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Abstract

We study constant coefficient four term recurrences for polynomials, in analogy to

the three-term recurrences that are associated with orthogonal polynomials. We show

that for a family of polynomials obeying such a four-term recurrence, the coefficient

array is an ordinary Riordan array of a special type, and vice versa. In certain cases,

it is possible to transform these polynomials into related orthogonal polynomials. We

characterize the form of the production matrices of the inverse coefficient arrays.

1 Introduction

In this note we shall be concerned with families of monic polynomials Pn(x) where Pn(x) is
of degree n. Thus we will have

Pn(x) =
n

∑

k=0

an,kx
k, an,n = 1.

The matrix of elements an,k is then a lower-triangular matrix with 1’s on the diagonal, and
hence invertible. We shall call this matrix the coefficient array of the polynomial family. The
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inverse of this matrix will be called the inverse coefficient array. In the case of orthogonal
polynomials, the elements of the first column of the inverse coefficient array are the moments
of the family [20]. We shall refer to the elements of the first column of a general inverse
coefficient array as being generalized (formal) moments.

We recall that an ordinary Riordan array [15, 18] is defined by a pair (g, f) of power
series, where g(x) = 1 + g1x + g2x

2 + · · · , f(x) = x + f2x
2 + · · · , and is associated to the

matrix (tn,k)0≤n,k≤∞ where tn,k = [x]ng(x)f(x)k. (These are proper Riordan arrays). The
multiplication law for these pairs, which form a group, is given by

(g, f) · (h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄(x) = Revxf(x) is the compositional inverse of f . For an invertible matrix L, we
define the production matrix PL to be the matrix PL = L−1L̂, where L̂ is the matrix L
with its first row removed [5, 6]. When L is a Riordan array (g, f), the first column of PL is

generated by Z(x) = 1
f̄(x)

(

1 − 1
g(f̄(x))

)

, while the k-th column of PL is generated by xk−1A(x)

(taking the first column to be indexed by 0), where A(x) = x

f̄(x)
. For a sequence an, the

sequence of determinants hn = |ai+j|0≤i,j≤n is called the Hankel transform [11, 12, 13] of
an. Sequences will be referred to by their OEIS [16, 17] numbers. For instance, the Catalan

numbers Cn = 1
n+1

(

2n

n

)

= [xn]1−
√

1−4x

2x
are sequence A000108.

It is a classical result that a family of monic polynomials Pn(x) is a family of orthogonal
polynomials [4, 7, 19] if and only if they satisfy a three-term recurrence of the form

Pn(x) = (x − αn)Pn−1 − βnPn−2,

with appropriate initial conditions. A more recent result [1, 2] is that a Riordan array A is the
coefficient array of a family of orthogonal polynomials if and only if the production matrix of
A−1 is tridiagonal (a result based on previous work [14, 21]). In the case of ordinary Riordan
arrays, the coefficients αn and βn are necessarily independent of n. The most general form
of ordinary Riordan array that coincides with the coefficient array of a family of orthogonal
polynomials is then given by

(

1 − cx − dx2

1 + ax + bx2
,

x

1 + ax + bx2

)

,

for appropriate values of a, b, c, d. In this note, we ask ourselves the question: what can be
said about families of polynomials Pn(x), that satisfy a four-term recurrence of the form:

Pn(x) = (x − α)Pn−1(x) − (x − β)Pn−2(x) − γPn−3(x).

Note that in this note we are considering the simplest case of constant coefficients.

2 Main results

Our results are encapsulated in the following theorem.
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Theorem 1. A family of monic polynomials Pn(x) where Pn(x) is of degree n, satisfies the
four-term recurrence

Pn(x) = (x − α + 1)Pn−1(x) − (x + β)Pn−2(x) − γPn−3,

with Pn(x) = 0 for n < 0, P0(x) = 1 and P1(x) = x − δ, if and only if the coefficient array
of the family Pn(x) is given by the Riordan array

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

.

In addition, for such a family, if γ = 0 (but α + β 6= 0 and β + δ 6= 0), then the family of
polynomials

Qn(x) =
n

∑

k=0

(−1)n−k

(

n − 1

n − k

)

Pk(x + 1)

is a family of orthogonal polynomials that satisfies the three-term recurrence

Qn(x) = (x − α)Qn−1(x) − (α + β)Qn−2(x),

with Q0(x) = 1, and Q1(x) = x − δ + 1.

