
23 11

Article 12.7.2
Journal of Integer Sequences, Vol. 15 (2012),2

3

6

1

47

A Note on Three Families of Orthogonal

Polynomials defined by Circular Functions,

and Their Moment Sequences

Paul Barry
School of Science

Waterford Institute of Technology
Ireland

pbarry@wit.ie

Abstract

Using the language of exponential Riordan arrays, we study three distinct families

of orthogonal polynomials defined by trigonometric functions. We study the moment

sequences of theses families, finding continued fraction expressions for their generating

functions, and calculate the Hankel transforms of these moment sequences. Results

related to the Euler or zigzag numbers, as well as the generalized Euler or Springer

numbers, are found. In addition, we characterize the Dowling numbers as moments of

a family of orthogonal polynomials.

1 Introduction

Riordan arrays [12] are known to have many applications in the area of combinatorics. They
often allow us to express in concise form results about objects of combinatorial interest [14],
and to infer analogues and generalizations, by virtue of their expressive form. In this note,
we continue a study of the links between certain Riordan arrays and orthogonal polynomials
[3, 7], and study three families of orthogonal polynomials each defined by trigonometric
functions. Our results stem from the observation that if a Riordan array L has a tri-diagonal
production matrix, then L−1 is the coefficient array of a family of orthogonal polynomials
[1, 2]. We shall be concerned in this note with exponential Riordan arrays [4], that is,
infinite lower-triangular matrices M (denoted by [g, f ]) defined by a pair of power series
f(x), where f(0) = 0, f ′(0) 6= 0, and g(x), where g(0) 6= 0, such that the k-th column of
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M has exponential generating function g(x)(f(x))k/k!. We recall that for an exponential
Riordan array

L = [g, f ]

the production matrix PL of L [4, 5, 6] is the matrix

PL = L−1L̃,

where L̃ is the matrix L with the first row removed. The bivariate generating function of PL

is given by
exy(c(x) + yr(x)),

where we have the Deutsch equations

r(x) = f ′(f̄(x)), (1)

and

c(x) =
g′(f̄(x))

g(f̄(x))
. (2)

The following well-known results (the first is the well-known “Favard’s Theorem”), which we
essentially reproduce from [8], specify the links between orthogonal polynomials, the three-
term recurrences that define them, the recurrence coefficients of those three-term recurrences,
and the g.f. of the moment sequence of the orthogonal polynomials.

Theorem 1. [8] (Cf. [16, Théorème 9, p. I-4], or [17, Theorem 50.1]). Let (pn(x))n≥0 be
a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then the
sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 2. [8] (Cf. [16, Proposition 1, Eq. (7), p. V-5], or [17, Theorem 51.1]). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.
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The Hankel transform [10] of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . . } where hn = |ai+j|ni,j=0, i.e.,

A = {an}n∈N0
→ h = {hn}n∈N0

: hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an
a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3)

The Hankel transform of a sequence an and that of its binomial transform are equal.
In the case that an has g.f. g(x) expressible in the form

g(x) =
a0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·
then we have [8]

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn = an+1
0

n
∏

k=1

βn+1−k
k . (4)

Note that this is independent of αn.
The exponential Riordan arrays that we shall study in the sequel will have polynomial entries,
where the polynomials have integer coefficients.

2 The exponential Riordan array L =

[

1
cosr x,

sin x
cos x

]

The numbers with generating function 1
cosx

= secx begin

1, 0, 1, 0, 5, 0, 61, 0, . . .

The “unaerated” sequence 1, 1, 5, 61, . . . is called the sequence of Euler, secant, or Zig num-
bers A000364. Both sequences are of importance in combinatorics. For instance, they are
closely associated to alternating permutations.
We consider the related exponential Riordan array

L =

[

1

cosr x
,
sin x

cos x

]

= [secr x, tan x],

which depends on the parameter r. The inverse of L is given by

L−1 =

[

1

(1 + x2)
r

2

, tan−1 x

]

.

