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Abstract

We develop two q-analogues of the previously defined poly-Stirling numbers of the

first and second kinds. We also develop the corresponding q-rook theory models to

give combinatorial interpretations to these numbers.

1 Introduction

Define N = {1, 2, 3, . . .} and N
0 = N ∪ {0}. Given any nonzero p(x) ∈ N

0[x], Miceli [2]
defines generalizations of Stirling numbers, called poly-Stirling numbers with respect to p(x).

Poly-Stirling numbers of the first kind, s
p(x)
n,k , are defined by the recursions

s
p(x)
n+1,k = s

p(x)
n,k−1 − p(n)s

p(x)
n,k (1)

where s
p(x)
0,0 = 1 and s

p(x)
n,k = 0 if either k < 0 or k > n. Similarly, poly-Stirling numbers of

the second kind, S
p(x)
n,k , are defined by the recursions

S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)S

p(x)
n,k (2)

where S
p(x)
0,0 = 1 and S

p(x)
n,k = 0 if either k < 0 or k > n. If we let c

p(x)
n,k = (−1)n−ks

p(x)
n,k , then

the c
p(x)
n,k ’s satisfy the recursion

c
p(x)
n+1,k = c

p(x)
n,k−1 + p(n)c

p(x)
n,k (3)
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where c
p(x)
0,0 = 1 and c

p(x)
n,k = 0 if either k < 0 or k > n. We can see that in the case where

p(x) = x, the generalized numbers reduce to the classical Stirling numbers. In the case
where p(x) = x2, these numbers are the triangle central factorial numbers, discussed in both
Riordan [5] and Stanley [6].

For any x ∈ N we can define the q-analogue of x to be

[x]q := 1 + q + q2 + · · · + qx−1 =
1 − qx

1 − q
.

There now are two natural q-analogues of the poly-Stirling numbers, namely, we can take
the q-analogue of p(x) to be either p([x]q) or [p(x)]q. Accordingly, we define the Type I

q-analogues of s
p(x)
n,k and S

p(x)
n,k by the following recursions:

s
p(x)
n+1,k(q) = s

p(x)
n,k−1(q) − p([n]q)s

p(x)
n,k (q), and (4)

S
p(x)
n+1,k(q) = S

p(x)
n,k−1(q) + p([k]q)S

p(x)
n,k (q) (5)

if 0 ≤ k ≤ n + 1 with s
p(x)
0,0 (q) = S

p(x)
0,0 (q) = 1 and s

p(x)
n,k (q) = S

p(x)
n,k (q) = 0 if k < 0 or k > n.

We also define the Type II q-analogues of s
p(x)
n,k and S

p(x)
n,k by the following recursions:

s̄
p(x)
n+1,k(q) = s̄

p(x)
n,k−1(q) − [p(n)]qs̄

p(x)
n,k (q), and (6)

S̄
p(x)
n+1,k(q) = S̄

p(x)
n,k−1(q) + [p(k)]qS̄

p(x)
n,k (q) (7)

if 0 ≤ k ≤ n + 1 with s̄
p(x)
0,0 (q) = S̄

p(x)
0,0 (q) = 1 and s̄

p(x)
n,k (q) = S̄

p(x)
n,k (q) = 0 if k < 0 or k > n.

The goal of this paper is to define two methods for q-counting in the rook theory setting
of polyboards, and to use those methods to give combinatorial interpretations for Type I and
Type II poly-Stirling numbers of the first and second kind. In Section 2, we summarize the
results in Miceli [2], where the author describes the general setting of m-partition boards,
polyboards, poly-rook and file numbers, and poly-Stirling numbers. Section 2 is given for
completeness, and accordingly, a reader who is familiar with the results in Miceli [2] may
wish to begin with Section 3, where the two q-rook models are described. The first model
describes q-counting in polyboards when the q-analogue of p(x) is taken to be p([x]q), and
the second rook model describes q-counting in polyboards when the q-analogue of p(x) is
taken to be [p(x)]q.

2 Polyboards, rook placements, and poly-Stirling num-

bers

Let B = F (b1, b2, . . . , bn) be a Ferrers board with column heights b1, b2, . . . , bn, reading from
left to right, where 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn are nonnegative integers. For any positive integer
m, we define B(m), called the m-partition of B, to be the board B where each column is
partitioned into m subcolumns. We will define, for any board B, C(j)(B

(m)) to be the jth

column of B(m), reading from left to right and C(l,j)(B
(m)) to be the lth subcolumn, reading

from left to right, of the jth column of B. Finally, the cell which is in the tth row from
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Figure 1: The board B(2), with B = F (0, 1, 3, 4, 4).

the bottom of C(l,j)(B
(m)) will be denoted by c(t, l, j). An example of these types of boards

can be seen in Figure 1, where B = F (0, 1, 3, 4, 4) and m = 2. We also define B(0) to
be a degenerate board, that is, a board with n “special” columns of height 0; these will be
columns that, although they have height 0, can still have rooks placed into them, and further
descriptions will be given later.

2.1 m-Partition boards

Miceli [2] defines two kinds of rook placements in the board B(m) which mirror those found in
Garsia and Remmel [1]: nonattacking placements and file placements. We let Nk,(m)(B

(m))
denote the set of placements of mk nonattacking rooks in B(m). These are placements such
that the following three conditions hold.

(i.) If any subcolumn C(i,j)(B
(m)) contains a rook, then for every 1 ≤ l ≤ m, the subcolumn

C(l,j)(B
(m)) must contain a rook. That is, if any subcolumn of the jth column contains

a rook, then every subcolumn of the jth column must contain a rook.

(ii.) There is a most one rook in any one subcolumn of a given column.

(iii.) For any 1 ≤ l ≤ m and any row t, there is at most one rook in row t that lies in a
subcolumn of the form C(l,j)(B

(m)). That is, there is at most one rook in cell t of the
lth subcolumn of any column.

Another way to think of nonattacking rook placements is that as you place rooks from
left to right, each rook r that lies in a cell c(t, l, j) cancels all the cells in the same row t

that lie in subcolumns corresponding to l to its right. Then a placement of rooks satisfying
(i.) and (ii.) above is a placement of nonattacking rooks if it is the case that no rook lies in
a cell which is canceled by another rook to its left. For example, on the left in Figure 2 we
have pictured a nonattacking rook placement P ∈ Nk,(m)(B

(m)) where B = F (0, 1, 3, 4, 4),
m = 2, and k = 2. Here we denote each rook by an Xi and we have placed an i in the cells
that are canceled by those rooks of the same subscript. Note that since rooks only cancel
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Figure 2: Nonattacking and file rook placements in the board B(2), with B = F (0, 1, 3, 4, 4).

cells that correspond to the same subcolumn, we do allow the possibility of having rooks in
the same row in a given column.

We let Fk,(m)(B
(m)) denote the set of placements of mk file rooks in B(m). These are

placements such that the following two conditions hold.

(i.) If any subcolumn C(i,j)(B
(m)) contains a rook, then for every 1 ≤ l ≤ m, the subcolumn

C(l,j)(B
(m)) must contain a rook.

(ii.) There is at most one rook in any subcolumn of a given column.