Proof. We let pn(x) be the family of polynomials whose coefficient array is given by the
Riordan array

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

.

Since this array is lower triangular with 1’s on the diagonal, each polynomial pn(x) is monic
of degree n. We let

L =

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)−1

.

Then standard Riordan array techniques show that the production matrix PL of L is given
by

PL =























δ 1 0 0 0 0 . . .
β + δ α 1 0 0 0 . . .

β + δ + γ α + β α 1 0 0 . . .
β + δ + γ α + β + γ α + β α 1 0 . . .
β + δ + γ α + β + γ α + β + γ α + β α 1 . . .
β + δ + γ α + β + γ α + β + γ α + β + γ α + β α . . .

...
...

...
...

...
...

. . .























.

This implies that






















δ 1 0 0 0 0 . . .
β + δ α 1 0 0 0 . . .

β + δ + γ α + β α 1 0 0 . . .
β + δ + γ α + β + γ α + β α 1 0 . . .
β + δ + γ α + β + γ α + β + γ α + β α 1 . . .
β + δ + γ α + β + γ α + β + γ α + β + γ α + β α . . .

...
...

...
...

...
...

. . .





































p0(x)
p1(x)
p2(x)
p3(x)

...















=















xp0(x)
xp1(x)
xp2(x)
xp3(x)

...















.
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We deduce the following.

p1(x) + δp0(x) = xp0(x) =⇒ p1(x) = x − δ.

p2(x) + αp1(x) + (β + δ)p0(x) = xp1(x) =⇒ p2(x) = (x − α)p1(x) − (β + δ)

which further implies that

p2(x) = (x − α + 1)p1(x) − p1(x) − (β + δ) = (x − α + 1)p1(x) − (x + β)p0(x).

We have
p3(x) + αp2(x) + (α + β)p1(x) + (β + δ + γ)p0(x) = xp2(x)

which implies that

p3(x) = (x − α)p2(x) − (α + β)p1(x) − (β + δ + γ)

= (x − α + 1)p2(x) − p2(x) − (α + β)p1(x) − (β + δ + γ)

= (x − α + 1)p2(x) − (x − α)p1(x) + (β + δ) − (α + β)p1(x) − (β + δ + γ)

= (x − α + 1)p2(x) − (x + β)p1(x) − γp0(x).

In similar fashion we can show that

p4(x) = (x − α + 1)p3(x) − (x + β)p2(x) − γp1(x).

Now assume that

pn−1(x) = (x − α + 1)pn−2(x) − (x + β)pn−3(x) − γpn−4(x).

We have

pn = (x−α)pn−1−(α+β)pn−2−(α+β+γ)pn−3−(α+β+γ)pn−4−· · ·−(α+β+γ)p1−(β+δ+γ).

Then

pn = (x − α + 1)pn−1 − pn−1 − (α + β)pn−2 − (α + β + γ)pn−3 − (α + β + γ)pn−4 − · · · ,

or

pn = (x − α + 1)pn−1 − (x − α + 1)pn−2 + (x + β)pn−3 + γpn−4−

(α + β)pn−2 − (α + β + γ)pn−3 − · · · .

Thus

pn = (x − α + 1)pn−1 − (x + β + 1)pn−2 − (−x + α + γ)pn−3 − (α + β)pn−4 − · · ·

= (x − α + 1)pn−1 − (x + β)pn−2 − pn−2 − (−x + α + γ)pn−3 − (α + β)pn−4 − · · ·

= (x − α + 1)pn−1 − (x + β)pn−2 − (x − α + 1)pn−3 + (x + β)pn−4 + γpn−5 − · · ·

= (x − α + 1)pn−1 − (x + β)pn−2 − γpn−3 − pn−3 + (x − α)pn−4 + γpn−5 − · · · .
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We must now show that

−pn−3 + (x−α)pn−4 − (α + β)pn−5 − (α + β + γ)pn−6 − · · ·− (α + β + γ)p1 − (β + δ + γ) = 0.

Since
pn−3 = (x − α + 1)pn−4 − (x + β)pn−5 − γpn−6

this reduces to showing that

−pn−4 + (x − α)pn−5 − (α + β)pn−6 − · · · − (α + β + γ)p1 − (β + δ + γ) = 0.

Iterating on decreasing n we get
0 = 0.

