 4) \tag{8}
\end{equation*}
$$

where $2>5 / 3>r_{1}>\cdots>r_{s}>1+\frac{2}{p_{h-1}}$, the a_{i} are rational coefficients and in equation (8) appear the terms $-2 n^{1+\frac{2}{p_{i}}}(i=2, \ldots, h-2)$. Besides the rational exponents $5 / 3$ and r_{i} $(i=1, \ldots, s)$ are of the form $\frac{l_{i}}{f_{i}}$ where l_{i} and f_{i} are relatively prime and the f_{i} are squarefree integers with prime divisors bounded by p_{h-2}.

Equation (8) gives

$$
\begin{equation*}
P_{n}=n^{2}\left(1-2 n^{-1 / 3}+\sum_{i=1}^{s} a_{i} n^{-2+r_{i}}+(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}}\right) \tag{9}
\end{equation*}
$$

where

$$
-2 n^{-1 / 3}+\sum_{i=1}^{s} a_{i} n^{-2+r_{i}}+(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}} \sim-2 n^{-1 / 3}
$$

Consequently

$$
\begin{equation*}
-2 n^{-1 / 3}+\sum_{i=1}^{s} a_{i} n^{-2+r_{i}}+(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}}=O\left(n^{-1 / 3}\right)=o(1) \tag{10}
\end{equation*}
$$

Let $t \geq 3$ be a positive integer. Equations (9), (10) and Lemma 2 give

$$
\begin{align*}
P_{n}^{1 / t} & =n^{2 / t}\left(1-2 n^{-1 / 3}+\sum_{i=1}^{s} a_{i} n^{-2+r_{i}}+(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}}\right)^{1 / t} \\
& =n^{2 / t}\left(1+\frac{1}{t}\left(-2 n^{-1 / 3}+\sum_{i=1}^{s} a_{i} n^{-2+r_{i}}+(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}}\right)\right) \\
& \left.+O\left(n^{-2 / 3}\right)\right)=n^{2 / t}-\frac{2}{t} n^{-\frac{1}{3}+\frac{2}{t}}+\sum_{i=1}^{s} \frac{1}{t} a_{i} n^{-2+r_{i}+\frac{2}{t}} \\
& +\frac{1}{t}(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}+\frac{2}{t}}+O\left(n^{-\frac{2}{3}+\frac{2}{t}}\right) . \tag{11}
\end{align*}
$$

Note that if $t \geq 3$ then (see Lemma 4)

$$
\begin{equation*}
\frac{1}{t}(-2+o(1)) n^{-1+\frac{2}{p_{h-1}}+\frac{2}{t}}=o\left(n^{2 / p_{h}}\right) \tag{12}
\end{equation*}
$$

and if $t \geq 3$ then

$$
\begin{equation*}
O\left(n^{-\frac{2}{3}+\frac{2}{t}}\right)=o\left(n^{2 / p_{h}}\right) . \tag{13}
\end{equation*}
$$

Consequently (11) becomes (see (12) and (13))

$$
\begin{equation*}
P_{n}^{1 / t}=n^{2 / t}-\frac{2}{t} n^{-\frac{1}{3}+\frac{2}{t}}+\sum_{i=1}^{s} \frac{1}{t} a_{i} n^{-2+r_{i}+\frac{2}{t}}+o\left(n^{2 / p_{h}}\right) . \tag{14}
\end{equation*}
$$

Note that (see (14)) if $t \geq 3$ the exponent $\frac{2}{t}<1$ and consequently also $-\frac{1}{3}+\frac{2}{t}<1$ and $-2+r_{i}+\frac{2}{t}<1$ since $-2+r_{i}<0$ (see (8))

