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Abstract

Let Zb(n) denote the number of trailing zeroes in the base-b expansion of n!. In
this paper we study the connection between the expression of ϑ(b) := limn→∞ Zb(n)/n
in base b, and that of Zb(b

k).
In particular, if b is a prime power, we will show the equality between the k digits

of Zb(b
k) and the first k digits in the fractional part of ϑ(b). In the general case we

will see that this equality still holds except for, at most, the last ⌊logb(k) + 3⌋ digits.
We finally show that this bound can be improved if b is square-free and present some
conjectures about this bound.

1 Introduction

In what follows we let Zb(n) denote the number of trailing zeroes in the base-b expansion of
n!. It is a classic topic in elementary number theory to compute the number of trailing zeroes
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of the base-10 expansion of the factorial of an integer; i.e., Z10(n) (see [1, 2, 5] for instance
and A027868 of The On-Line Encyclopedia of Integer Sequences). In fact, this question can
be extended to arbitrary bases and the first author [6] studied in detail the behavior of the
function Zb (see A054861 for b = 3 and A011371 for b = 2).

This is an old topic which has recently drawn attention due to the increasing computing
possibilities and to the populary of computer algebra systems. In fact, we can find many
sequences in the OEIS which are related to this topic. For instance: A000966 (number of
zeroes that n! will never end in), A173558 (the smallest number whose factorial has 10n

trailing zeroes), A173292 (numbers whose factorial has exactly 10n trailing zeroes), A181582
(smallest prime p such that p! ends with exactly 10n trailing zeroes) or A173345 (the number
of trailing zeroes of n superfactorial) just to name a few.

In recent work (Hart et al. [3], motivated by Schmuland [7]), the following particularity
about the number of trailing zeroes in the factorial of the powers of 10 (see A173228) was
shown:

Z10(10) = 2,

Z10(102) = 24,

Z10(103) = 249,

Z10(104) = 2499,

Z10(105) = 24999,

Z10(106) = 249998,

Z10(107) = 2499999,

Z10(108) = 24999999,

Z10(109) = 249999998,

Z10(1010) = 2499999997.

Although the sequence of final 9’s is broken for some values of the exponent, it seems
clear that the number of 9’s grows indefinitely. For instance,

Z10(1050) = 24999999999999999999999999999999999999999999999989,

Z10(10100) = 2499999999999999999999999999999999999999999999999999999999

999999999999999999999999999999999999999982.

This behavior and the fact that the number of digits of Z10(10m) is m, motivated the study

of the asymptotic behavior of
Z10(10k)

10k
by Treuden [8], where it was shown (as suggested by

the previous examples) that

lim
n→∞

Z10(n)

n
=

1

4
.

Also, in [8] it was suggested (and was proved in [3]) that if b = pr1

1 · · · prs
s , then

lim
n→∞

Zb(n)

n
= min

1≤i≤s

1

ri(pi − 1)
.
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Now, it is natural to wonder about what will be the behavior of the digits of Zb(b
k) for

other values of b. Let us have a look at the case k = 20 for various values of b.

Z2(2
20) = 1048575,

Z3(3
20) = 1743392200,

Z4(4
20) = 549755813887,

Z5(5
20) = 23841857910156,

Z6(6
20) = 1828079220031481,

Z7(7
20) = 13298711049602000,

Z8(8
20) = 384307168202282325,

Z9(9
20) = 3039416364764232200,

Z10(1020) = 24999999999999999996,

Z11(1120) = 67274999493256000920,

Z12(1220) = 1916879996223737561074,

Z13(1320) = 1583746981240066619900,

Z14(1420) = 13944709237547466926759,

Z15(1520) = 83131418251991271972652,

Z16(1620) = 302231454903657293676543,

Z17(1720) = 254014462915473282650100,

Z18(1820) = 3187059054099019543609340,

Z19(1920) = 2088331858752553232964200,

Z20(2020) = 26214399999999999999999991,

Z21(2120) = 46369738241158591439532728,

Z30(3020) = 87169610024999999999999999987.