We have the following proposition, relating these matrices to a family of orthogonal polyno-
mials.
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Proposition 3. The matrix

L−1 =

[

1

(1 + x2)
r

2

, tan−1 x

]

is the coefficient array of the family of orthogonal polynomials P
(r)
n (x) which satisfy the

following three-term recurrence

P (r)
n (x) = xP

(r)
n−1(x)− ((n− 1)r + (n− 1)(n− 2))P

(r)
n−2(x),

with P
(r)
0 (x) = 1, P

(r)
1 (x) = x.

Proof. We must show that the production matrix of L is tri-diagonal. We have f(x) = tan x
and thus f̄(x) = tan−1(x), and f ′(x) = sec2 x. Similarly g(x) = secr x and hence g′(x) =
r sin x secr+1 x. Thus

r(x) = f ′(f̄(x)) = 1 + x2,

while

c(x) =
g′(f̄(x))

g(f̄(x))
= rx.

This implies that the production matrix PL of L is generated by

exy(rx+ (1 + x2)y).

Thus the production matrix PL has the form






















0 1 0 0 0 0 . . .
r 0 1 0 0 0 · · ·
0 2r + 2 0 1 0 0 · · ·
0 0 3r + 6 0 1 0 · · ·
0 0 0 4r + 12 0 1 · · ·
0 0 0 0 5r + 20 0 · · ·
...

...
...

...
...

...
. . .























,

which proves the assertion.

Note that we can write the above three-term recurrence as

P (r)
n (x) = xP

(r)
n−1(x)− (n− 1)(n+ r − 2)P

(r)
n−2(x).

Corollary 4. The generating function of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

secr x =
1

1−
rx2

1−
2(r + 1)x2

1−
3(r + 2)x2

1−
4(r + 3)x2

1− · · ·

.
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We note that this moment sequence begins

1, 0, r, 0, r(3r + 2), 0, r(15r2 + 30r + 16), 0, . . . .

This sequence appears as the first column of the matrix L.

Corollary 5. The Hankel transform of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

hn =
n
∏

k=0

k!(r + k)n−k.

Proof. We have

hn =
∏

k=0

((k + 1)r + k(k + 1))n−k =
n
∏

k=0

(k + 1)n−k(r + k)n−k =
n
∏

k=0

k!(r + k)n−k.

Setting r = 1 shows that sec x is the generating function of the moments of the orthogonal
polynomials

P (1)
n (x) = xP

(1)
n−1(x)− (n− 1)2P

(1)
n−2(x).

The Hankel transform of these moments (the aerated Euler numbers) is thus given by

hn =
n
∏

k=0

k!(k + 1)n−k =
n
∏

k=0

k!2.

This is A055209.

3 The exponential Riordan array L =

[

1
(cos x−sin x)r ,

sin x
cos x−sin x

]

We now modify the denominator in the foregoing from cos x to cos x− sin x. We note that

1

cosx− sin x

is the generating function of the so-called Springer, or generalized Euler numbers A001586.
Thus we are led to consider the exponential Riordan array

L =

[

1

(cos x− sin x)r
,

sin x

cos x− sin x

]

=

[

1

(cosx− sin x)r
,

1

1− tan x
− 1

]

.

Note that

L = [(f ′(x))r/2, f(x)] where f(x) =
sin x

cos x− sin x
.

Again, we find that

L−1 =

[

1

(1 + 2x+ 2x2)
r

2

, tan−1

(

x

1 + x

)]

is the coefficient array of a family of orthogonal polynomials. This is the content of
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Proposition 6. The matrix

L−1 =

[

1

(1 + 2x+ 2x2)
r

2

, tan−1

(

x

1 + x

)]

is the coefficient array of the family of orthogonal polynomials P
(r)
n (x) which satisfy the

following three-term recurrence

P (r)
n (x) = (x− (r + 2(n− 1)))P

(r)
n−1(x)− (2(n− 1)r + 2(n− 1)(n− 2))P

(r)
n−2(x),

with P
(r)
0 (x) = 1, P

(r)
1 (x) = x− r.