For example, on the right in Figure 2 we have pictured a file placement F ∈ Fk,(m)(B
(m))

where B = F (0, 1, 3, 4, 4), m = 2, and k = 2.
We then define

rk,(m)(B
(m)) := |Nk,(m)(B

(m))| and

fk,(m)(B
(m)) := |Fk,(m)(B

(m))|,

and we call rk,(m)(B
(m)) the kth m-rook number of B(m) and fk,(m)(B

(m)) the kth m-file number
of B(m).

Defined in this way, it is shown in [2] that these numbers satisfy some simple recursions.

Theorem 1. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers boards.
Then for all 0 ≤ k ≤ n + 1,

rk,(m)(B̄
(m)) = rk,(m)(B

(m)) + (bn+1 − (k − 1))mrk−1,(m)(B
(m)) (8)

and
fk,(m)(B̄

(m)) = fk,(m)(B
(m)) + bm

n+1fk−1,(m)(B
(m)). (9)

From here, it is shown that when B = F (0, 1, 2, . . . , n−1), the m-rook and m-file numbers
of B correspond to poly-Stirling numbers with respect to p(x) = xm. We call such poly-
Stirling number xm-Stirling numbers, and we have the following rook theory interpretation
for the xm-Stirling numbers.
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Figure 3: An example of the polyboard B(p(x)), with B = F (1, 2, 3, 5, 5) and p(x) = p0 +
p1x + p2x

2.

Theorem 2. Let m ∈ N and B = F (0, 1, . . . , n − 1). Then

Sxm

n,k = rn−k,(m)(B
(m)),

cxm

n,k = fn−k,(m)(B
(m)), and

sxm

n,k = (−1)n−kfn−k,(m)(B
(m)).

2.2 Polyboards

Fix a Ferrers board B = F (b1, b2, . . . , bn) and a polynomial p(x) = ps1x
s1 + ps2x

s2 + · · · +
psy

xsy ∈ N[x], with 0 ≤ si < sj for all i < j. We define a set of y m-partition boards
B(p(x)) := {B(s1), B(s2), . . . , B(sy)}. We call B(p(x)) the polyboard associated with B and
p(x), and we refer to the board B(sz) as the zth subboard of B(p(x)). In Figure 3, we
see an example of a polyboard where B = F (1, 2, 3, 5, 5) and p(x) ∈ N[x] is of the form
p0 + p1x + p2x

2. Note that the coefficients of p(x) are irrelevant when constructing B(p(x)),
although the coefficients of p(x) are important in how we enumerate rook placements in this
setting.

We wish to consider rook placements in these polyboards, and so we first define Cz
(j)(B(p(x)))

to be the jth column of B(sz), and we refer to the collection of the jth columns of the y

boards in B(p(x)) to be the jth column of B(p(x)), denoted by C(j)(B(p(x))). We also let
Cz

(l,j)(B(p(x))) be the lth subcolumn of the jth column of B(sz). If a rook r is placed in

column Cz
(l,j)(B(p(x))) in the tth row from the bottom of B(sz), then we say that r lies in

the cell c(z, t, l, j). As a convention, we will say that Cz
(l,j)(B(p(x))) lies to the right (left) of

Cz′

(l′,j′)(B(p(x))) whenever j > j′ (j < j′), and accordingly, we refer to the rook which lies in

the leftmost column of B(p(x)) as the leftmost rook in the board.

2.3 Poly-rook numbers, poly-file numbers, and poly-Stirling num-
bers

Given B(p(x)), we shall define both nonattacking and file rook placements in the polyboard.
Nonattacking rook placements in B(p(x)) are placements of rooks such that the following
two conditions hold.

(i.) If any rook is placed in the jth column of a subboard, then that may be the only
subboard which contains a rooks in its jth column.
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(ii.) Within any particular subboard, the nonattacking placement rules from Section 2.1
apply to that board.

We shall call such a placement of rooks into B(p(x)), in which k columns total among all
of the subboards of B(p(x)) contain rooks, a k-placement of nonattacking rooks in B(p(x)).
In such a k-placement, cancellation will occur in the following manner:

(i.) Suppose a rook r is the leftmost rook placed in the C(j)(B(p(x))).

a. If r is placed in the jth column of the board B(0), it cancels no cells in B(0) and it
cancels the lowest cell in each subcolumn to its right in each of the other boards.
It will also cancel every cell in the jth column of every other subboard of B(p(x)).

b. If r is not placed in the board B(0), it cancels only the cell in the jth column in
B(0) and r cancels as described in Section 2.1 within the zth subboard. Among
the remaining boards, r will cancel the lowest cell in each subcolumn to its right
in every other subboard in the board B(p(x)), and every cell in the jth column of
all other subboards.

(ii.) Suppose r′ is any other rook which has been placed in the Cw
(i)(B(p(x))).

a. If r′ is placed in the board B(0), it cancels no cells in B(0) and it cancels the lowest
cell in each subcolumn to its right, which has yet to be canceled by a rook to its
left, in each of the other boards. It will also cancel every cell in the ith column
of every other subboard of B(p(x)) which has yet to be canceled by a rook to its
left.

b. If r′ is not placed in the board B(0), it cancels only the cell in the ith column in
B(0) and r′ cancels as described in Section 2.1 within the wth subboard. Among
the remaining boards, r′ will cancel the lowest cell in each subcolumn to its right,
which has not yet been canceled by a rook to its left, in every other subboard in
the board B(p(x)), and every cell in the jth column of all other subboards which
has yet to be canceled by a rook to its left.

An example of such a placement and the corresponding cancellation can be seen in
Figure 4, where B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p0 + p1x + p3x

3. In this figure, a cell
labeled with an i has been canceled by the rook Xi.

File rook placements in B(p(x)) are placements of rooks such that the following two
conditions hold.

(i.) If any rook is placed in the jth column of a subboard, then that may be the only
subboard which contains rooks in its jth column.

(ii.) Within any particular subboard, the file placement rules from Section 2.1 apply to that
board.
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Figure 4: An example of a nonattacking k-placement in the polyboard B(p(x)), with B =
F (1, 2, 3, 5, 5), k = 3, and p(x) = p0 + p1x + p3x

3.
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Figure 5: An example a file k-placement in the polyboard B(p(x)), with B = F (1, 2, 3, 5, 5),
k = 3, and p(x) = p0 + p1x + p3x
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For these placements, any rook which is placed in the jth column of a subboard will cancel
all cells in the jth columns of all other subboards. An example of this type of placement can
be seen in Figure 5, where again B = F (1, 2, 3, 5, 5), k = 3, and p(x) = p0 + p1x + p3x

3.
Given any nonzero p(x) ∈ N

0[x], we let Nk,p(x)(B(p(x))) denote the set of colored nonat-
tacking k-placements in the polyboard B(p(x)) such that the following two conditions hold.

(i.) The rooks placed in the columns of B(sz) are colored with distinct colors, c1, . . . , cpsz
.

(ii.) If any rook placed in the jth column of a subboard is colored with color cw, then every
rook placed in the jth column must be colored with cw as well.