Substituting (14) into (7) we find that

$$
\begin{align*}
n= & P_{n}^{1 / 2}+\sum_{j=2}^{h-1}\left(n^{2 / p_{j}}-\frac{2}{p_{j}} n^{-\frac{1}{3}+\frac{2}{p_{j}}}+\sum_{i=1}^{s} \frac{1}{p_{j}} a_{i} n^{-2+r_{i}+\frac{2}{p_{j}}}\right)+\sum_{k=2}^{h-1}(-1)^{k+1} \\
& \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\
p_{i_{1}} \cdots p_{i_{k}}<p_{h}}}\left(n^{\left.\frac{2}{p_{i_{1} \cdots p_{i_{k}}}}-\frac{2}{p_{i_{1}} \cdots p_{i_{k}}} n^{-\frac{1}{3}+\overline{p_{i_{1}} \cdots p_{i_{k}}}}\right)}\right. \\
+ & \left.\sum_{i=1}^{s} \frac{1}{p_{i_{1}} \cdots p_{i_{k}}} a_{i} n^{-2+r_{i}+\frac{2}{p_{i_{1} \cdots p_{i_{k}}}}}\right)+(1+o(1)) n^{2 / p_{h}} \\
= & P_{n}^{1 / 2}+\sum_{i=1}^{l} b_{i} n^{s_{i}}+(1+o(1)) n^{2 / p_{h}} \quad(h \geq 4), \tag{15}
\end{align*}
$$

where $1>s_{1}>\cdots>s_{l}>\frac{2}{p_{h}}$. That is

$$
\begin{equation*}
P_{n}^{1 / 2}=n-\sum_{i=1}^{l} b_{i} n^{s_{i}}+(-1+o(1)) n^{2 / p_{h}} \tag{16}
\end{equation*}
$$

Note that all positive exponents in equation (15), that is, the positive exponents of the form

$$
\begin{gathered}
\frac{2}{p_{j}}, \quad-\frac{1}{3}+\frac{2}{p_{j}}, \quad-2+r_{i}+\frac{2}{p_{j}} \\
\frac{2}{p_{i_{1}} \cdots p_{i_{k}}},
\end{gathered} \quad-\frac{1}{3}+\frac{2}{p_{i_{1}} \cdots p_{i_{k}}}, \quad-2+r_{i}+\frac{2}{p_{i_{1}} \cdots p_{i_{k}}} .
$$

are (see (8)) of the form $\frac{m_{i}}{n_{i}}$ where m_{i} and n_{i} are relatively prime and the n_{i} are squarefree integers with prime divisors bounded by p_{h-1}. Therefore these exponents are different from $\frac{2}{p_{h}}$ and consequently the exponents $s_{i}(i=1, \ldots, l)$ in (16) are of this same form.

Note that $1+\frac{2}{p_{h}}>2 \frac{2}{p_{h}}$, since $\frac{2}{p_{h}}<1$. Consequently equation (16) gives

$$
\begin{align*}
& P_{n}=\left(n-\sum_{i=1}^{l} b_{i} n^{s_{i}}+(-1+o(1)) n^{2 / p_{h}}\right)^{2}=\left(n-\sum_{i=1}^{l} b_{i} n^{s_{i}}\right)^{2} \\
+ & (-2+o(1)) n^{1+\frac{2}{p_{h}}}=n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}-2 n^{1+\frac{2}{p_{h-1}}}+\sum_{i=1}^{q} c_{i} n^{k_{i}} \\
+ & (-2+o(1)) n^{1+\frac{2}{p_{h}}} \quad(h \geq 4), \tag{17}
\end{align*}
$$

where $2>5 / 3>r_{1}>\cdots>r_{s}>1+\frac{2}{p_{h-1}}>k_{1}>\cdots>k_{q}>1+\frac{2}{p_{h}}$.
Note also that the first terms in equation (17) are the terms of equation (8). On the other hand in equation (17) appear the term $-2 n^{1+\frac{2}{p_{h-1}}}$ (see equation (8)). We now prove these facts.