In the light of this data, it may seem that the only interesting behavior takes place at
the multiples of 10. Nevertheless, this is not the case, as can be seen having a look at the
base-b expansion of the considered number:

Z2(2
20) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}2,

Z3(3
20) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}3,

Z4(4
20) = {1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}4,

Z5(5
20) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}5,

Z6(6
20) = {2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5}6,

Z7(7
20) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}7,

Z8(8
20) = {2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5}8,

Z9(9
20) = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}9,

Z10(1020) = {2, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6}10,
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Z11(1120) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}11,

Z12(1220) = {5, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10}12,

Z13(1320) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}13,

Z14(1420) = {2, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 1}14,

Z15(1520) = {3, 11, 3, 11, 3, 11, 3, 11, 3, 11, 3, 11, 3, 11, 3, 11, 3, 11, 3, 7}15,

Z16(1620) = {3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}16,

Z17(1720) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}17,

Z18(1820) = {4, 8, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 14}18,

Z19(1920) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}19,

Z20(2020) = {4, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 11}20,

Z21(2120) = {3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5}21,

Z22(2220) = {2, 4, 8, 17, 13, 4, 8, 17, 13, 4, 8, 17, 13, 4, 8, 17, 13, 4, 8, 14}22,

Z23(2320) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}23,

Z24(2420) = {7, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 18}24,

Z25(2520) = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}25.

Of course, the origin of these cyclic repetitions is closely related to the periodic expression

of ϑ(b) = lim
n→∞

Zb(n)

n
when expressed in the base b. In this paper we study the relation

between ϑ(b) and the base-b expansion of Zb(b
k). If b is a prime power, we will show the

equality between the k digits of Zb(b
k) and the first k digits in the fractional part of ϑ(b)

(i.e., ⌊ϑ(b)bk⌋).
In the general case this equality does not hold. We are then interested in investigating

the number of final digits of Zb(b
k) which break the previous coincidence. To do so, let us

consider η(b, k) := ⌊logb(⌊ϑ(b)bk⌋ −Zb(b
k)) + 1⌋. This represents the number of digits of the

base-b expansion of ⌊ϑ(b)bk⌋ − Zb(b
k) and observe that the number of unequal final digits

between ⌊ϑ(b)bk⌋ and Zb(b
k) is at most η(b, k) + 1. We will show that

η(b, k) ≤ ⌊logb k + 2⌋

is the best possible upper bound for η(b, k). Nevertheless, we will improve this upper bound
in the case when b is square-free and present some conjectures about this bound.

Observe that if ϑ(b) admits a finite expansion in base b (we will say that ϑ(b) is exact
in base b), then it admits two different b-adic expansions: the finite natural one and the
infinite one. Throughout the paper we will always consider the latter and we will understand
the floor function as the truncation of the fractional part. Consequently, if ϑ(b) is exact,
then ⌊ϑ(b)bk⌋ is to be interpreted as ϑ(b)bk − 1. For instance, if b = 10 and k = 6 then
ϑ(10) = 1

4
and we will consider 1

4
= 0.24999 · · · Thus ⌊ϑ(10)106⌋ will be interpreted as

249999 = 250000 − 1 = ϑ(10)106 − 1.
The paper is organized as follows. In Section 2 we present the basic facts and technical

results that will be used in the rest of the paper. In Section 3 we study the prime-power
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case, establishing the equality between the k digits of Zb(b
k) and the first k digits of the

base-b expansion of ϑ(b). Finally, in Section 4, we study the general case, where the latter
equality does not hold and give a bound to the number of unequal digits.

2 Technical results

In this section we present some technical results which will be very useful in the sequel.
Some of them are well-known and are presented without proof. The section is divided into
three parts, the first is devoted to results related to Zb(b

k), the second mostly deals with the
base-b expansion of ϑ(b) when b is a prime-power and the third one is devoted to present the
main lemma which will be crucial in the paper.

2.1 Some results about Zb(n)

We start this subsection with the following well-known lemma, which was first proved by
Legendre [4], that we present without proof.

Lemma 1.

1. Zp(n) =
∑

i≥1

⌊
n

pi

⌋

=
n − σp(n)

p − 1
, where σp(n) is the sum of the digits of the base-p ex-

pansion of n.

2. Zpr(n) =

⌊
Zp(n)

r

⌋

for every r ≥ 1.