We also define Fk,p(x)(B(p(x))) to be the set of colored file placements with rooks in
k of the columns of B(p(x)) under the exact same coloring conditions as placements in
Nk,p(x)(B(p(x))). We shall call such a placement of rooks a colored file k-placement.

We then define

rk,p(x)(B(p(x))) := |Nk,p(x)(B(p(x)))| and

fk,p(x)(B(p(x))) := |Fk,p(x)(B(p(x)))|,

and we call rk,p(x)(B(p(x))) the kth poly-rook number of B(p(x)) with respect to p(x) and
fk,p(x)(B(p(x))) the kth poly-file number of B(m) with respect to p(x).

Using these definitions, we have the following theorem.

Theorem 3. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers boards
and consider a nonzero p(x) ∈ N

0[x]. Then for all 0 ≤ k ≤ n + 1,

rk,p(x)(B̄(p(x)) = rk,p(x)(B(p(x))) + p(bn+1 − (k − 1))rk−1,p(x)(B(p(x))) (10)

and
fk,p(x)(B̄(p(x)) = fk,p(x)(B(p(x))) + p(bn+1)fk−1,p(x)(B(p(x))). (11)

From here, it is shown that when B = F (0, 1, 2, . . . , n − 1), the poly-rook and poly-file
numbers of B(p(x)) with respect to p(x) correspond to poly-Stirling numbers with respect
to p(x) in the following way.

Theorem 4. Let B = F (0, 1, . . . , n − 1) and let p(x) = N[x]. Then

S
p(x)
n,k = rn−k,p(x)(B(p(x))),

c
p(x)
n,k = fn−k,p(x)(B(p(x))), and

s
p(x)
n,k = (−1)n−kfn−k,p(x)(B(p(x))).

To get generalized product formulae for the poly-Stirling numbers, two special types
of rooks boards are defined. For the first, consider the y-tuple of boards Bx(p(x)) =

{B(s1)
x , B

(s2)
x , . . . , B

(sy)
x }, where given x ∈ N, B

(su)
x is the board B(su) with x rows of n columns

appended below such that each column is partitioned into su columns. We call this appended
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portion the x-part and the imaginary line that separates the original board from x-part is
called the bar. We define cx(t, l, j) to be the cell which is in the tth row, reading from bottom

to top, of the x-part in the lth subcolumn of the jth column. If s1 = 0, then the board B
(0)
x

will be look like two copies of the board B(0), one which lies above the bar and one which lies
below. That is, the x-part of B

(0)
x is also degenerate. We will refer to the upper parts of each

board as such, and if we talk about the upper part of Bx(p(x)), then we are referring to the
set of upper parts of each board in Bx(p(x)), and we use the same convention when talking
about the x-part of Bx(p(x)). We then say that the upper part of Bx(p(x)) is separated
from the x-part of Bx(p(x)) by the bar of Bx(p(x)). Let Fn,p(x)(Bx(p(x))) denote the set of
colored placements in Bx(p(x)) such that the following four conditions hold.

(i.) Every column of Bx(p(x)) must contain a rook.

(ii.) If any rook is placed in the jth column of a subboard of Bx(p(x)), then that may be
the only subboard which contains rooks in its jth column.

(iii.) Within any particular subboard, if any of the m rooks placed in a given column lie
above the high bar, then all m rooks in that column must lie above the high bar, and
otherwise, all m rooks in that column lie in the x-part. The same file placement rules
from Section 2.1 apply to the upper and x-parts, respectively.

(iv.) The same coloring rules apply as before.

We define that any rook placed in the upper part of the jth column of a subboard of
Bx(p(x)) will cancel the upper parts of the jth columns of every other subboard in Bx(p(x)),
and any rook placed in the x-part of the jth column of a subboard of Bx(p(x)) will cancel
the x-parts of the jth columns of every other subboard in Bx(p(x)). An example of this
type of placement and the corresponding cancellation can be seen in Figure 6, where B =
F (1, 2, 3, 5, 5), p(x) = p0 + p1x + p3x

3, x = 6, and the rook denoted by Xi cancels the cells
labeled with an i.

By counting |Fn,p(x)(Bx(p(x)))| in two different ways, we get the following theorem.

Theorem 5. Suppose n ∈ N and p(x) = ps1x
s1 + ps2x

s2 + · · · + psy
xsy ∈ N[x]. If B =

F (b1, b2, . . . , bn) is any Ferrers board, then

n
∏

i=1

(p(x) + p(bi)) =
n
∑

k=0

fn−k,p(x)(B(p(x)))(p(x))k. (12)

Note that in the special case of Theorem 5 where B = F (0, 1, . . . , n − 1), we see that
Equation (12) reduces to

n
∏

i=1

(p(x) + p(i − 1)) =
n
∑

k=0

c
p(x)
n,k (p(x))k, (13)

and if in Equation (13) we replace p(x) with −p(x) and multiply both sides by (−1)n,
we obtain the following corollary:
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Figure 6: An example of a file rook placement in B6(p(x)), with B = F (1, 2, 3, 5, 5) and
p(x) = p0 + p1x + p3x

3.

Corollary 6. For n ∈ N
0 and p(x) ∈ N[x],

n
∏

i=1

(p(x) − p(i − 1)) =
n
∑

k=0

s
p(x)
n,k (p(x))k. (14)

Our second type of rook board allows us to obtain a product formula for poly-rook
numbers, which in turn gives a product formula for poly-Stirling number of the second kind.
Consider the board B

aug,(m)
x [2], a modification of the augmented rook boards originally

defined by Miceli and Remmel [3]. To construct these boards, we first we start with the

board B
(m)
x . Then B

aug,(m)
x is formed by adding, below the x-part of B

(m)
x , columns of

heights 0, 1 . . . , n − 1, reading from left to right, that consist of m subcolumns. We call
the extra cells that we added to B

(m)
x to form B

aug,(m)
x the augmented part of B

aug,(m)
x and

call the line that separates the x-part and the augmented part of B
aug,(m)
x the low bar. We

define ca(t, l, j) to be the cell which is in the tth row, reading from top to bottom, of the
augmented part in the lth subcolumn of the jth column. For example, we have pictured such
an augmented board on the left in Figure 7, where B = F (0, 1, 3, 3, 4), m = 2, and x = 3. In

particular, B
aug,(0)
x will be similar to B

(0)
x , that is, B

aug,(0)
x will consist of a degenerate board,

a degenerate x-part, and a degenerate augmented part.
We define a nonattacking rook placement P of mn rooks in B

aug,(m)
x to be a placement

such that the following three conditions hold.

(i.) Every column of B
aug,(m)
x must contain a rook.

(ii.) Rooks that are placed in either the x-part or the lower augmented part of B
aug,(m)
x do

not cancel any cells.
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Figure 7: An example of the board B
aug,(2)
3 , with B = F (0, 1, 3, 3, 4) along with a corre-

sponding example of a nonattacking rook placement.

(iii.) If r is a rook placed in the cell c(t, l, j) in the upper part of B
aug,(m)
x , then r will cancel

all the cells in the upper part of the form c(t, s, j) for s > l plus the lowest cells in the
lower augmented part in the subcolumn C(s,j) for s > l that have not been canceled by
a rook that lies in subcolumn C(p,j) of B(m) to the left of r.