Proof. We have g(x) = 1
(cosx−sinx)r

, and f(x) = sinx
cosx−sinx

. Then using equations (1) and (2)
we obtain that the generating function of the production array PL of L is equal to

exy(r(1 + 2x) + (1 + 2x+ 2x2)y).

This implies that PL has the form






















r 1 0 0 0 0 · · ·
2r r + 2 1 0 0 0 · · ·
0 4r + 4 r + 4 1 0 0 · · ·
0 0 6r + 12 r + 6 1 0 · · ·
0 0 0 8r + 24 r + 8 1 · · ·
0 0 0 0 10r + 40 r + 10 · · ·
...

...
...

...
...

...
. . .























,

which proves the assertion.

Corollary 7. The generating function of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

1

(cos x− sin x)r
=

1

1− rx−
2rx2

1− (r + 2)x−
4(r + 1)x2

1− (r + 4)x−
6(r + 2)x2

1− (r + 6)x−
8(r + 3)x2

1− · · ·

.

We note that this moment sequence begins

1, r, r2 + 2r, r(r2 + 6r + 4), r(r3 + 12r2 + 28r + 16), . . . .

Corollary 8. The Hankel transform of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

hn = 2(
n+1

2 )
n
∏

k=0

k!(r + k)n−k.
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Proof. We have

hn =
n
∏

k=0

2kk!(r + k)n−k = 2(
n+1

2 )
n
∏

k=0

k!(r + k)n−k.

Setting r = 1 shows that 1
cosx−sinx

is the generating function of the moments of the orthogonal
polynomials

P (1)
n (x) = (x− (2n− 1))P

(1)
n−1(x)− 2(n− 1)2P

(1)
n−2(x).

The Hankel transform of these moments (the generalized Euler or Springer numbers) is thus
given by

hn = 2(
n+1

2 )
n
∏

k=0

k!(k + 1)n−k = 2(
n+1

2 )
n
∏

k=0

k!2.

This is A091804.
It is of interest to analyze the structure of the moment sequence

1, r, r2 + 2r, r(r2 + 6r + 4), r(r3 + 12r2 + 28r + 16). . . .

This is a sequence of polynomials in r, with coefficient array given by the exponential Riordan
array

[

1, ln

(

1

cos x− sin x

)]

.

We can generalize the foregoing results as follows.

Proposition 9. The matrix

L−1 =





1

(1 + 2x+ 2sx2)
r

2

,
tan−1

(√
2s−1x
1+x

)

√
2s− 1





is the coefficient array of the family of orthogonal polynomials P
(r,s)
n (x) which satisfy the

following three-term recurrence

P (r,s)
n (x) = (x− (r + 2(n− 1)))P

(r,s)
n−1 (x)− (2(n− 1)r + 2s(n− 1)(n+ r − 2))P

(r,s)
n−2 (x),

with P
(r,s)
0 (x) = 1, P

(r,s)
1 (x) = x− r.

In fact, we find that the matrix L, where

L =

[

1

(cos(
√
2s− 1x)− sin(

√
2s− 1x)/

√
2s− 1)r

,
sin(

√
2s− 1x)/

√
2s− 1

cos(
√
2s− 1x)− sin(

√
2s− 1x)/

√
2s− 1

]

,
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has production matrix























r 1 0 0 0 0 · · ·
2sr r + 2 1 0 0 0 · · ·
0 4s(r + 1) r + 4 1 0 0 · · ·
0 0 6s(r + 2) r + 6 1 0 · · ·
0 0 0 8s(r + 3) r + 8 1 · · ·
0 0 0 0 10s(r + 4) r + 10 · · ·
...

...
...

...
...

...
. . .























,

which shows that L−1 is indeed the coefficient array of the family of orthogonal polynomials
P

(r,s)
n . In addition, we see that the generating function

1

(cos(
√
2s− 1x)− sin(

√
2s− 1x)/

√
2s− 1)r

has the following continued fraction expression:

1

1− rx−
2srx2

1− (r + 2)x−
4s(r + 1)x2

1− (r + 4)x−
6s(r + 2)x2

1− (r + 6)x−
8s(r + 3)x2

1− · · ·

.