Equation (17) can be written in the form

$$
\begin{equation*}
P_{n}=Q(n)+\sum_{i=1}^{q} c_{i} n^{k_{i}}+(-2+o(1)) n^{1+\frac{2}{p_{h}}}=Q(n)+o\left(n^{1+\frac{2}{p_{h-1}}}\right) \tag{18}
\end{equation*}
$$

where $Q(n)$ is a sum of terms of the form $e_{i} n^{q_{i}}\left(q_{i} \geq 1+\frac{2}{p_{h-1}}\right)$.
On the other hand, equation (8) can be written in the form

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}-2 n^{1+\frac{2}{p_{h-1}}}+o\left(n^{1+\frac{2}{p_{h-1}}}\right) . \tag{19}
\end{equation*}
$$

Equations (18) and (19) give

$$
0=P_{n}-P_{n}=\left(Q(n)-\left(n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}-2 n^{1+\frac{2}{p_{h-1}}}\right)\right)+o\left(n^{1+\frac{2}{p_{h-1}}}\right) .
$$

If

$$
Q(n) \neq n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}-2 n^{1+\frac{2}{p_{h-1}}}
$$

then we obtain

$$
0=\left(P_{n}-P_{n}\right) \sim a n^{q} \quad(a \neq 0) \quad\left(q \geq 1+\frac{2}{p_{h-1}}\right)
$$

That is, an evident contradiction. Consequently

$$
\begin{equation*}
Q(n)=n^{2}-2 n^{5 / 3}+\sum_{i=1}^{s} a_{i} n^{r_{i}}-2 n^{1+\frac{2}{p_{h-1}}} . \tag{20}
\end{equation*}
$$

Finally, equations (18) and (20) give (17).
Lemma 5 is constructive, we can build the next formula using the former formula. Next, we build the formula that correspond to $h=4$. We shall need this formula.

If $h=4$ equation (6) is (see (2))

$$
\begin{equation*}
N(x)=x^{1 / 2}+x^{1 / 3}+x^{1 / 5}-x^{1 / 6}+(1+o(1)) x^{1 / 7} . \tag{21}
\end{equation*}
$$

On the other hand (Lemma 5) equation (8) is (see (5))

$$
P_{n}=n^{2}-2 n^{5 / 3}+(-2+o(1)) n^{7 / 5}
$$

Consequently equation (15) is

$$
\begin{aligned}
n & =P_{n}^{1 / 2}+\left(n^{2 / 3}-\frac{2}{3} n^{-\frac{1}{3}+\frac{2}{3}}\right)+\left(n^{2 / 5}-\frac{2}{5} n^{-\frac{1}{3}+\frac{2}{5}}\right)-\left(n^{2 / 6}-\frac{2}{6} n^{-\frac{1}{3}+\frac{2}{6}}\right) \\
& +(1+o(1)) n^{2 / 7}=P_{n}^{1 / 2}+n^{2 / 3}-\frac{2}{3} n^{1 / 3}+n^{2 / 5}-\frac{2}{5} n^{1 / 15}-n^{1 / 3}+\frac{1}{3}+(1+o(1)) n^{2 / 7} \\
& =P_{n}^{1 / 2}+n^{2 / 3}+n^{2 / 5}-\frac{5}{3} n^{1 / 3}+(1+o(1)) n^{2 / 7} .
\end{aligned}
$$

Therefore

$$
P_{n}^{1 / 2}=n-n^{2 / 3}-n^{2 / 5}+\frac{5}{3} n^{1 / 3}+(-1+o(1)) n^{2 / 7}
$$

Consequently (see (17))

$$
\begin{aligned}
P_{n} & =\left(n-n^{2 / 3}-n^{2 / 5}+\frac{5}{3} n^{1 / 3}\right)^{2}+(-2+o(1)) n^{9 / 7} \\
& =n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{8 / 6}+(-2+o(1)) n^{9 / 7}
\end{aligned}
$$

That is

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{8 / 6}+(-2+o(1)) n^{9 / 7} \tag{22}
\end{equation*}
$$

4 Main Result

The following theorem is the main result of this article. In this theorem we obtain explicit formulae for P_{n}.