To better illustrate this cancellation, we have pictured an element of Nn,(m)(B
aug,(m)
x )

in the righthand side of Figure 7. We have placed dots in those cells that are canceled
by the rooks in column 2 and ∗’s in the cells that are canceled by the rooks in column
4. The other rooks do not cancel any cells. Finally, we define the weight of a placement
P ∈ Nn,(m)(B

aug,(m)
x ), w(P), to be (−1)la(P) where la(P) equals the number of columns in P

which contain rooks which lie in the lower augmented part of B
aug,(m)
x .

Now, consider the y-tuple of boards Baug
x (p(x)) = {Baug,(s1)

x , B
aug,(s2)
x , . . . , B

aug,(sy)
x }, called

the augmented polyboard with respect to B and p(x). We will refer to the upper parts of each
board as such, and if we talk about the upper part of Baug

x (p(x)), then we are referring to
the set of upper parts of each board in Baug

x (p(x)), and we use the same convention when
talking about the x-part of Bx(p(x)) and the lower augmented part of Baug

x (p(x)). We then
say that the upper part of Baug

x (p(x)) is separated from the x-part of Baug
x (p(x)) by the high

bar of Baug
x (p(x)) and the x-part is separated from the lower augmented part by the low bar

of Baug
x (p(x)). Next we define a nonattacking rook placement P in Baug

x (p(x)) such that the
following three conditions hold.

(i.) Every column of Baug
x (p(x)) must contain a rook.

(ii.) If any rook is placed in the jth column of a subboard of Bx(p(x)), then that may be
the only subboard which contains rooks in its jth column.

11



(iii.) Within any particular subboard, the following rules are observed.

a. There is at most one rook in each subcolumn.

b. For any given column C(j)(B
aug,(m)
x ), either all m rooks in that column are placed

above the high bar, all below the low bar, or all in the x-part of B
aug,(m)
x .

c. No rook lies in a cell which is canceled by another rook.

Figure 8: An example of a nonattacking rook placement in B
aug
3 (p(x)), with B =

F (1, 2, 3, 5, 5) and p(x) = p0 + p1x + p3x
3.

Here cancellation in this board is defined as follows.

(i.) Suppose r is a rook placed in the first column of Baug
x (p(x)).

a. If r is placed above the high bar in the subboard B
aug,(sw)
x , then above the high bar,

r will cancel within the upper part of Baug
x (p(x)) as described previously (that is,

as if there is no x-part or lower augmented part). It will also cancel the lowest cell
to its right in each subcolumn of the lower augmented part in each of the other
remaining subboards.

12



b. If r is placed in the x-part in the subboard B
aug,(sw)
x , then r will cancel the x-parts

in the first column of every other subboard in Baug
x (p(x)).

(ii.) Suppose r′ is any other rook which has been placed in the jth column of Baug
x (p(x)).

a. If r′ is placed above the high bar in the subboard B
aug,(su)
x , then again, r′ cancels

above the high bar in all boards as it would if there were no x-part or lower
augmented part. It will also cancel the lowest remaining uncanceled cells to its
right in each subcolumn of the lower augmented part in the remaining subboards
which have yet to be canceled by a rook to their left.

b. If r′ is placed in the x-part, then r′ will cancel the x-parts in the jth column of
every other subboard in Baug

x (p(x)).

c. If r′ is placed in the lower augmented part, then r′ cancels all uncanceled cells in
the lower augmented parts of the jth columns of the remaining subboards.

Now for any nonzero p(x) ∈ N
0[x], we then let Nn,p(x)(B

aug
x (p(x))) denote the set of

colored placements in Baug
x (p(x)) such that the above placement and cancellation rules hold

as do the same coloring rules as before. An example of these placement and cancellation
rules is illustrated in Figure 8, where B = F (1, 2, 3, 5, 5), p(x) = p0 + p1x + p3x

3, and x = 3.
Finally, we assign to each colored placement of rooks P ∈ Nn,p(x)(B

aug
x (p(x))) a weight of

(−1)LA(P), where LA(P) is the number of columns in P that contain rooks which lie in the
lower augmented part of Baug

x (p(x)). This model, combined with Theorem 4, gives the
following result.

Theorem 7. Suppose n ∈ N and p(x) = ps1x
s1 + ps2x

s2 + · · · + psy
xsy ∈ N[x]. If B =

F (0, 1, . . . , n − 1) is any Ferrers board, then

(p(x))n =
n
∑

k=0

rn−k,p(x)(B(p(x)))
k
∏

j=1

(p(x) − p(j − 1)) (15)

=
n
∑

k=0

S
p(x)
n,k

k
∏

j=1

(p(x) − p(j − 1)).

3 Two q-analogues

To begin, we recall that [0]q = 0 and for any n ∈ N,

[n]q = 1 + q + q2 + · · · + qn−1 =
1 − qn

1 − q
.

Now, assume that we have the single-column Ferrers board B = F (b1) and that p(x) = x.
Then we can define, for any placement P of a single rook in this board, the statistic w(P) =

13



Figure 9: q-counting, where the sum over all placements in K(B) with B = F (5) is q4 + q3 +
q2 + q1 + q0 = [5]q.

qγ(P), where γ(P) is the number of cells which lie above the rook in P. If we set K(B) to be
the set of all rook placements in B, then

W (B) =
∑

P∈K(B)

w(P) = [b1]q.

An example of this can be seen in Figure 9, where b1 = 5. This method of q-counting
generalizes further, where if B = F (b1) and p(x) = cxm ∈ N[x] with m ≥ 1, then W (B) =
c[b1]

m
q = p([b1]q).

3.1 Type I q-counting in polyboards

In this section we describe the first of our two q-analogues. Here, given a nonzero p(x) ∈
N

0[x], we define the type I q-analogue of p(x) to be p([x]q). Suppose that we are given a
placement P ∈ Fk,p(x)(B(p(x))), and let r denote the collection of rooks which have been
placed in the jth column of the board sz. We then write r = r(z,j,sz), and we define the
q-weight of r by

g(r, q) := qα(r),

where α(r) is the number of cells in B(p(x)) that lie directly above the rooks of r. We
then define the q-weight of P to be

G(P, q) :=
∏

r∈P

g(r, q).

An illustration of this type of q-counting can be seen in Figure 10, where the same
placement is used as in Figure 5. Here we see that, when looking at rooks from left to right,
P has a q-weight of

G(P, q) = g(r(2,1,1), q) g(r(3,3,2), q) g(r(1,4,1), q)

= (1)(q)(1)

= q.

14
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q

X
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XX

Figure 10: q-counting in the board B(p(x)), with the same placement as in Figure 5. Here
the q-weight is (1)(q)(1) = q.

We then define the kth type I q-poly-file number of B(p(x)) to be

fk,p(x)(B(p(x)), q) :=
∑

P∈Fk,p(x)(B(p(x)))

G(P, q). (16)

Now suppose that we are given a placement P ∈ Fn,p(x)(Bx(p(x))). We write r = r(z,j,sz)x

denote the collection of rooks which have been placed the x-part in the jth column of the
board sz, and we will define, for each rook r ∈ P, the q-weight of r by

gx(r, q) := qαx(r),

where

(i.) αx(r) is the number if uncanceled cells which lie directly above r if r is not in the x-part
of Bx(p(x)), and

(ii.) αx(r) is the number if uncanceled cells which lie directly above r but below the bar if
r is in the x-part of Bx(p(x)).