Hence the Hankel transform of the moment sequence of the family of orthogonal polynomials
P

(r,s)
n (x) is given by

hn(r, s) = (2s)(
n+1

2 )
n
∏

k=0

k!(r + k)n−k.

Writing u = 2s− 1, we have

Proposition 10. The matrix

L−1 =





1

(1 + 2x+ (u+ 1)x2)
r

2

,
tan−1

(√
ux

1+x

)

√
u





is the coefficient array of the family of orthogonal polynomials P
(r,u)
n (x) which satisfy the

following three-term recurrence

P (r,s)
n (x) = (x− (r + 2(n− 1)))P

(r,s)
n−1 (x)− (n− 1)(n+ r − 2)(u+ 1)P

(r,s)
n−2 (x),

with P
(r,s)
0 (x) = 1, P

(r,s)
1 (x) = x− r.
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In this case, the production matrix of L is given by






















r 1 0 0 0 0 · · ·
r(u+ 1) r + 2 1 0 0 0 · · ·

0 2(r + 1)(u+ 1) r + 4 1 0 0 · · ·
0 0 3(r + 2)(u+ 1) r + 6 1 0 · · ·
0 0 0 4(r + 3)(u+ 1) r + 8 1 · · ·
0 0 0 0 5(r + 4)(u+ 1) r + 10 · · ·
...

...
...

...
...

...
. . .























.

We note that for orthogonality, we must have s 6= 0, or equivalently, u 6= −1. The case
r = 1, s = 0 is interesting. In this case, we have

L−1 =

[

1√
1 + 2x

,
ln(1 + 2x)

2

]

=

[

1√
1 + 2x

, ln
(√

1 + 2x
)

]

.

The matrix L−1, which in this case is not the coefficient array of a family of orthogonal
polynomials, begins























1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
3 −4 1 0 0 0 · · ·

−15 23 −9 1 0 0 · · ·
105 −176 86 −16 1 0 · · ·
−945 1689 −950 230 −25 1 · · ·
...

...
...

...
...

...
. . .























,

with L given by






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 4 1 0 0 0 · · ·
1 13 9 1 0 0 · · ·
1 40 58 16 1 0 · · ·
1 121 330 170 25 1 · · ·
...

...
...

...
...

...
. . .























.

This is A039755. It represents the 2-Dowling arrangements, corresponding to the Whitney
numbers for the Bn lattices [15]. We have in this case

L = [ex, ex sinh x] ,

and the production matrix of L is given by






















1 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 0 5 1 0 0 · · ·
0 0 0 7 1 0 · · ·
0 0 0 0 9 1 · · ·
0 0 0 0 0 11 · · ·
...

...
...

...
...

...
. . .























.
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The row sums of

L = [ex, ex sinh x] =

[

ex,
e2x − 1

2

]

give the sequence of Dowling numbers A007405 with e.g.f.

exee
x sinhx = ex exp

(

e2x − 1

2

)

.

This sequence begins
1, 2, 6, 24, 116, 648, 4088, 28640, . . . ,

and has Hankel transform [15]

hn = 2(
n+1

2 )
n
∏

k=1

k!

The sequence of Dowling numbers has g.f. given by the continued fraction

1

1− 2x−
2x2

1− 4x−
4x2

1− 6x−
6x2

1− 8x− · · ·

.

This follows from the fact that the Dowling numbers coincide with the first column of the
exponential Riordan array

LD = [ex exp(ex sinh x), ex sinh x]

which has production matrix






















2 1 0 0 0 0 · · ·
2 4 1 0 0 0 · · ·
0 4 6 1 0 0 · · ·
0 0 6 8 1 0 · · ·
0 0 0 8 10 1 · · ·
0 0 0 0 10 12 · · ·
...

...
...

...
...

...
. . .























.