Theorem 6. Let p_{h} be the h-th prime with $h \geq 3$, where h is an arbitrary but fixed positive integer.

Let us consider the formula (see (1))

$$
\begin{equation*}
N(x)=\sum_{k=1}^{h-1}(-1)^{k+1} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\ p_{i_{1}}<p_{i_{k}}<p_{h}}} x^{\frac{1}{p_{i_{1}} \cdots p_{i_{k}}}}+(1+o(1)) x^{1 / p_{h}} . \tag{23}
\end{equation*}
$$

We have

$$
\begin{align*}
P_{n} & =n^{2}+\frac{13}{3} n^{8 / 6}+\frac{32}{15} n^{32 / 30}+\sum_{k=1}^{h-1}(-1)^{k} \sum_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq h-1 \\
p_{i_{1}} \cdots p_{i_{k}}<p_{h}, p_{i_{1} \cdots p} \cdots i_{k} \neq 2,6,30}} 2 n^{1+\frac{2}{p_{i_{1} \cdots p_{i}} \cdots}} \\
& +(-2+o(1)) n^{1+\frac{2}{p_{h}}} \tag{24}
\end{align*}
$$

Proof. We shall see that everything relies on Theorem 1. The theorem is true for $h=3$ (see Lemma 5) and for $h=4$ (see (21) and (22)). Suppose $h \geq 5$, that is $p_{h} \geq 11$. Equation (23) can be written in the form (see (21))

$$
\begin{equation*}
N(x)=x^{1 / 2}+x^{1 / 3}+x^{1 / 5}-x^{1 / 6}+\sum_{i=1}^{s}(-1)^{1+a_{i}} x^{1 / n_{i}}+(1+o(1)) x^{1 / p_{h}} \tag{25}
\end{equation*}
$$

where a_{i} is the number of different prime factors in n_{i} and the exponents are in decreasing order,

$$
\begin{equation*}
\frac{1}{2}>\frac{1}{3}>\frac{1}{5}>\frac{1}{6}>\frac{1}{n_{1}}>\cdots>\frac{1}{n_{s}}>\frac{1}{p_{h}} . \tag{26}
\end{equation*}
$$

For example, if $h=5$ then equation (25) becomes equation (2).
On the other hand, we have (Lemma 5 and equation (22))

$$
\begin{equation*}
P_{n}=n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{8 / 6}+\sum_{i=1}^{t} d_{i} n^{r_{i}}+(-2+o(1)) n^{1+\frac{2}{p_{h}}} \tag{27}
\end{equation*}
$$

where the exponents are in decreasing order,

$$
\begin{equation*}
2>\frac{5}{3}>\frac{7}{5}>\frac{8}{6}>r_{1}>\cdots>r_{t}>1+\frac{2}{p_{h}} . \tag{28}
\end{equation*}
$$

Equation (27) gives

$$
\begin{equation*}
P_{n}=n^{2}\left(1-2 n^{-1 / 3}-2 n^{-3 / 5}+\frac{13}{3} n^{-4 / 6}+\sum_{i=1}^{t} d_{i} n^{r_{i}-2}+(-2+o(1)) n^{-1+\frac{2}{p_{h}}}\right) \tag{29}
\end{equation*}
$$

where

$$
-2 n^{-1 / 3}-2 n^{-3 / 5}+\frac{13}{3} n^{-4 / 6}+\sum_{i=1}^{t} d_{i} n^{r_{i}-2}+(-2+o(1)) n^{-1+\frac{2}{p_{h}}} \sim-2 n^{-1 / 3}
$$

since (see (28))

$$
\begin{equation*}
-\frac{1}{3}>-\frac{3}{5}>-\frac{4}{6}>r_{1}-2>\cdots>r_{t}-2>-1+\frac{2}{p_{h}} . \tag{30}
\end{equation*}
$$