The q-weight of P is then defined to be

Gx(P, q) :=
∏

r∈P

gx(r, q).

This q-counting in the board Bx(p(x)) is pictured in Figure 11, where the placement
shown has, when looking at the rooks from left to right, a q-weight of

Gx(P, q) = gx(r
(2,1,1), q) gx(r

(1,2,1)x , q) gx(r
(3,3,2), q) gx(r

(1,4,1), q) gx(r
(3,5,2)x , q)

= (1)(1)(q)(1)(q5)

= q6.

15
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Figure 11: q-counting in the board Bx(p(x)), with the same placement as in Figure 6. Here
the q-weight is (1)(1)(q)(1)(q5) = q6.

Theorem 8. Suppose x, n ∈ N
0 and p(x) = as1x

s1 + as2x
s2 + · · · + asy

xsy ∈ N[x]. If
B = F (b1, b2, . . . , bn) is any Ferrers board, then

n
∏

i=1

(p([x]q) + p([bi]q)) =
n
∑

k=0

fn−k,p(x)(B(p(x)), q) (p([x]q))
k. (17)

Proof. Given p(x) and a Ferrers board B = F (b1, b2, . . . , bn), define

Sq(Bx(p(x))) :=
∑

P∈Fn,p(x)(Bx(p(x)))

Gx(P, q).

We first consider the number of ways that we can place rooks in each column of Bx(p(x)),
starting with the leftmost column and working to the right. In the first column of Bx(p(x))
there will be xs1 + xs2 + · · · + xsy ways to place rooks in the x-part, and there will be
bs1
1 + bs2

1 + · · ·+ b
sy

1 ways to place rooks in the upper part. The total q-weight for all of these
placements would be

([x]s1
q + [x]s2

q + · · · + [x]sy

q ) + ([b1]
s1
q + [b1]

s2
q + · · · + [b1]

sy

q )

if these placements were uncolored. Coloring the placements leads to the total q-weight of

(as1 [x]s1
q +as2 [x]s2

q + · · ·+asy
[x]qx

sy)+(as1 [b1]
s1
q +as2 [b1]

s2
q + · · ·+asy

[b1]
sy

q ) = p([x]q)+p([b1]q)

in the first column of Bx(p(x)). In general, since no rook cancels to its right, the jth column
of the Bx(p(x)) will get a total q-weight of p([x]q) + p([bj]q), giving that

Sq(Bx(p(x))) =
n
∏

i=1

(p([x]q + p([bi]q)).
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Figure 12: q-counting in the board B(p(x)), with the same placement as in Figure 4. Here
the q-weight is (1)(1)(q3) = q3.

Next, suppose that we first fix a colored n − k-file placement W ∈ Fn−k,p(x)(B(p(x))).
Then the q-weight of W is G(W, q). We wish to extend W to a colored placement P in
Fn,p(x)(Bx(p(x))), that is, P∩B(p(x)) = W . To do this, we will place rooks in the remaining
columns of the x-part of Bx(p(x)) which do not already contain rooks from W . In each of
these columns there will be xs1 + xs2 + · · · + xsy ways to place rooks, each with a q-weight
of p([x]q). As there are k such empty columns, we have

Sq(Bx(p(x))) =
n
∑

k=0

∑

W∈Fn−k,p(x)(B(p(x)))

G(W, q)p([x]q)
k

=
n
∑

k=0

p([x]q)
k

∑

W∈Fn−k,p(x)(B(p(x)))

G(W, q)

=
n
∑

k=0

p([x]q)
kfn−k,p(x)(B(p(x)), q),

which is the desired result.

Suppose that we are given a placement P ∈ Nk,p(x)(B(p(x))). We define the q-weight of
r by

h(r, q) := qβ(r),

where β(r) is the number of uncanceled cells which lie above the rooks of r.
We then define the q-weight of P to be

H(P, q) :=
∏

r∈P

h(r, q).

In Figure 12, which is the identical placement to Figure 4, we see that the placement
shown has a q-weight, when looking at rooks from left to right, of
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H(P, q) = h(r(2,1,1), q) h(r(1,3,0), q) h(r(3,4,2), q)

= (1)(1)(q3)

= q3.

We then define the kth type I q-poly-rook number of B(p(x)) to be

rk,p(x)(B(p(x)), q) :=
∑

P∈Nk,p(x)(B(p(x)))

H(P, q). (18)

Now suppose that we are given a colored placement P ∈ Nn,p(x)(B
aug
x (p(x))). We define

r = r(z,j,sz)a to denote that the rooks lie in the augmented part of the board, and we set, for
each r ∈ P, the q-weight of r to be

hx(r, q) = qβ
aug
x (r),

where

(i.) βaug
x (r) is equal to β(r) if r is above the high bar in Baug

x (p(x)),

(ii.) βaug
x (r) is equal to the number of uncanceled cells directly above the rooks in r but

below the high bar if r is in the x-part of Baug
x (p(x)), and

(iii.) βaug
x (r) is equal to the number of uncanceled cell directly above a rook in r but below

the low bar if r is in the augmented part of Baug
x (p(x)).

Using this weighting scheme we set the q-weight of P to be

Hx(P, q) = (−1)LA(P)
∏

r∈P

hx(r, q),

where again, LA(P) is the number of columns of Baug
x (p(x)) which contain rooks from P

below the low bar. This type of q-counting in the board Baug
x (p(x)) can be seen in Figure 13,

where the placement shown has q-weight

Hx(P, q) = (−1)LA(P)hx(r
(1,1,0)x , q) hx(r

(2,2,1), q) hx(r
(3,3,3)x , q) hx(r

(2,4,1), q) hx(r
(2,5,1)a , q)

= (−1)1(1)(q)(q2)(q2)(q)

= −q6.

Theorem 9. Suppose x, n ∈ N
0 and p(x) = as1x

s1 + as2x
s2 + · · · + asy

xsy ∈ N[x]. If
B = F (0, 1, . . . , n − 1), then

(p([x]q))
n =

n
∑

k=0

r
aug

n−k,p(x)(B(p(x)), q)
k
∏

i=1

(p([x]q) − p([i − 1]q)). (19)
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Figure 13: q-counting in the board B
aug
3 (p(x)), with the same placement as in Figure 8. Here

the q-weight is −q6.

Proof. Given p(x) and the Ferrers board B = F (0, 1, . . . , n − 1), define

Tq(B
aug
x (p(x))) :=

∑

P∈Nn,p(x)(B
aug
x (p(x)))

Hx(P, q).