Thus the Dowling numbers are the moments of the family of orthogonal polynomials PD
n (x)

with coefficient array

L−1
D =

[

e−x

√
1 + 2x

,
ln(1 + 2x)

2

]

=

[

e−x

√
1 + 2x

, ln(
√
1 + 2x)

]

,

which satisfy the three-term recurrence

PD
n (x) = (x− 2n)PD

n−1(x)− 2(n− 1)PD
n−1(x),

with PD
0 (x) = 1 and PD

1 (x) = x− 2.
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4 The Riordan array L =

[(

1+sin x
cos2 x

)r
, sin x+1−cos x

cos x

]

In this example, we start with f(x) = sinx
cosx

and then modify the numerator expression by
adding 1− cos x. Our modified f(x) is now given by

f(x) =
sin x+ 1− cosx

cos x
= secx+ tan x− 1.

We note that the numbers with e.g.f. secx+ tan x, which begin

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, . . .

are called “up-down” numbers (or Euler numbers) A000111. We now let

g(x) = (f ′(x))r =

(

1 + sin x

cos2 x

)r

= ((1 + sin x) sec2 x)r.

Thus we consider the exponential Riordan array

L = [(f ′(x))r, f(x)] = [((1 + sin x) sec2 x)r, sec x+ tan x− 1].

We have

L−1 =

[(

2

2 + 2x+ x2

)r

, 2 tan−1(1 + x)− π

2

]

.

Note that

(2 tan−1(1 + x)− π

2
)′ =

2

2 + 2x+ x2
.

Proposition 11. The matrix

L−1 =

[(

2

2 + 2x+ x2

)r

, 2 tan−1(1 + x)− π

2

]

is the coefficient array of the family of orthogonal polynomials P
(r)
n (x) which satisfy the

following three-term recurrence

P (r)
n (x) = (x− r − n+ 1)P

(r)
n−1(x)− ((n− 1)r +

(

n− 1

2

)

)P
(r)
n−2(x),

with P
(r)
0 (x) = 1, P

(r)
1 (x) = x− r.

Proof. We have g(x) = ((1 + sin x) sec2 x)r, and sec x+ tan x− 1. Then using equations (1)
and (2) we obtain that the generating function of the production array PL of L is equal to

exy(r(1 + x) + (1 + x+ x2/2)y).
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This implies that PL has the form























r 1 0 0 0 0 · · ·
r r + 1 1 0 0 0 · · ·
0 2r + 1 r + 2 1 0 0 · · ·
0 0 3r + 3 r + 3 1 0 · · ·
0 0 0 4r + 6 r + 4 1 · · ·
0 0 0 0 5r + 10 r + 5 · · ·
...

...
...

...
...

...
. . .























,

which proves the assertion.

Corollary 12. The generating function of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

((1 + sin x) sec2 x)r =
1

1− rx−
rx2

1− (r + 1)x−
(2r + 1)x2

1− (r + 2)x−
(3r + 3)x2

1− (r + 3)x−
(4r + 6)x2

1− · · ·

.

Corollary 13. The Hankel transform of the moment sequence associated to the family of
orthogonal polynomials P

(r)
n is given by

hn =
n
∏

k=0

k!(r + k/2)n−k.

For r = 1, we get the exponential Riordan array

L =

[

1 + sin x

cos2 x
,
sin x+ 1− cos x

cos x

]

,

which begins






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
5 11 6 1 0 0 · · ·
16 45 35 10 1 0 · · ·
61 211 210 85 15 1 · · ·
...

...
...

...
...

...
. . .























.

The first column is made up of the “shortened” or reduced up-down (or Euler) numbers with
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e.g.f. (secx+ tan x)′. This matrix is A147315. This matrix has production matrix






















1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
0 3 3 1 0 0 · · ·
0 0 6 4 1 0 · · ·
0 0 0 10 5 1 · · ·
0 0 0 0 15 6 · · ·
...

...
...

...
...

...
. . .























,

and hence the shortened up-down numbers have generating function given by the continued
fraction

1

1− x−
x2

1− 2x−
3x2

1− 3x−
6x2

1− 4x−
10x2

1− 5x− · · ·

,

and Hankel transform A154604

hn =
n
∏

k=1

(

k + 1

2

)n−k+1

=
n
∏

k=0

(

k + 2

2

)n−k

=

(

1

2

)(n+1

2 ) n
∏

k=0

k!(k + 1)!.
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