Thus the family of polynomials pn(x) satisfy the four-term recurrence with the appropriate
initial conditions.

Conversely, if we start with a family of monic polynomials Pn(x) of degree n that satisfy
the four-term recurrence

Pn(x) = (x − α + 1)Pn−1(x) − (x + β)Pn−2(x) − γPn−3,

with Pn(x) = 0 for n < 0, P0(x) = 1 and P1(x) = x − δ, then the Riordan array

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

will coincide with the coefficient array of Pn(x), since clearly pn(x) = Pn(x) for all n as they
have the same initial values and obey the same recurrence.

We now form the matrix
(

1,
x

1 + x

)

·

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

·

(

1

1 − x
,

x

1 − x

)

.

This evaluates to the Riordan array

(

(1 + (α − δ)x)(1 + x)2

1 + (α + 1)x + (2α + β)x2 + (α + β + γ)x3
,

x(1 + x)

1 + (α + 1)x + (2α + β)x2 + (α + β + γ)x3

)

.

Letting γ = 0, this simplifies to

(

(1 + (α − δ)x)(1 + x)

1 + αx + (α + β)x2
,

x

1 + αx + (α + β)x2

)

.

But this is the coefficient array of a family of orthogonal polynomials qn(x) that satisfy

qn(x) = (x − α)qn−1 − (α + β)qn−2.

Now the general term of the Riordan array
(

1, x
1−x

)

is
(

n−1
n−k

)

, while that of
(

1
1−x

, x
1+x

)

is
(

n

k

)

.

Noting that (x + 1)n =
∑n

k=0

(

n

k

)

xk (binomial theorem) completes the proof.
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In general, the production matrix of the triple product

(

1,
x

1 + x

)

·

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

·

(

1

1 − x
,

x

1 − x

)

is equal to






















δ − 1 1 0 0 0 0 . . .
β + δ α 1 0 0 0 . . .

γ α + β α 1 0 0 . . .
−γ γ α + β α 1 0 . . .
γ −γ γ α + β α 1 . . .
−γ γ −γ γ α + β α . . .
...

...
...

...
...

...
. . .























.

We note that the intermediate product

(

1,
x

1 + x

)

·

(

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
,

x(1 − x)

1 + (α − 1)x + βx2 + γx3

)

is equal to

(

(1 + (α − δ)x)(1 + x)2

1 + (α + 2)x + (2α + β + 1)x2 + (α + β + γ)x3
,

x(1 + x)

1 + (α + 2)x + (2α + β + 1)x2 + (α + β + γ)x3

)

.

The inverse of this array has production matrix given by























δ 1 0 0 0 0 . . .
β + δ α + 1 1 0 0 0 . . .

γ α + β α + 1 1 0 0 . . .
−γ γ α + β α + 1 1 0 . . .
γ −γ γ α + β α + 1 1 . . .
−γ γ −γ γ α + β α + 1 . . .
...

...
...

...
...

...
. . .























.

Corollary 2. When γ = 0, the polynomials

Rn(x) =
n

∑

k=0

(

n − 1

n − k

)

Pk(x)

form the family of orthogonal polynomials satisfying

Rn(x) = (x − (α + 1))Rn−1 − (α + β)Rn−2(x),

with R0(x) = 1, R1(x) = x − δ.
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3 Examples and further results

Example 3. We take the Riordan array (1−x, x(1−x)) which corresponds to α = 1, δ = 1,
β = γ = 0. This is the coefficient array for the polynomials Pn(x) =

∑n

k=0

(

k+1
n−k

)

(−1)n−kxk,
which satisfy

Pn(x) = xPn−1(x) − xPn−2,

with P0(x) = 1, P1(x) = x − 1. The inverse of the coefficient array (1 − x, x(1 − x)) is the
Catalan array (c(x), xc(x)) A033184 which has production matrix























1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
. . .























.

The first column of (c(x), xc(x)) is given by the Catalan numbers A000108, and hence we can
regard the Catalan numbers as the generalized moments of the family Pn(x). Now forming
the triple product

(

1,
x

1 + x

)

· (1 − x, x(1 − x)) ·

(

1

1 − x
,

x

1 − x

)

we obtain the orthogonal polynomial coefficient array given by
(

1 + x

1 + x + x2
,

x

1 + x + x2

)

.