3. If b = pr1

1 · · · prs
s , then Zb(n) = min

1≤i≤s
Zp

ri
i
(n).

As a straightforward consequence of the preceding lemma we obtain the following corol-
lary.

Corollary 2. Let l be any integer and p be a prime. Then

Zp(lp
n) = lZp(p

n) + Zp(l).

Recall that ϑ(b) = lim
n→∞

Zb(n)

n
. In previous work [3, 8] an explicit expression for ϑ(b) was

given. Namely,

Proposition 3. If b = pr1

1 · · · prs
s , then

ϑ(b) = min
1≤i≤s

1

ri(pi − 1)
.

Remark 4. The sequence Sn =
1

ϑ(n)
appears in The On-Line Encyclopedia of Integer Se-

quences as sequence A090624. It is interesting to observe that it was included in the Ency-
clopedia 5 years before the formula for ϑ(n) was found.
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The following lemma will be of great importance in sections 3 and 4.

Lemma 5. Let k ≥ 0 be an integer.

1. If b > 1 is an integer, then:

0 < Zb(b
k+1) − bZb(b

k).

2. If b is a prime power, then:

0 < Zb(b
k+1) − bZb(b

k) < b.

Proof. 1. Fist of all observe that k⌊x⌋ ≤ ⌊kx⌋ for all k ∈ Z, x ∈ R and that if x /∈ Z and
kx ∈ Z the inequality is strict. Now, for some prime divisor of b (with exponent r in
the decomposition of b) we have that:

bZb(b
k) = b

⌊

1

r

∑

i≥1

⌊
bk

pi

⌋⌋

<

⌊

1

r

∑

i≥1

⌊
bk+1

pi

⌋⌋

= Zb(b
k+1),

since
bk

pr(k+1)
is not an integer, while b

bk

pr(k+1)
is.

2. Put b = pn. Then, Corollary 2 implies that Zp(p
(k+1)n) = pnZp(p

kn) + Zp(p
n).

Now, if r is the reminder of the division between Zp(p
(k+1)n) and n and s is the reminder

of the division between Zp(p
kn) and n it follows that

Zpn(p(k+1)n) =
Zp(p

(k+1)n) − r

n
,

Zpn(pkn) =
Zp(p

kn) − s

n
.

Thus, since 0 ≤ r, s ≤ n − 1, we have

Zpn(p(k+1)n) − pnZpn(pkn) =
Zp(p

n) + pns − r

n
≤

Zp(p
n) + pns

n

=

pn−1
p−1

+ pns

n
<

pn + pns

n

≤
pn + pn(n − 1)

n
= pn.
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2.2 The base-pn expansion of ϑ(pn)

Let us start by introducing some notation. With q = {d.d1d2 · · · dt

︷ ︸︸ ︷

dt+1 · · · dt+s}b we mean
that the fractional part of q in base b consists of t digits followed by a periodic sequence of
s digits (dt+i = dt+i+s for all i > 0). Clearly t can be arbitrarily large and the length of the
period can be any multiple of s, so we will usually assume that t and s are minimal. We
will say that q is exact in base b if there exists k ≥ 1 such that di = 0 for every i ≥ k or
di = b − 1 for every i ≥ k; i.e.,

q = {d.d1d2 · · · dt

︷ ︸︸ ︷

b − 1 }b = {d.d1d2 · · · dt + 1
︷︸︸︷

0 }b

Lemma 6. Let p be a prime and 1 ≤ r ∈ Z. Then
1

r(p − 1)
is exact in base pr if and only

if p = 2 and r is a power of 2.

Proof. This is a straightforward consequence from the fact that
1

n
is exact in base pr if and

only if rad(n) = p; i.e., if and only if n is a power of p.

Now we will present some results about the base-b expansion of ϑ(b) when b = pn is a
prime-power.

Lemma 7. Let p be a prime and b = pn with n ∈ N. Then

ϑ(pn) = {0.d1d2 · · · dt

︷ ︸︸ ︷

dt+1 · · · dt+s}b ⇐⇒
pnt

n

sn−1∑

i=0

pi ∈ Z.

Proof. First of all observe that

pnt

n

sn−1∑

i=0

pi =
pnt(psn − 1)

n(p − 1)
= btϑ(pn)(bs − 1).