Consequently

$$
\begin{align*}
A_{n} & =-2 n^{-1 / 3}-2 n^{-3 / 5}+\frac{13}{3} n^{-4 / 6}+\sum_{i=1}^{t} d_{i} n^{r_{i}-2}+(-2+o(1)) n^{-1+\frac{2}{p_{h}}} \\
& =O\left(n^{-1 / 3}\right)=o(1) \tag{31}
\end{align*}
$$

Besides

$$
\begin{align*}
B_{n} & =\left(-2 n^{-1 / 3}-2 n^{-3 / 5}+\frac{13}{3} n^{-4 / 6}+\sum_{i=1}^{t} d_{i} n^{r_{i}-2}+(-2+o(1)) n^{-1+\frac{2}{p_{h}}}\right)^{2} \\
& =\left(-2 n^{-1 / 3}-2 n^{-3 / 5}+\left(\frac{13}{3}+o(1)\right) n^{-4 / 6}\right)^{2} \\
& =4 n^{-2 / 3}+8 n^{-14 / 15}+O\left(n^{-1}\right) \tag{32}
\end{align*}
$$

Substituting $x=P_{n}$ into equation (25) and using Lemma 3 we obtain

$$
\begin{equation*}
n=P_{n}^{1 / 2}+P_{n}^{1 / 3}+P_{n}^{1 / 5}-P_{n}^{1 / 6}+\sum_{i=1}^{s}(-1)^{1+a_{i}} P_{n}^{1 / n_{i}}+n^{2 / p_{h}}+o\left(n^{2 / p_{h}}\right) . \tag{33}
\end{equation*}
$$

Equations (29), (31), (32) and Lemma 2 give

$$
\begin{align*}
P_{n}^{1 / 2} & =n\left(1+\frac{1}{2} A_{n}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2} B_{n}+O\left(n^{-1}\right)\right) \\
& =n-n^{2 / 3}-n^{2 / 5}+\frac{13}{6} n^{2 / 6}+\sum_{i=1}^{t} \frac{d_{i}}{2} n^{r_{i}-1} \\
& -n^{2 / p_{h}}+o\left(n^{2 / p_{h}}\right)-\frac{1}{2} n^{2 / 6}-n^{2 / 30}+O(1) . \tag{34}
\end{align*}
$$

Equations (29), (31), (30) and Lemma 2 give

$$
\begin{gather*}
P_{n}^{1 / 3}=n^{2 / 3}\left(1+\frac{1}{3} A_{n}+O\left(n^{-2 / 3}\right)\right)=n^{2 / 3}-\frac{2}{3} n^{2 / 6}-\frac{2}{3} n^{2 / 30}+O(1) . \tag{35}\\
P_{n}^{1 / 5}=n^{2 / 5}\left(1+\frac{1}{5} A_{n}+O\left(n^{-2 / 3}\right)\right)=n^{2 / 5}-\frac{2}{5} n^{2 / 30}+o(1) . \tag{36}
\end{gather*}
$$

$$
\begin{gather*}
P_{n}^{1 / 6}=n^{2 / 6}\left(1+\frac{1}{6} A_{n}+O\left(n^{-2 / 3}\right)\right)=n^{2 / 6}+O(1) . \tag{37}\\
P_{n}^{1 / n_{i}}=n^{2 / n_{i}}\left(1+\frac{1}{n_{i}} A_{n}+O\left(n^{-2 / 3}\right)\right)=n^{2 / n_{i}}+o(1) \quad(i=1, \ldots, s) . \tag{38}
\end{gather*}
$$

Substituting equations (34), (35), (36), (37) and (38) into equation (33) we find that

$$
\begin{equation*}
0=\sum_{i=1}^{t} \frac{d_{i}}{2} n^{r_{i}-1}+\sum_{i=1}^{s}(-1)^{1+a_{i}} n^{2 / n_{i}}-\frac{31}{15} n^{2 / 30}+o\left(n^{2 / p_{h}}\right) . \tag{39}
\end{equation*}
$$