This is the coefficient array of the orthogonal polynomials Qn(x) for which

Qn(x) = (x − 1)Qn−1(x) − Qn−2(x),

with Q0(x) = 1, Q1(x) = x. The moments of these polynomials are the so-called “Motzkin
sums”, A005043. These appear as the elements of the first column of the inverse coefficient
array, which has production matrix























0 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
0 1 1 1 0 0 . . .
0 0 1 1 1 0 . . .
0 0 0 1 1 1 . . .
0 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .























.

The inverse coefficient array is A089942. We note that the Catalan numbers and the Motzkin
sums have the same Hankel transform. This is because the Motzkin sums are the inverse
binomial transform of the Catalan numbers.
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Proposition 4. The moments of the orthogonal polynomials Qn(x) above are the inverse
binomial transforms of the generalized moments of the polynomials Pn(x). In particular, both
sets of moments have the same Hankel transform.

Proof. Consider the triple product

(

1,
1

1 + x

)

· A ·

(

1

1 − x
,

x

1 − x

)

,

where A is the coefficient array of Pn(x). The (generalized) moments of Pn(x) are the
elements of the first column of A−1. Now the moments of Qn(x) will be given by the
elements of the first column of

((

1,
1

1 + x

)

· A ·

(

1

1 − x
,

x

1 − x

))−1

=

(

1

1 + x
,

x

1 + x

)

· A−1 ·

(

1,
x

1 − x

)

.

Thus if A−1 = (g, f), where g is the generating function of the moments of Pn(x), then the
moments of Qn(x) have a generating function given by

(

1

1 + x
,

x

1 + x

)

· g(x) =
1

1 + x
g

(

x

1 + x

)

,

since the first member of
(

1, x
1−x

)

is 1. This proves the first assertion. The Hankel transforms
are equal because one sequence is related to another by a binomial transform [10, 13].

Note that the above proof actually proves more, since the case of orthogonal Qn(x) only
arises when γ = 0.

Example 5. We look at the case of the Riordan array

(

1 − x

1 + 3x + 3x2 + x3
,

x(1 − x)

1 + 3x + 3x2 + x3

)

=

(

1 − x

(1 + x)3
,
x(1 − x)

(1 + x)3

)

.

This is the coefficient array of the polynomials Pn(x) that satisfy

Pn(x) = (x − 3)Pn−1(x) − (x + 3)Pn−2(x) − Pn−3(x),

with P0(x) = 1, P1(x) = x − 4. The moments of this family are given by A007297, which
begins

1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, . . .

They count the number of connected graphs on n nodes on a circle without crossing edges.
Their g.f. is equal to

1

x
Revx

x(1 − x)

(1 + x)3
.

We remark that x(1−x)
(1+x)3

is the generating function of the signed squares

0, 1,−4, 9,−16, 25, . . .
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The production matrix of the inverse coefficient array is






















4 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
8 7 4 1 0 0 . . .
8 8 7 4 1 0 . . .
8 8 8 7 4 1 . . .
8 8 8 8 7 4 . . .
...

...
...

...
...

...
. . .























.

Passing to the triple product we obtain the Riordan array
(

(1 + x)2

1 + 5x + 11x2 + 8x3
,

x(1 + x)

1 + 5x + 11x2 + 8x3

)

.

The production matrix of the inverse coefficient array in this case is given by






















3 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
1 7 4 1 0 0 . . .
−1 1 7 4 1 0 . . .
1 −1 1 7 4 1 . . .
−1 1 −1 1 7 4 . . .
...

...
...

...
...

...
. . .























.

The moments for this coefficient array begin

1, 3, 16, 98, 661, 4731, 35299, . . . ,

which are the inverse binomial transform of A007297.
It is instructive to look at the Riordan array

(

1 − x

1 + 3x + 3x2
,

x(1 − x)

1 + 3x + 3x2

)

=

(

1 − x

(1 + x)3 − x3
,

x(1 − x)

(1 + x)3 − x3

)

.

In this case, γ = 0. The triple product is then equal to
(

1 + x

1 + 4x + 7x2
,

x

1 + 4x + 7x2

)

,

whose inverse has production matrix






















3 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
0 7 4 1 0 0 . . .
0 0 7 4 1 0 . . .
0 0 0 7 4 1 . . .
0 0 0 0 7 4 . . .
...

...
...

...
...

...
. . .