Let us suppose that ϑ(pn) = {0.d1d2 · · · dt

︷ ︸︸ ︷

dt+1 · · · dt+s}b. Then we have that

btϑ(pn) = {d1d2 · · · dt.
︷ ︸︸ ︷

dt+1 · · · dt+s}b,

bt+sϑ(pn) = {d1d2 · · · dtdt+1 · · · dt+s.
︷ ︸︸ ︷

dt+1 · · · dt+s}b.

and it is enough to subtract both expressions to obtain that btϑ(pn)(bs − 1) ∈ Z.
Conversely, assume that btϑ(pn)(bs−1) ∈ Z. It is easy to see that there exists a sequence

{di}i∈N ⊂ N, not eventually null, such that

ϑ(pn) =
∞∑

i=1

dip
−ni with 0 ≤ di < b, ∀i ∈ N.
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Consequently,

btϑ(pn) = z1 +
∞∑

i=1

dt+ip
−ni with z1 ∈ Z,

b(t+s)ϑ(pn) = z2 +
∞∑

i=1

dt+s+ip
−ni with z2 ∈ Z,

where

0 <
∞∑

i=1

dt+ip
−ni ≤ 1,

0 <

∞∑

i=1

dt+s+ip
−ni ≤ 1.

Since b(t+s)ϑ(pn) − btϑ(pn) = btϑ(pn)(bs − 1) ∈ Z we have that
∞∑

i=1

dt+s+ip
−ni =

∞∑

i=1

dt+ip
−ni.

From this fact it readily follows that dt+i = dt+s+i and the proof is complete.

Lemma 8. Let p be a prime, b = pn, and (n, s, k) ∈ N3. Then

bk

n

sn−1∑

i=0

pi ∈ Z ⇐⇒
b

n

sn−1∑

i=0

pi ∈ Z.

Or, in other words,
pnk(psn − 1)

n(p − 1)
∈ Z ⇐⇒

pn(psn − 1)

n(p − 1)
∈ Z.

Proof. We can write n = prn′ with r ≥ 0 and gcd(p, n′) = 1. Then bk = pkn = pprn′k and
observe that r < pr < prn′ < prn′k.

Assume that
bk

n

sn−1∑

i=0

pi ∈ Z, then
pprn′k−r

n′

sn−1∑

i=0

pi ∈ Z and, since gcd(p, n′) = 1 it follows

that
1

n′

sn−1∑

i=0

pi ∈ Z and
pprn′−r

n′

sn−1∑

i=0

pi ∈ Z. But
pprn′−r

n′
=

b

n
and we are done.

The converse is obvious.

Corollary 9. The base-pn expansion of ϑ(pn) is pure periodic or mixed periodic with only

one non-periodic figure; i.e., either ϑ(pn) = {0.d1

︷ ︸︸ ︷

d2 · · · ds+1}pn with ds+1 6= d1 or ϑ(pn) =

{0.
︷ ︸︸ ︷

d1 · · · ds}pn

Proof. If ϑ(pn) = {0.d1d2 · · · dt

︷ ︸︸ ︷

dt+1 · · · dt+s}pn , then we have that
pnt

n

sn−1∑

i=0

pi ∈ Z. By the pre-

vious lemma this implies that
pn

n

sn−1∑

i=0

pi ∈ Z and, consequently, ϑ(pn) = {0.d1

︷ ︸︸ ︷

d2 · · · ds+1}pn .

Finally, if ds+1 = d1, then ϑ(pn) is pure periodic and this completes the proof.
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2.3 The main lemma

The following lemma will be crucial in the next section.

Lemma 10. Let {Sn}n∈N
be a sequence of integers and define ∆1 := S1 and ∆n := Sn+1−bSn.

If 0 < ∆n < b, for all n ∈ N, then the following items hold:

1. Sn =
n∑

i=1

bn−i∆i.

2. ⌊logb Sn⌋ + 1 = n.

3. ℓ := lim
n→∞

Sn

bn
=

∞∑

i=1

b−i∆i.

4. If ∆i = (b − 1) for all i > 1, then Sk = ℓbk − 1 for every k > 1.

5. If ℓ is not exact in base b, then Sk =
⌊
ℓbk

⌋
for every k.