Note that (see (28) and (26)) $r_{i}-1>\frac{2}{p_{h}}$ and $\frac{2}{n_{i}}>\frac{2}{p_{h}}$.
If $p_{h} \leq 29$ then $-\frac{31}{15} n^{2 / 30}=o\left(n^{2 / p_{h}}\right)$. Consequently we have

$$
\sum_{i=1}^{t} \frac{d_{i}}{2} n^{r_{i}-1}=\sum_{i=1}^{s}(-1)^{a_{i}} n^{2 / n_{i}}
$$

where $t=s, d_{i}=(-1)^{a_{i}} 2(i=1, \ldots, s)$ and $r_{i}=1+\frac{2}{n_{i}}(i=1, \ldots, s)$. Since in contrary case we have $0 \sim a n^{b}$ where $a \neq 0$ and $b>\frac{2}{p_{h}}$, an evident contradiction. Substituting these values into (27) we obtain (24) (see (25)).

If $p_{h} \geq 31$ then $\frac{2}{30}>\frac{2}{p_{h}}$ and there exists k such that $n_{k}=30=2.3 .5$ (see (23)). Consequently we have

$$
\sum_{i=1}^{t} \frac{d_{i}}{2} n^{r_{i}-1}=\sum_{i=1}^{s}(-1)^{a_{i}} n^{2 / n_{i}}+\frac{31}{15} n^{2 / 30}
$$

where $t=s, d_{i}=(-1)^{a_{i}} 2(i \neq k), d_{k}=2\left(-1+\frac{31}{15}\right)=\frac{32}{15}$ and $r_{i}=1+\frac{2}{n_{i}}(i=1, \ldots, s)$. Since in contrary case we have $0 \sim a n^{b}$ where $a \neq 0$ and $b>\frac{2}{p_{h}}$, an evident contradiction. Substituting these values into (27) we obtain (24) (see (25)).

Example 7. If $h=5$ equation (23) is (see (2))

$$
N(x)=x^{1 / 2}+x^{1 / 3}+x^{1 / 5}-x^{1 / 6}+x^{1 / 7}-x^{1 / 10}+(1+o(1)) x^{1 / 11}
$$

Consequently Theorem 6 gives

$$
P_{n}=n^{2}-2 n^{5 / 3}-2 n^{7 / 5}+\frac{13}{3} n^{4 / 3}-2 n^{9 / 7}+2 n^{6 / 5}+(-2+o(1)) n^{13 / 11}
$$

5 Acknowledgements

The author would like to thank the anonymous referee for his/her valuable comments and suggestions for improving the original version of this article. The author is also very grateful to Universidad Nacional de Luján.

References

[1] E. Bach and J. Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9 (1993), 313-328.
[2] D. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp. 67 (1998), 1253-1283.
[3] R. Jakimczuk, On the distribution of perfect powers, J. Integer Seq. 14 (2011), Article 11.8.5.
[4] P. Mihăilescu, A class number free criterion for Catalan's conjecture, J. Number Theory 99 (2003), 225-231.
[5] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math 572 (2004), 167-195.
[6] P. Mihăilescu, On the class groups of cyclotomic extensions in presence of a solution to Catalan's equation, J. Number Theory 118 (2006), 123-144.
[7] M. A. Nyblom, A counting function for the sequence of perfect powers, Austral. Math. Soc. Gaz. 33 (2006), 338-343.
[8] M. A. Nyblom, Counting the perfect powers, Math. Spectrum 41 (2008), 27-31.

2000 Mathematics Subject Classification: Primary 11A99; Secondary 11B99.
Keywords: n-th perfect power, asymptotic formula.
(Concerned with sequence A001597.)

Received October 1 2011; revised versions received January 14 2012; March 20 2012; May 29 2012. Published in Journal of Integer Sequences, May 292012.

Return to Journal of Integer Sequences home page.