.
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Thus the triple product is the coefficient array of the orthogonal polynomials Qn(x) that
satisfy

Qn(x) = (x − 4)Qn−1(x) − 7Qn−2,

with Q0(x) = 1, Q1(x) = x − 3. The moments of this family of orthogonal polynomials,
which begin

1, 3, 16, 97, 648, 4590, 33888, 257925, 2009464, . . .

then have g.f. given by

1

1 − 3x −
7x2

1 − 4x −
7x2

1 − 4x −
7x2

1 − 4x − · · ·

.

The polynomials Pn(x) whose coefficient array is
(

1 − x

1 + 3x + 3x2
,

x(1 − x)

1 + 3x + 3x2

)

can now be recovered through the formula

Pn(x) =
n

∑

k=0

(

n − 1

n − k

)

Qk(x − 1).

The moments of the family Pn(x), which begin

1, 4, 23, 155, 1145, 8976, 73347, . . . ,

and which are the binomial transform of the moments of Qn, have g.f. given by

1

1 − 4x −
7x2

1 − 5x −
7x2

1 − 5x −
7x2

1 − 5x − · · ·

.

Note that the production matrix of the inverse coefficient array to
(

1−x
1+3x+3x2 ,

x(1−x)
1+3x+3x2

)

is

given by






















4 1 0 0 0 0 . . .
7 4 1 0 0 0 . . .
7 7 4 1 0 0 . . .
7 7 7 4 1 0 . . .
7 7 7 7 4 1 . . .
7 7 7 7 7 4 . . .
...

...
...

...
...

...
. . .























.
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Example 6. The case of γ = 0 and β + δ = 0 is illustrated by the Riordan array

(

1

1 − x + x2
,

x(1 − x)

1 − x + x2

)

,

where α = 0 too. The moments of the polynomials defined by this array are given by (−1)n,
with corresponding production matrix























−1 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 1 1 0 1 0 . . .
0 1 1 1 0 1 . . .
0 1 1 1 1 0 . . .
...

...
...

...
...

...
. . .























.

The triple product

(

1,
x

1 + x

)

·

(

1

1 − x + x2
,

x(1 − x)

1 − x + x2

)

·

(

1

1 − x
,

x

1 − x

)

then evaluates to
(

(1 + x)2

1 + x2
,

x

1 + x2

)

.

The moments of the polynomials defined by this array are given by (−2)n, and the corre-
sponding production matrix is given by























−2 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
0 0 1 0 1 0 . . .
0 0 0 1 0 1 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .























.

The zero in the (2, 1) position shows that this family is not orthogonal.

Example 7. We illustrate the exceptional case γ = 0 and α + β = 0 by taking α = −1,
β = 1 and δ = −1. We obtain the Riordan array

(

1 − x

1 − 2x + x2
,

x(1 − x)

1 − 2x + x2

)

=

(

1

1 − x
,

x

1 − x

)

,

which is the Binomial matrix (Pascal’s triangle, A007318). The polynomials Pn(x) are given
by Pn(x) = (1 + x)n, and the moments are (−1)n. The production matrix of the inverse
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coefficient array (which is the inverse binomial matrix) is given by























−1 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 0 −1 1 0 . . .
0 0 0 0 −1 1 . . .
0 0 0 0 0 −1 . . .
...

...
...

...
...

...
. . .























.

Forming the triple product we get the Riordan array

(

1 + x

1 − x
,

x

1 − x

)

.

The moments of the corresponding polynomials Qn(x) are then (−2)n, and the associated
production array is























−2 1 0 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 0 −1 1 0 . . .
0 0 0 0 −1 1 . . .
0 0 0 0 0 −1 . . .
...

...
...

...
...

...
. . .























.

Clearly the polynomials Qn(x) are not orthogonal. We have Qn(x) = (1 + x)n−1(x + 2) for
n > 0, and Q0(x) = 1.

Since all matrices above are invertible, it is possible to reverse the above triple product
process. A case of particular interest is the following.

Proposition 8. Let Qn(x) be a family of monic orthogonal polynomials given by

Qn(x) = (x − α)Qn−1 − βQn−2(x),

with Q0(x) = 1, Q1(x) = x − α + 1. Then the polynomials

Pn(x) =
n

∑

k=0

(

n − 1

n − k

)

Qk(x − 1)

satisfy the recurrence

Pn(x) = (x − α + 1)Pn−1(x) − (x + β − α)Pn−2,

with P0(x) = 1, P1(x) = x − α.
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The coefficient array of the polynomials Qn(x) in the above proposition is given by the
Riordan array

(

1 + x

1 + αx + βx2
,

x

1 + αx + βx2

)

.