We see that in the first column of Baug
x (p(x)) there are xs1 + xs2 + · · · + xsy ways to

place uncolored rooks in the x-part, and so once we color the rooks and assign a q-weight,
these placements contribute a total q-weight of p([x]q) to Tq(B

aug
x (p(x))). By construction,

rooks not placed in the x-part of the first column may only be placed in a degenerate board
(if there is one), and so there are always p(0) possible ways to place colored rooks both
above the high bar and in the augmented part of Baug

x (p(x)). These both contribute a total
q-weight of p(0) = p([0]q) to Tq(B

aug
x (p(x))), although the rooks placed below the low bar

are weight by LA(P). Thus, the total q-weight over all placements in the first column of
Baug

x (p(x)) is p([x]q) + p([0]q) − p([0]q) = p([x]q). In general, if we have placed rooks in the
first t − 1 columns of Baug

x (p(x)) such that exactly s of the columns have rooks above the
high bar, then there will be t − 1 − s uncanceled cells above the high bar and t − 1 − s

uncanceled cells below the low bar in every subcolumn of column t. That is, in column t

there are a1(t − 1 − s)s1 + a2(t − 1 − s)s2 + · · · + ay(t − 1 − s)sy = p(t − 1 − s) ways to
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place colored rooks above the high bar, p(x) ways to place colored rooks in the x-part, and
a1(t − 1 − s)s1 + a2(t − 1 − s)s2 + · · · + ay(t − 1 − s)sy = p(t − 1 − s) ways to place colored
rooks below the low bar. In such a case, the q-weights over all possible placements in the
tth column of Baug

x (p(x)) will contribute p([x]q) + p([t− 1− s]q)− p([t− 1− s]q) = p([x]q) to
Tq(B

aug
x (p(x))). It then follows that

Tq(B
aug
x (p(x))) = (p([x]q))

n.

Now suppose that we fix a colored (n − k)-nonattacking rook placement V in the upper
part of Baug

x (p(x)). Then we want to count the number of ways extend V to a placement
in Nn,p(x)(B

aug
x (p(x))). Let C(ti)(B

aug
x (p(x))) be the ith column of Baug

x (p(x)), reading left to
right, which has no rooks from V in that column. Then for 1 ≤ i ≤ k, there will be ti − i

columns to the left of C(ti)(B
aug
x (p(x))) which have rooks above the high bar and these rooks

will cancel ti − i cells in each subcolumn of C(ti)(B
aug
x (p(x))) in the lower augmented part

of the Baug
x (p(x)). Thus, there will be ti − 1 − (ti − i) = (i − 1) uncanceled cells in each

subcolumn of C(ti)(B
aug
x (p(x))) in the lower augmented part of the Baug

x (p(x)), contributing
a total q-weight of −p([i−1]q) to Tq(B

aug
x (p(x))). Moreover, the rooks from V will not cancel

any cells in the x-part of this column, and so the colored rook placements from rooks placed
in the x-part contribute a total q-weight of p([x]q) to Tq(B

aug
x (p(x))). We then see that if

we sum the weights over all possible ways to place colored rooks in column C(ti)(B
aug
x (p(x)))

will get p([x]q − p([i − 1]q). It follows that

Tq(B
aug
x (p(x))) =

n
∑

k=0

∑

V ∈Nn−k,p(x)(B(p(x)))

H(V, q)
k
∏

i=1

(p([x]q) − p([i − 1]q))

=
n
∑

k=0

k
∏

i=1

(p([x]q) − p([i − 1]q))
∑

V ∈Nn−k,p(x)(B(p(x))))

H(V, q)

=
n
∑

k=0

(

k
∏

i=1

(p([x]q) − p([i − 1]q))

)

r
aug

n−k,p(x)(B(p(x)), q),

which is the desired result.

3.2 Type I q-poly-Stirling numbers

In this section we will study the polynomials defined by the recursions

S
p(x)
0,0 (q) = 1 and S

p(x)
n,k (q) = 0 if k < 0 or k > n and (20)

S
p(x)
n+1,k(q) = S

p(x)
n,k−1(q) + p([k]q)S

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

We will call these numbers the Type I q-poly Stirling numbers of the second kind. We
then define the numbers
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s
p(x)
0,0 (q) = 1 and s

p(x)
n,k (q) = 0 if k < 0 or k > n and (21)

s
p(x)
n+1,k(q) = s

p(x)
n,k−1(q) − p([n]q)s

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

We will call these numbers the Type I q-poly Stirling numbers of the first kind. If we now
replace s

p(x)
n,k (q) with (−1)(n−k)c

p(x)
n,k (q), then we have the numbers which satisfy the recursion

c
p(x)
0,0 (q) = 1 and c

p(x)
n,k (q) = 0 if k < 0 or k > n and (22)

c
p(x)
n+1,k(q) = c

p(x)
n,k−1(q) + p([n]q)c

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0,

and we will call these numbers the signless Type I q-poly Stirling numbers of the first
kind.

Theorem 10. Let n ∈ N
0 and consider a nonzero p(x) ∈ N

0[x]. If B = F (0, 1, . . . , n − 1),
then, for every 0 ≤ k ≤ n,

c
p(x)
n,k (q) = fn−k,p(x)(B(p(x)), q). (23)

Proof. We see that f0−0,p(x)(B(p(x)), q) = f0,p(x)(B(p(x)), q) = 1 = c
p(x)
0,0 (q). Now, we proceed

by induction and consider the boards B = F (0, 1, . . . , n − 1) and B = F (0, 1, . . . , n − 1, n).
Then fn+1−k,p(x)(B(p(x)), q) gives the total q-weight over all possible colored (n + 1 − k)-
placements of file rooks in the board B(p(x)). Now, all rooks could be placed in the first
n columns, and the total q-weight over those placements is given by fn+1−k,p(x)(B(p(x)), q).
Otherwise, there is a rook placed in the last column of B(p(x)). In this case, there are rooks
placed in n−k of the first n columns of B(p(x)), and those rooks contribute a total q-weight
of fn−k,p(x)(B(p(x)), q). Since the rooks placed in the last column of B(p(x)) can be placed
in any of the subboards, each of which has a last column with height n (except possibly a
degenerate board), those rooks will contribute a q-weight of p([n]q) to the total weight of
these placements. Thus,

fn+1−k,p(x)(B(p(x)), q) = fn+1−k,p(x)(B(p(x)), q) + p([n]q)fn−k,p(x)(B(p(x)), q)

= c
p(x)
n,k−1(q) + p([n]q)c

p(x)
n,k (q), by induction

= c
p(x)
n+1,k(q).

Combining this result with Theorem 8, we have the product formula

n
∏

i=1

(p([x]q) + p([i − 1]q)) =
n
∑

k=0

c
p(x)
n,k (q)(p([x]q))

k. (24)

If we then replace p([x]q) in the above equation with −p([x]q) and multiply both sides by
(−1)n, we get

n
∏

i=1

(p([x]q) − p([i − 1]q)) =
n
∑

k=0

s
p(x)
n,k (q)(p([x]q))

k (25)
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Now, we can apply Milne Inversion [4] to show that the matrices ||Sp(x)
n,k (q)|| and ||sp(x)

n,k (q)||
are inverses of one another, which also leads to the product formula

(p([x]q))
n =

n
∑

k=0

S
p(x)
n,k (q)

k
∏

j=1

(p([x]q) − p([j − 1]q)), (26)

although this formula also arises as a corollary to Theorem 9 and the following theorem.