6. If ℓ =
∑∞

i=1 b−i∆n ∈ Q, then there exists (t, s) ∈ N2 with s > 0 such that ∆n+s = ∆n

(and Sn+s = Sn) for all n > t.

Proof. 1. It follows from inductive arguments, since S1 = ∆1.

2. Consequence of (1).

3. Observe that
Sn

bn
=

n∑

i=1

b−i∆i and take limits.

4. We must consider two cases.

If ∆1 < (b − 1), then ℓ = (∆1+1)
b

, ℓbk − 1 = (∆1 + 1)bk−1 − 1 and also

Sk =
k∑

i=1

bk−i∆i = ∆1b
k−1 +

k∑

i=2

bk−i(b − 1) = ∆1b
k−1 + bk−1 − 1.

Now, if ∆1 = b − 1, then ℓ = 1 and

Sk =
k∑

i=1

bk−i(b − 1) =
k∑

i=1

bk+1−i −

k∑

i=1

bk−i = bk − 1.

5. Observe that

ℓbk =
∞∑

i=1

bk−i∆i =
k∑

i=1

bk−i∆i +
∞∑

i=1

b−i∆i+k.

Now, if ℓ is not exact, it follows that
∞∑

i=1

b−i∆i+k < 1 and consequently,

⌊
ℓbk

⌋
=

⌊
k∑

i=1

bk−i∆i +
∞∑

i=1

b−i∆i

⌋

=
k∑

i=1

bk−i∆i = Sk.
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6. It is clear since the base-b expansion of any rational number is periodic.

3 The prime power case

The next theorem establishes the equality between the digits of the base-b expansion of
Zb(b

k) and the first k digits of the base-b expansion of ϑ(b) if b is a prime power. In passing
we will also prove some other interesting properties.

Theorem 11. Let p be a prime and b = pn. Consider the sequence a1 = Zb(b), ak :=

Zb(b
(k+1)) − bZb(b

k) and let s be the smallest integer such that θ :=
b

n

sn−1∑

i=0

pi ∈ Z. Then, the

following items hold:

1. Zb(b
k) =

k∑

i=1

aib
k−i.

2. ϑ(b) = lim
n→∞

Zb(b
n)

bn
=

∞∑

i=1

b−iai.

3. The base-b expansion of ϑ(b) is

ϑ(b) =







{0.a1

︷ ︸︸ ︷
a2 · · · as+1}b, if

θ

b
/∈ Z ;

{0.
︷ ︸︸ ︷
a1a2 · · · as}b if

θ

b
∈ Z .

4. ak = ak+s for all k > 1. Moreover, if
θ

b
∈ Z, then ak = ak+s for all k > 0.

5.

#{ak}i∈N =







s, if
θ

b
∈ Z;

s + 1, otherwise.

6. If
θ

b
∈ Z, then Zb(b

s) =
θ

b
. Otherwise, Zb(b

s+1) = θ + Zb(b).

7. If b + 1 is not a Fermat number, then Zb(b
k) =

⌊
bkϑ(b)

⌋
.

8. If b + 1 is a Fermat number, then Zb(b
k) = bkϑ(b) − 1.

Proof. First of all observe that, due to Corollary 9, there exists an integer s such that

θ =
b

n

sn−1∑

i=0

pi ∈ Z or, equivalently, such that ϑ(pn) = {0.d1

︷ ︸︸ ︷

d2 · · · ds+1}b. Moreover, if
1

n

sn−1∑

i=0

pi ∈ Z,

then ϑ(pn) = {0.
︷ ︸︸ ︷

d1 · · · ds}b. Also, by Lemma 2, we have that 0 < ak < b so we are in the
conditions of Lemma 10.

After these considerations we can proceed to the proof of the theorem.

10



1. Apply Lemma 10(1).

2. Apply Lemma 10(3).

3. Due to Corollary 9.

4. Idem.

5. Obvious by the minimality of s.

6. If
θ

b
∈ Z, then

1

n

sn−1∑

i=0

pi =
θ

b
∈ Z. This implies that ϑ(b) = {0.