Forming the triple product
(

1,
x

1 − x

)

·

(

1 + x

1 + αx + βx2
,

x

1 + αx + βx2

)

·

(

1

1 + x
,

x

1 + x

)

we obtain the coefficient array of the polynomials Pn(x). This is the Riordan array
(

1 − x

1 + (α − 1)x + (β − α)x2
,

x(1 − x)

1 + (α − 1)x + (β − α)x2

)

.

The production matrix of the inverse of this array is given by






















α 1 0 0 0 0 . . .
β α 1 0 0 0 . . .
β β α 1 0 0 . . .
β β β α 1 0 . . .
β β β β α 1 . . .
β β β β β α . . .
...

...
...

...
...

...
. . .























.

The production matrix for the inverse of the coefficient array of the orthogonal polynomials
Qn(x) in the proposition is given by























α − 1 1 0 0 0 0 . . .
β α 1 0 0 0 . . .
0 β α 1 0 0 . . .
0 0 β α 1 0 . . .
0 0 0 β α 1 . . .
0 0 0 0 β α . . .
...

...
...

...
...

...
. . .























.

Corollary 9. The (generalized) moments associated to the polynomials Pn(x) whose coeffi-
cient array is given by

(

1 − x

1 + (α − 1)x + (β − α)x2
,

x(1 − x)

1 + (α − 1)x + (β − α)x2

)

have generating function expressible as

1

1 − αx −
βx2

1 − (α + 1)x −
βx2

1 − (α + 1)x − · · ·

.

13



Proof. They are the inverse binomial transform of the moments of Qn(x), which have g.f.
given by

1

1 − (α − 1)x −
βx2

1 − αx −
βx2

1 − αx − · · ·

.

The result follows since the inverse binomial transform increases the x coefficient by 1 [3].

In fact, we could have proved this result independently of the foregoing.

Proposition 10. The (generalized) moments of the Riordan array
(

1 − x

1 + rx + sx2
,

x(1 − x)

1 + rs + sx2

)

have g.f.

g(x) =
1 − rx −

√

1 − 2x(r + 2) + x2(r2 − 4s)

2x(1 + sx)
,

which can be expressed as

g(x) =
1

1 − (r + 1)x −
(r + s + 1)x2

1 − (r + 2)x −
(r + s + 1)x2

1 − (r + 2)x − · · ·

.

The production matrix of the inverse array is given by






















r + 1 1 0 0 0 0 . . .
r + s + 1 r + 1 1 0 0 0 . . .
r + s + 1 r + s + 1 r + 1 1 0 0 . . .
r + s + 1 r + s + 1 r + s + 1 r + 1 1 0 . . .
r + s + 1 r + s + 1 r + s + 1 r + s + 1 r + 1 1 . . .
r + s + 1 r + s + 1 r + s + 1 r + s + 1 r + s + 1 r + 1 . . .

...
...

...
...

...
...

. . .























.

The Hankel transform of the moments is hn = (r + s + 1)(
n+1

2 ).

Proof. We have

g(x) =
1

x
Revx

x(1 − x)

1 + rx + sx2
=

1 − rx −
√

1 − 2x(r + 2) + x2(r2 − 4s)

2x(1 + sx)
.

If we let g1(x) represent the continued fraction, then we have

g1(x) =
1

1 − (r + 1)x − (r + s + 1)x2u
where u =

1

1 − (r + 2)x − (r + s + 1)x2u
.

Solving for u and then g1(x) we find that g1(x) = g(x). The production matrix is calculated
using standard Riordan array techniques. The expression for the Hankel transform follows
directly from [11].
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Example 11. We consider the generalized Chebyshev polynomials with coefficient array

(

1 + x

1 + x2
,

x

1 + x2

)

.

This is the family of orthogonal polynomials Qn(x) which satisfy

Qn(x) = xQn−1 − Qn−2,

with Q0(x) = 1, Q1(x) = x + 1. The moments of this family of orthogonal polynomials are
given by un = (−1)n

(

n

⌊n

2
⌋
)

, the alternating sign version of the central binomial coefficients

A001405. We form the polynomials

Pn(x) =
n

∑

k=0

(

n − 1

n − k

)

Qk(x − 1).