Theorem 11. Let n ∈ N
0 and consider a nonzero p(x) ∈ N

0[x]. If B = F (0, 1, . . . , n − 1),
then, for every 0 ≤ k ≤ n,

S
p(x)
n,k (q) = r

aug

n−k,p(x)(B(p(x)), q). (27)

Proof. We see that r
aug

0−0,p(x)(B(p(x)), q) = r
aug

0,p(x)(B(p(x)), q) = 1 = S
p(x)
0,0 (q). Now, we pro-

ceed by induction and consider the boards B = F (0, 1, . . . , n − 1) and B = F (0, 1, . . . , n −
1, n). Then r

aug

n+1−k,p(x)(B(p(x)), q) gives the total q-weight over all possible colored (n +

1 − k)-placements of nonattacking rooks in the board B(p(x)). Now, all rooks could be
placed in the first n columns, and the total q-weight over those placements is given by
r

aug

n+1−k,p(x)(B(p(x)), q). Otherwise, there is a rook placed in the last column of B(p(x)). In

this case, there are nonattacking rooks placed in n−k of the first n columns of B(p(x)), and
those rooks contribute a total q-weight of r

aug

n−k,p(x)(B(p(x)), q). Then, the last column in each

of the subboards of B(p(x)) has height n (except possibly a degenerate board), and n − k

cells have been canceled in each subcolumn of the last column of each board in B(p(x)). So,
there are n − (n − k) = k available cells in each subcolumn of the final column of B(p(x)),
giving that the rooks placed in the last column of B(p(x)) will contribute a q-weight of p([k]q)
to the total weight of our (n + 1 − k)-placement. Thus,

r
aug

n+1−k,p(x)(B(p(x)), q) = r
aug

n+1−k,p(x)(B(p(x)), q) + p([k]q)r
aug

n−k,p(x)(B(p(x)), q)

= S
p(x)
n,k−1(q) + p([k]q)S

p(x)
n,k (q), by induction

= S
p(x)
n+1,k(q).

Using the recursions given above, the following is a generalization of a well-known gen-
erating function for the Stirling numbers of the second kind.

Theorem 12. For any k ≥ 1,

∑

n≥k

S
p(x)
n,k (q)tn =

tk

(1 − p([1]q)t)(1 − p([2]q)t) · · · (1 − p([k]q)t)
. (28)
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Proof. Let φk(t, q) =
∑

n≥k S
p(x)
n,k (q)tn. From our combinatorial interpretation we see that

the only way to have an n-placement in Baug
x (p(x)), where B = F (0, 1, . . . , n−1), is to place

every rook at the top of its column. So, for all n ∈ N, S
p(x)
n,1 (q) = p(1) = p([1]q), giving

φ1(t, q) =
t

(1 − p([1]q)t)
. Using our recursion for S

p(x)
n,k (q) we obtain

φk(t, q) =
∑

n≥k

S
p(x)
n,k (q)tn

=
∑

n≥k

(S
p(x)
n−1,k−1(q) + p([k]q)S

p(x)
n−1,k(q))t

n

=
∑

n≥k

S
p(x)
n−1,k−1(q)t

n +
∑

n≥k

p([k]q)S
p(x)
n−1,k(q)t

n

= tφk−1(t, q) + tp([k]q)φk(t, q).

Thus, φk(t, q) =

(

t

(1 − p([k]q)t)

)

φk−1(t, q), and our result follows by induction.

3.3 Type II q-counting in polyboards

Here, given a nonzero p(x) ∈ N
0[x], we define the type II q-analogue of p(x) to be [p(x)]q.

We can express the polynomial [p(x)]q in various forms. Recall that for nonnegative integers
x and a, we have the identity [x + a]q = [x]q + qx[a]q. As an example, consider the type II
q-analogue of the polynomial p(x) = x3 + 2x + 4. We rewrite [p(x)]q as

[x3 + 2x + 4]q = [x3 + 2x]q + qx3+2x[4]q

= [x3]q + qx3

[2x]q + qx3+2x[4]q

= [x3]q + qx3

(1 + qx)[x]q + qx3+2x(1 + q + q2 + q3)[1]q.

So, we see that the q-analogue of p(x) is a weighted sum of q-analogues of monomials.
Using this fact, we can q-count both non-attacking and file placements of rooks in the
polyboard if we can determine how to modify our q-counting techniques for m-partition
boards, then we can extend those results to polyboards by appropriately weighting the cells
in each of the boards of B(p(x)) with extra factors of q. We call this type-II q-counting,
and this alternative way of q-counting rook and file placements is best explained by through
an example. For the purposes of this section, as we will primarily be dealing with single
m-partition boards, we will denote C(j)(B

(m)) by Cj, as no confusion should arise as to which
column we are referring.

Suppose we have a Ferrers board B = F (1, 2, 2, 4, 5) and a placement P ∈ N2,(3)(B
(3)),

as in Figure 14, where the rooks are placed in columns Ci1 = C2 and Ci2 = C4.
Step 1: We remove all of the rooks of P from B(m), and we number each subcolumn of

B(m), from top to bottom, with the digits 0, 1, 2, . . . , bn − 1, as in Figure 15.
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Figure 14: A placement of non-attacking rooks in two columns of B(3) with B =
F (1, 2, 2, 4, 5).

11111111111
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1
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333333

222222

000000000000

Figure 15: Step 1: A numbering of the blank board B(3) with B = F (1, 2, 2, 4, 5).

Step 2: We will place the rooks which were in column Ci1 = C2 of the original placement
in B(m) back into the numbered board, and cancel in the normal way. We will then note
which numbers were in the cells now filled by these m rooks. Supposing the numbers are,
reading from left to right, a1, a2, . . . , am, we will assign these rooks a q-weight of νC(Ci1 , q) =

q
(a1a2···am)bi1 , where (a1a2 · · · an)p is the p-ary digit a1(p

n−1) + a2(p
n−2) + · · · + an(p0). In

this case, the rooks placed in column Ci1 give us a q-weight of νC(Ci1 , q) = q(100)2 =
q1(4)+0(2)+0(1) = q4. We will then renumber the remaining uncanceled cells in the columns to
the right of Ci1 as we did in Step 1. This step can be seen in Figure 16.

Step 3: Now we will place the rooks back into column Ci2 , which here is the fourth

column of B(m). We then assign those rooks a q-weight of νC(Ci2 , q) = q
(a1a2···am)bi2

−1 , again
reading the ai from left to right. Here the rooks in the fourth column of B(m) will be assigned
a q-weight of νC(Ci2 , q) = q(102)4−1 = q(102)3 = q1(9)+0(3)+2(1) = q11. This step can be seen in
Figure 17.

Step 4: In general, we will, after replacing the rooks in a given column Ciw , give those

rooks a q-weight of νC(Ciw , q) := q
(a1a2···am)biw

−(w−1) . We will then define the type-II q-weight
of the original placement P ∈ Nk,(m)(B

(m)) to be

ν(P, q) :=
k
∏

w=1

νC(Ciw , q).

Thus, the placement in Figure 14 has a type-II q-weight of
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1 1 1

0 00 0

. .. .. ..
. . .

