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Abstract

Motivated by recent work of Drmota, Mauduit and Rivat, we discuss the possibility

of counting the number of primes up to x whose sum of digits is also prime. We show

that, although this is not possible unless we assume a hypothesis on the distribution of

primes stronger than what is implied by the Riemann hypothesis, we can establish a

Mertens-type result. That is, we obtain a formula for the number of such primes p up

to x weighted with a factor 1/p. Indeed, we can iterate the method and count primes

with the sum of digits a prime whose sum of digits is a prime, and so on.

1 Introduction

Thanks to the revolutionary work of Mauduit and Rivat [7], in particular as developed in
[2], our knowledge of the distribution of primes with constraints on their sum of digits has
undergone a substantial expansion in recent years. The question of counting the number of
primes up to x, whose sum of digits in base b is also prime, would have been considered far
too difficult ten years ago in view of the difficulty in restricting the sum of digits function
when its variable is prime. In this paper we discuss this question, showing that it is still
impossibly difficult at present, but this is now a result of our lack of knowledge concerning the
distribution of primes in short intervals, and no longer caused by the problems of restricting
the sum of digits function. However, we are able to prove a Mertens-type result on counting
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primes whose sum of digits is prime. Throughout this paper the letters p and q are reserved
for prime variables. In 1874 Mertens proved that

∑

p<X

1

p
= log log X + A + O((log x)−1),

for a certain constant A (see [1, p. 56]). In this paper we will obtain analogues of this result
for primes whose sum of digits written in base b (b ≥ 2) are also prime. For brevity we shall
write this set as Pb. If

n =
r

∑

k=0

akb
k, 0 ≤ ak ≤ b − 1, then we put σb(n) =

r
∑

k=0

ak

for the sum of digits function in base b. In fact we shall be able to iterate our working and
establish Mertens-type theorems for primes belonging to sets defined as follows:

P(1)
b = Pb, P(j)

b = {p ∈ Pb : σb(p) ∈ P(j−1)
b }, j = 2, 3 . . . .

We write logb x for the logarithm to base b, log x for the natural logarithm, and define Lj(x)
inductively by

L1(x) = max(1, log x), Lj(x) = L1(Lj−1(x)) for j ≥ 2.

Our starting point will be a remarkable theorem of Drmota, Mauduit and Rivat [2].
Before stating the result precisely we need the following notation:

sb =
b2 − 1

12
, µb = 1

2
(b − 1), S(k, x) = |{p ≤ x : σb(p) = k}| .

As usual we write φ(n) for Euler’s totient function, and π(x) for the number of primes up
to x. We recall the prime number theorem in the form

π(x) =
x

log x
+ O

(

x

(log x)2

)

. (1)

Theorem 1 (Drmota/Mauduit/Rivat). We have, uniformly for all integers k ≥ 0 with

(k, b − 1) = 1,

S(k, x) =
b − 1

φ(b − 1)

π(x)
√

2πsb logb x

(

exp

(

−(k − µb logb x)2

2sb logb x

)

+ O
(

(log x)−
1
2
+ǫ

)

)

, (2)

where ǫ > 0 is arbitrary but fixed.

Since σb(p) ≡ p (mod b−1), for all but the finitely many primes p satisfying (p, b−1) > 1
we have (σb(p), b− 1) = 1, and this leads to the (b− 1)/φ(b− 1) factor appearing frequently.
From the above result we can deduce some very interesting corollaries. Clearly, (2) shows
that every sufficiently large integer is the sum of digits of a prime number. So, in particular,
there are infinitely many primes whose sum of digits is also prime. Also, every sufficiently
large prime is the sum of digits of another prime which in turn is the sum of digits of another
prime, and so on. We use Theorem 1 to obtain a Mertens-type result as follows.
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Theorem 2. Let b ≥ 2 be an integer and X ≥ 2. Then we have

∑

p<X
p∈Pb

1

p
=

b − 1

φ(b − 1)
L3(X) + O(1). (3)

In fact we shall use Theorem 2 as the first step in an inductive argument to establish the
following more general result for the sets P(j)

b .

Theorem 3. Let b, j ≥ 2 be integers and X ≥ 2. Then we have

∑

p<X

p∈P
(j)
b

1

p
=

(

b − 1

φ(b − 1)

)j

Lj+2(X) + O(1). (4)

As a final application of Theorem 1 we leave the following for the reader to prove.

Theorem 4. Write P∗
b for the set of primes in Pb which have a prime number of digits.

Then
∑

p<X
p∈P∗

b

L2(p)

p
=

b − 1

φ(b − 1)
L3(X) + O(1).

2 The problem of the unweighted sum

In this section we briefly consider the sum

π∗
b (X) =

∑

p<X
p∈Pb

1 .

First we note the following result of Kátai [5].

Lemma 5. For every positive integer k we have

∑

p<x

|σb(p) − µb logb x|k ≪k x(log x)k/2−1.

Now, even assuming the Riemann hypothesis and the pair correlation conjecture [3] we

cannot prove that every interval Iy = [y−y
1
2 (log y)

1
3 , y+y

1
2 (log y)

1
3 ] contains a prime number.