︷ ︸︸ ︷
a1a2 · · · as}b, so bsϑ(b) =

{a1a2 · · · as.
︷ ︸︸ ︷
a1a2 · · · as}b and, consequently,

θ

b
= ϑ(b)(bs − 1) =

s∑

i=1

aib
k−i = Zb(b

s).

Now, if
θ

b
/∈ Z then

b

n

sn−1∑

i=0

pi = θ ∈ Z so ϑ(b) = {0.a1
︷ ︸︸ ︷
a2a3···as+1}b and it follows that

bs+1ϑ(b) = {a1a2 · · · as+1.
︷ ︸︸ ︷
a2a3 · · · as+1}b,

bϑ(b) = {a1.
︷ ︸︸ ︷
a2a3 · · · as+1}b.

Consequently,

θ =
b

n

sn−1∑

i=0

pi = bϑ(b)(bs − 1) =
s+1∑

i=1

aib
k−i − a1 = Zb(b

s+1) − Zb(b).

7. If pn + 1 is not a Fermat number, then ϑ(pn) is not exact due to Lemma 7. Then, it is
enough to apply Lemma 10(5).

8. If pn + 1 is a Fermat number; then p = 2 and n is a power of 2. In this case ϑ(pn) is
exact and Lemma 10(4) applies.

Let us recall that a base-b repunit with k digits, R
(b)
k , is an integer whose base-b expansion

consists exactly of k ones; i.e.,

R
(b)
k := {

k
︷ ︸︸ ︷

1, 1, . . . , 1 }b =
k−1∑

i=0

bi =
bk − 1

b − 1
.

In the same way, a base-b repdigit with k digits is a multiple of a base-b repunit with k

digits, i.e., an integer of the form αR
(b)
k = {

k
︷ ︸︸ ︷
α, α, . . . , α }b with 1 ≤ α ≤ b − 1.

11



Proposition 12. Let p be a prime. If
1

n

n−1∑

i=0

pi =
R

(p)
n

n
∈ Z, then Zpn(pnk) is a base-pn repdigit

with k digits for all k ∈ Z. Namely,

Zpn(pnk) =
R

(p)
n R

(pn)
k

n
.

Proof. Theorem 11 implies that ϑ(pn) = {0.
︷︸︸︷
a1 }pn , where a1 =

R
(p)
n

n
. Consequently,

Zpn(pnk) = {

k
︷ ︸︸ ︷
a1, a1, . . . , a1 }pn =

R
(p)
n

n
R

(pn)
k .

It is interesting to particularize the previous result for n = 1, 2.

Corollary 13. Let p be a prime. Then Zp(p
k) is a base-p repunit with k digits for every

integer k.

Proof. Follows immediately from the previous proposition, since
R

(p)
1

1
= 1 ∈ Z.

Corollary 14. Let p be an odd prime, then Zp2(p2k) is a base-p2 repdigit.

Proof. If p is odd, then
R

(p)
2

2
=

p + 1

2
∈ Z.

If p is odd, the above corollary can be generalized for any power of 2. Namely, we have
the following.

Proposition 15. If p is an odd prime, then Zp2m (p2mk) is a base-p2mk repdigit.

Proof.
R

(p)
2m

2m
=

1

2m

m−1∏

i=0

(1 + p2i

) ∈ Z.

Remark 16. We have seen that ϑ(p) = { 0.
︷︸︸︷

1 }p for every prime p. Nevertheless, the set
of pairs (b1, b2) ∈ Z2 such that the base-b1 expansion of ϑ(b1) and the base b2 expansion of
ϑ(b2) coincide seems to be very small. In fact for bi ≤ 40000 there are only two such couples.
Namely,

ϑ(81) = { 0.
︷︸︸︷

10 }81 and ϑ(361) = {0.
︷︸︸︷

10 }361.

ϑ(343) = { 0.
︷︸︸︷

19 }343 and ϑ(1369) = { 0.
︷︸︸︷

19 }1369.

12



4 The general case

If b is not a prime power, there is no equality between the k digits of Zb(b
k) and the first k

digits of the base-b expansion of ϑ(b). As a consequence, Zb(b
k) presents certain anomalies

in its final digits (see A174807). For instance,

Z10(109) = 249999998,

Z10(1099) = 249999999 · · · 99999980,

Z10(10999) = 249999999 · · · 99999791,

Z10(109999) = 249999999 · · · 999997859.