We find that the coefficient array of these transformed polynomials is given by

(

1 − x

1 − x + x2
,

x(1 − x)

1 − x + x2

)

,

whose inverse array has production matrix























0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 1 0 1 0 0 . . .
1 1 1 0 1 0 . . .
1 1 1 1 0 1 . . .
1 1 1 1 1 0 . . .
...

...
...

...
...

...
. . .























.

The first column of the inverse array (generalized moments) is given by the so-called “Motzkin
sums”, A005043. Again, both moment sequences have the same Hankel transform. This is
because both are related by a binomial transform. In this case the polynomials Pn(x) satisfy
the recurrence

Pn(x) = (x + 1)Pn−1 − (x + 1)Pn−2,

with P0(x) = 1, P1(x) = x.

Example 12. We consider the Riordan array

(

1 + x

1 + 2x + 3x2
,

x

1 + 2x + 3x2

)

.

The moments un of the orthogonal polynomials Qn(x) generated by this array A129147 begin

1, 1, 4, 13, 52, 214, 928, . . .
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They can be expressed in closed form as

un =
n

∑

k=0

(

k

n − k

)

2n−kCk,

and have Hankel transform 3(n+1

2 ). The generating function of this sequence can be expressed
as the continued fraction

1

1 − x −
3x2

1 − 2x −
3x2

1 − 2x − · · ·

.

The corresponding family of polynomials Pn(x) will have coefficient array
(

1 − x

1 + x + x2
,

x(1 − x)

1 + x + x2

)

.

The moments of this family of polynomials is the sequence A064641, which counts certain
 Lukasiewicz paths [9]. This sequence has a generating function that can be expressed as

1

1 − 2x −
3x2

1 − 3x −
3x2

1 − 3x − · · ·

.

The production matrix of the inverse coefficient array is given by






















2 1 0 0 0 0 . . .
3 2 1 0 0 0 . . .
3 3 2 1 0 0 . . .
3 3 3 2 1 0 . . .
3 3 3 3 2 1 . . .
3 3 3 3 3 2 . . .
...

...
...

...
...

...
. . .























.

Reverting to the initial four-term recurrence, we see that the case of

α + β + γ = 0

is worthy of attention. In this case, β + γ = −α, and the original production matrix PL

simplifies to

PL =























δ 1 0 0 0 0 . . .
β + δ α 1 0 0 0 . . .
−α + δ α + β α 1 0 0 . . .
−α + δ 0 α + β α 1 0 . . .
−α + δ 0 0 α + β α 1 . . .
−α + δ 0 0 0 α + β α . . .

...
...

...
...

...
...

. . .























.
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Thus in this case we obtain a family of polynomials that are “almost orthogonal”. They are
defined by

Pn(x) = (x − α)Pn−1(x) − (α + β)Pn−2 + (α − δ),

with P0(x) = 1, and P1(x) = x − δ. In the special case α + β + γ = 0 and α = δ, we have

1 + (α − δ − 1)x

1 + (α − 1)x + βx2 + γx3
=

1 − x

1 + (α − 1)x + βx2 − (α + β)x3
=

1

1 + αx + (α + β)x2
.

Hence we obtain the family of orthogonal polynomials

Pn(x) = (x − α)Pn−1(x) − (α + β)Pn−2,

with P0(x) = 1, and P1(x) = x − α. The transformed polynomials

Qn(x) =
n

∑

k=0

(−1)n−kPk(x + 1)

then correspond to the Riordan array

(

1 + x

1 + αx
,

x

1 + αx

)

,

and can be expressed as
Qn(x) = (x − α)Qn−1(x),

with Q0(x) = 1, Q1(x) = x − α + 1. The production matrix of the inverse to the coefficient
array

(

1+x
1+αx

, x
1+αx

)

is given by

PL =























α − 1 1 0 0 0 0 . . .
0 α 1 0 0 0 . . .
0 0 α 1 0 0 . . .
0 0 0 α 1 0 . . .
0 0 0 0 α 1 . . .
0 0 0 0 0 α . . .
...

...
...

...
...

...
. . .























.

We can express Qn(x) in closed form as

Qn(x) =
n

∑

k=0

n
∑

j=0

(

1

n − j

)(

j

k

)

(−α)j−kxk.
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