Suppose that Iy contains no primes, and choose X so that y = µb logb X. Then Theorem 1
cannot supply an asymptotic formula for π∗

b (X), and by Lemma 5 with k = 3A

π∗
b (X) ≪A

X

XL1(X)(L2(X))A

for every positive integer A. This shows that no asymptotic formula is possible unless a
stronger result than can be obtained on the Riemann hypothesis is assumed, for clearly
π∗

b (X) should be of size X(L1(X)L2(X))−1. We state here a hypothetical result to illustrate
what we mean.
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Theorem 6. Suppose that there exists a positive function f(x) → 0 such that for all large x

every interval of the form [x, x + x
1
2 f(x)] contains f(x)x

1
2 (1 + o(1))(log x)−1 primes. Then

π∗
b (X) ∼ b − 1

φ(b − 1)

X

L1(X)L2(X)
. (5)

The proof of this result is straightforward. By Lemma 5 we need only count primes whose
sum of digits is q with

|q − µb logb x| < (logb x)
2
3 . (6)

Applying Theorem 1 we need to estimate

∑

(6)

exp

(

−(q − µb logb x)2

2sb logb x

)

.

Breaking the summation range into shorter ranges of the form [y, y + y
1
2 f(y)] and then

comparing a sum with an integral we obtain

1 + o(1)

log(µb logb x)

∫ ∞

−∞

exp

(

− t2

2sb logb x

)

dt =
1 + o(1)

log(µb logb x)

√

2sbπ logb x,

which quickly establishes the result.
We remark that the hypothesis of Theorem 6 is “almost always” true unconditionally

in the following sense. The method of Heath-Brown [4] shows that, given ǫ > 0, there

exists η > 0 such that for all integers y ∈ [Y, 2Y ), with at most ≪ Y
3
4
+ǫ exceptions, every

subinterval [z, z + z
1
2
−η] of [y − Y

1
2
+ǫ, y + Y

1
2
+ǫ] contains z

1
2
−η(1 + O((log z)−1))(log z)−1

primes. For these non-exceptional y and with X chosen to satisfy y = µ logb X we then have
(5). Indeed, we can obtain the expected asymptotic formula for X on quite long ranges. We
note that we are unable to use the stronger results obtainable using a sieve method [6] since
we require an asymptotic formula for the number of primes in an interval rather than upper
or lower bounds.

3 Proof of Theorem 2

Lemma 5, together with (2), shows that σb(p) is concentrated near its mean value µb logb p,
and so enables us to restrict our attention to certain p ∈ Pb with negligible error. We write

M(m) = exp
(

(log b)m
7
8

)

, µ(m) = µbm
7
8 ,

ǫ(m) =
M(m + 1) − M(m)

M(m)
, δ(m) = (m + 1)

7
8 − m

7
8 ,

and put M(m) = [M(m),M(m + 1)). We note for future reference that

ǫ(m) = O
(

m− 1
8

)

and ǫ(m) = δ(m)
(

log b + O
(

m− 1
8

))

. (7)
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Let V be the largest integer with M(V ) < X. Also, write

P(m) = {p ∈ Pb : σb(p) = q, |q − µ(m)| < q
2
3}.

We remark that the exponents 7
8
, 2

3
above are chosen as convenient fixed numbers between 1

2

and 1 (which must satisfy certain inequalities to enable certain sums to converge later) and
have no other special significance. From Lemma 5 we can deduce that

∞
∑

m=1

∑

p∈M(m)
p∈Pb,p/∈P(m)

1

p

converges. Hence

S(X) :=
∑

p<X
p∈Pb

1

p
=

∑

m≤V

1

M(m)

∑

p∈M(m)
p∈P(m)

1 + O(1).

Now write Q = logb X. Then

S(X) =
∑

q<Q

∑

m≤V

|q−µ(m)|<q
2
3

1

M(m)

∑

p∈M(m)
σb(p)=q

1 + O(1).

After applications of Theorem 1 with ǫ = 1/14 and using (1) this becomes

∑

q<Q

∑

m≤V

|q−µ(m)|<q
2
3

b − 1

φ(b − 1)

ǫ(m)

(log b)m
7
8

√

2πsbm
7
8

(

exp

(

−(q − µ(m))2

2sbm
7
8

)

+ O(m− 1
4 )

)

. (8)

Now the O(m− 1
4 ) term in the above leads to an error (using m = (q/µb)

8
7 + O(q

8
7
− 1

3 ))

≪
∑

q<Q

q
8
7
− 1

3 q−
1
7 q−1q−

1
2 q−

2
7 = O(1),

and so we can concentrate on the main term in (8). By (7) we can replace ǫ(m) with

δ(m) log b and only incur an error which is O(m− 1
8 ) times the main term. We can ignore this

error as it will prove to be negligible. By using m
7
8 = q/µb + O(q

2
3 ) we can reduce the sum

to
b − 1

φ(b − 1)

1√
2πsb

∑

q<Q

(µb/q)
3
2 Σq + O(1),

with

Σq =
∑

m≤V

|q−µ(m)|<q
2
3

δ(m) exp

(

−µb(q − µ(m))2

2sbq

)

.
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We can identify this as a Riemann sum of an integral and so obtain

Σq =

∫ q/µb+q
2
3

q/µb−q
2
3

exp

(

−µb(q − µbx)2

2sbq

)

dx + O(1)

=

√
2sbqπ

µ
3
2
b

+ O(1).

We have thus shown that

S(X) =
b − 1

φ(b − 1)

∑

q<Q

1

q
+ O(1) =

b − 1

φ(b − 1)
L3(X) + O(1) (9)

as required to complete the proof.

4 Proof of Theorem 3

We prove Theorem 3 by induction; Theorem 2 is the case j = 1. Now assume that the case
j has been proved. If we follow the working in §3, then in place of (9) we obtain

∑

p<X

p∈P
(j+1)
b

1

p
=

b − 1

φ(b − 1)

∑

p<Y

p∈P
(j)
b

1

p
+ O(1)

where Y = logb X. By the inductive hypothesis we therefore have

∑

p<X

p∈P
(j+1)
b

1

p
=

(

b − 1

φ(b − 1)

)j+1

Lj+3(X) + O(1)

as required to complete the proof.
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