Or, in a different base,

Z6(6
5) = {2, 5, 5, 5,4}6,

Z6(6
62−1) = {2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . , 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,4,1}6,

Z6(6
63−1) = {2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . , 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,4,1,5}6,

Z6(6
64−1) = {2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . , 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,4,0,3,4}6,

Z6(6
65−1) = {2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . , 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,4,0,3,3,4}6.

If ϑ(b) is not exact it is clear that any convergent sequence with limit ϑ(b) will share with
this value an increasing number of digits. To prove that this is still true even if ϑ(b) is exact
(like in the previous examples, where ϑ(10) = {0.25}10 and ϑ(6) = {0.3}6) we need to prove
the following result.

Proposition 17. The sequence {γk}k≥1 :=
{

Zb(b
k)

bk

}

k≥1
is strictly increasing. As a conse-

quence,
Zb(b

k)

bk
< lim

n→∞

Zb(n)

n
for every k > 0.

Proof.
γk+1

γk

=
Zb(b

k+1)

bZb(bk)
> 1 due to Lemma 5(1).

We have already seen in the previous section that if b is a prime power, then the number
of digits of the base-b expansion of Zb(b

k) is exactly k. Now we will see that this is also true
for a general b.

Proposition 18. The number of digits of the base-b expansion of Zb(b
k) is exactly k; i.e.,

⌊
logb Zb(b

k)
⌋

+ 1 = k.

Proof. By Lemma 2 (1), we know that bZb(b
k) < Zb(b

(k+1)). Taking logarithms we have
1 + logb Zb(b

k) < logb Zb(b
k+1), which clearly implies that

⌊
logb Zb(b

k)
⌋

<
⌊
logb Zb(b

k+1)
⌋
.

Thus, the number of digits of the base-b expansion of Zb(b
k+1) is greater than that of

Zb(b
k). Since ⌊logb Zb(b)⌋ = 0, it follows that 1 +

⌊
logb Zb(b

k)
⌋
≥ k.

Let us see now that the equality holds. Assume, on the contrary, that 1+
⌊
logb Zb(b

k0)
⌋

>
k0 for certain k0. Then 1 + ⌊logb Zb(b

m)⌋ > m for every m ≥ k0. This clearly implies that
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Zb(b
m)

bm
> 1 for every m > k0 and ϑ(b) = lim

n→∞

Zb(b
m)

bm
≥ 1, which is clearly a contradiction

since by definition ϑ(b) ≤ 1, the equality only holds for b = 2 and
Z2(2

m)

2m
=

2m − 1

2m
< 1.

We have seen that in the general case the equality between the k digits of Zb(b
k) and the

first k digits of the base-b expansion of ϑ(b) does not hold. It is then interesting to study
how many digits differ.

To do so, let us introduce some notation:

α(b, k) = ⌊ϑ(b)bk⌋ − Zb(b
k).

η(b, k) = ⌊logb α(b, k) + 1⌋.

Observe that the number of different digits that we are studying is, at most, η(b, k)+1. Now
we can give an upper bound for η(b, k).

Theorem 19. The number of digits of the base-b expansion of α(b, k) is smaller or equal
than the number of digits of the base-b expansion of k, plus 1; i.e.,

η(b, k) ≤ ⌊logb k + 2⌋.

Proof. If k = 1, then ⌊ϑ(b)b⌋ − Zb(b) ≤ b, since ϑ(b) ≤ 1 and Zb(b) ≥ 0. This implies that
η(b, 1) = ⌊logb (⌊ϑ(b)b⌋ − Zb(b)) + 1⌋ ≤ ⌊logb b + 1⌋ = 2 = ⌊logb k + 2⌋, as claimed.

Now, let k ≥ 2. Put b = pr1

1 · · · prs
s and assume, without loss of generality, that p1 is

such that min
1≤i≤s

1

ri(pi − 1)
=

1

r1(p1 − 1)
. In that case Zb(b

k) =

⌊
bk − σp1

(bk)

r1(p1 − 1)

⌋

and ϑ(b) =

1

r1(p1 − 1)
. Also observe that if β =

b

pr1

1

, then σp1
(bk) = σp1

(βk). Now

⌊ϑ(b)bk⌋ − Zb(b
k) = ⌊ϑ(b)bk⌋ −

⌊
bk − σp1

(bk)

r1(p1 − 1)

⌋

≤
bk − (bk − σp1

(bk))

r1(p1 − 1)
+ 1

= 1 +
σp1

(βk)

r1(p1 − 1)
≤ 1 +

(p1 − 1)(1 + ⌊logp1
βk⌋

r1(p1 − 1)

= 1 +
1 + ⌊logp1

βk⌋

r1

≤ 2 + ⌊logp1
βk⌋ = ⌊logp1

p2
1β

k⌋

≤ ⌊logp1
bk⌋.

Consequently we find

η(b, k) =
⌊
logb

(
⌊ϑ(b)bk⌋ − Zb(b

k)
)

+ 1
⌋
≤

⌊
logb

(
⌊logp1

bk⌋
)⌋

+ 1 ≤ ⌊logb(k logp1
b)⌋ + 1

= ⌊logb k + logb logp1
b⌋ + 1 ≤ ⌊logb k⌋ + 2 = ⌊logb k + 2⌋.
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Remark 20. The bound obtained in the previous theorem is the best possible one. In fact,
there exists values of the pair (b, k) such that η(b, k) = ⌊logb k + 2⌋. Namely, if k = b − 1
and b < 1000 the following values:

b = 120, 180, 240, 336, 360, 378, 420, 448, 504, 560, 630, 672, 720, 756, 840, 945

satisfy the equation η(b, b − 1) = 2 = ⌊logb(b − 1) + 2⌋.

Corollary 21. The number of unequal digits between Zb(b
k) and the first k digits of the

base-b expansion of ϑ(b) is smaller or equal than the number of digits of k plus 2.

Proof. The number of unequal digits is, at most, η(b, k)+1 which, by the previous theorem,
is smaller or equal than (⌊logb k⌋ + 1) + 2.

Remark 22. It is interesting to observe that, as far as the authors have been able to test
computationally, the inequality given in the preceding corollary is strict. Nevertheless we
have not found a proof for this fact, so it remains a conjecture.

Conjecture 23. The number of unequal digits between Zb(b
k) and the first k digits of the

base-b expansion of ϑ(b) is smaller or equal than the number of digits of k plus 1.

If b is square-free, we can improve the bound given in Theorem 19.

Proposition 24. Let b = p1 · · · ps be a square-free integer (s ≥ 2). Then ϑ(b)bk − Zb(b
k) ≤

k(s− 1) for every k. As a consequence η(b, k) ≤ ⌊logb k + logb(s− 1) + 1⌋ ≤ ⌊logb k + 1.21⌋.

Proof. We can suppose, without loss of generality, that p1 is the greatest prime in the decom-

position of b. Then ϑ(b)bk =
bk

p1 − 1
and also Zb(b

k) = Zp1
(bk) =

bk − σp1
(bk)

p1 − 1
. Consequently

ϑ(b)bk − Zb(b
k) =

σp1
(bk)

p1 − 1
=

σp1
(pk

2 · · · p
k
s)

p1 − 1
.

Now, since (p2 · · · ps)
k < p

k(s−1)
1 it follows that σp1

(pk
2 · · · p

k
s) ≤ (p1 − 1)k(s− 1) so we get

that ϑ(b)bk − Zb(b
k) ≤ k(s − 1).

To end the proof it is enough to recall the definition of η(b, k) and to observe that
logb(s − 1) ≤ log30(2) < 0.21.

Remark 25. The previous proposition can be refined in some special cases. For instance,

1. If b is the product of 2 distinct primes; i.e., if s = 2 in the proposition, then η(b, k) ≤
⌊logb k + 1⌋.

2. If b is square-free and k is a power of b, then

η(b, k) = η(b, bm) ≤ ⌊m + 1.21⌋ = m + 1 = ⌊logb k + 1⌋.

This remark motivates this final conjecture, which remains open, that closes the paper.

Conjecture 26. If b is a square-free integer, then η(b, k) ≤ ⌊logb k + 1⌋.
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