2

333

XX

X

000

Figure 16: Step 2: We begin to place the original rooks back into the board B(m), and we
keep track of the numbers in those cells, which are, reading from left to right: 1, 0, 0. We
then assign a q-weight to those rooks, and renumber uncanceled cells to the right of those
rooks.
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X

X

2 2 2

1 1
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.

.
.
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0

. 0

X

X X

1

0

Figure 17: Step 3: We repeat Step 2 for the rooks in column C4.

ν(P, q) =
2
∏

w=1

νC(Ciw , q) = νC(C2, q)νC(C4, q) = q4q11 = q15.

We now define the kth type-II qm-rook number of B(m) to be

rk,(m)(B
(m), q) :=

∑

P∈Nk,(m)(B
(m))

ν(P, q). (29)

There are also analogous file numbers, which can be defined in a very similar way to the
rook numbers. Given an m-file placement in the board B(m) with rooks placed in the cells
c(a1, 1, iw), c(a2, 2, iw), . . ., c(am,m, iw) of the column Ciw , we define

µC(Ciw , q) := q
(a1a2···am)biw .

Then, given any placement P ∈ Fk,(m)(B
(m)), we define the type-II q-weight of P to be

µ(P, q) :=
k
∏

w=1

µC(Ciw , q).

We then define the kth type II-qm-file number of B(m) to be

fk,(m)(B
(m), q) :=

∑

P∈Fk,(m)(B
(m))

µ(P, q). (30)
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Figure 18: An example of a q-count for a file rook placement P ∈ Fk,(m)(B
(m)), where

B = (0, 1, 2, 4, 5, 5). This placement has a q-weight of q120.

An example of this q-weighting can be seen in Figure 18, and the placement shown has
a type-II q-weight of

µ(P, q) = q(101)2q(221)5q(204)5 = q5q61q54 = q120.

Using these definitions, one could prove that these type-II qm-rook and file numbers
satisfy some simple recursions, much like in Theorem 1.

Theorem 13. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers
boards. Then for all 0 ≤ k ≤ n + 1,

rk,(m)(B̄
(m), q) = rk,(m)(B

(m), q) + [(bn − (k − 1))m]qrk−1,(m)(B
(m), q) (31)

and
fk,(m)(B̄

(m), q) = fk,(m)(B
(m), q) + [(bn)m]qfk−1,(m)(B

(m), q), (32)

where r0,(m)(B
(m), q) = f 0,(m)(B

(m), q) = 1 and rk,(m)(B
(m), q) = fk,(m)(B

(m), q) = 0 if k < 0
or k > n.

We now further generalize this notion of type-II q-counting to include rook placements
in our more generalized boards. To begin, suppose that P ∈ Fn,(m)(B

(m)
x ) and define

M
B

(m)
x

(P, q) :=
n
∏

j=1

M
C,B

(m)
x

(Cj, q),

where we define M
C,B

(m)
x

(Cj, q) as follows.

(i.) If the m rooks in Cj lie in the cells c(a1, 1, j), c(a2, 2, j), . . ., c(am,m, j), then M
C,B

(m)
x

(Cj, q) =

µC(Cj, q) = q
(a1a2···am)bj .

(ii.) If the m rooks in Cj lie in the cells cx(a1, 1, j), cx(a2, 2, j), . . ., cx(am,m, j), then
M

C,B
(m)
x

(Cj, q) = q(d1d2···dm)x , where di = ai − 1.
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Figure 19: An example of a q-count for a file rook placement P ∈ F6,(3)(B
(3)
x ), where B =

(0, 1, 2, 4, 5, 5) and x = 5. This placement has a q-weight of q273.

An example of this type of q-weighting can be seen in Figure 19, where the same board
and placement as in Figure 18 is used above the bar. Here,

M
B

(3)
5

(P, q) =
6
∏

j=1

M
C,B

(3)
5

(Cj, q)

= q(232)5q(012)5q(101)2q(304)5q(221)5q(204)5

= q67q7q5q79q61q54

= q273.

Theorem 14. Suppose x, n ∈ N
0. If B = F (b1, b2, . . . , bn) is any Ferrers board, then

n
∏

i=1

([xm]q + [bm
i ]q) =

n
∑

k=0

fn−k,(m)(B
(m), q)([xm]q)

k. (33)

Proof. Given a Ferrers board B = F (b1, b2, . . . , bn), define

S̄q(B
(m)
x ) :=

∑

P∈Fn,(m)(B
(m)
x )

M
B

(m)
x

(P, q).
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We first consider the number of ways that we can place m rooks in each column of B
(m)
x ,

starting with the leftmost column and working to the right. In the first column of B
(m)
x , there

will be xm ways to place rooks in the x-part with a total q-weight of [xm]q. Similarly, there
are bm

1 ways to place rooks above the bar, with a total q-weight of [bm
1 ]q. So, the q-weight

over all possible placements of m rooks in C1 is M
C,B

(m)
x

(C1, q) = [xm]q + [bm
1 ]q. Since rooks

do not cancel to their right in this board, if we place m rooks in Cj, then the total q-weight
over all placements of rooks in this column will be M

C,B
(m)
x

(Cj, q) = [xm]q + [bm
j ]q, and thus,

S̄q(B
(m)
x ) =

n
∏

i=1

([xm]q + [bm
i ]q).

Next, suppose we first fix a file placement Z ∈ Fn−k,(m)(B
(m)). Then the q-weight of Z

is µ(Z, q). We wish to extend Z to a placement P ∈ Fn,(m)(B
(m)
x ) such that P ∩ B(m) = Z.

Each such P arises by placing m rooks in the x-part in each column which does not contain
a rook of Z. In each such column there will be xm ways of placing these m rooks, which will
give a total q-weight of [xm]q for each such column. As there are k such empty columns, we
have

S̄q(B
(m)
x ) =

n
∑

k=0

∑

Z∈Fn−k,(m)(B
(m))

µ(Z, q)([xm]q)
k

=
n
∑

k=0

([xm]q)
k

∑

Z∈Fn−k,(m)(B
(m))

µ(Z, q)

=
n
∑

k=0

([xm]q)
kfn−k,(m)(B

(m), q).

We would now like to prove a similar product formula for the type-II qm-rook numbers,
and to do so, we must first define how to type-II q-count in augmented boards. To begin,
suppose that P ∈ Nn,(m)(B

aug,(m)
x ) with rooks placed, from left to right in columns C1, . . . , Cn

and define

V
B

aug,(m)
x

(P, q) = (−1)LA(P)

n
∏

i=1

νC(Ci, q),

where we define νC(Cj, q) as follows.

(i.) If the m rooks in Cj lie in board B(m), then νC(Cj, q) = νC(Cj, q).

(ii.) If the m rooks in Cj lie in the x-part of B
aug,(m)
x , then νC(Cj, q) = M

C,B
(m)
x

(Cj, q), that

is, these rooks have the same q-weight as if they were in a file placement in B
(m)
x .

(iii.) If the m rooks in Cj lie in the cells ca(a1, 1, j), ca(a2, 2, j), . . . , ca(am,m, j) in the aug-

mented part of B
aug,(m)
x , and if there are t columns to the right of Cj which contain rooks

above the high bar, then ν(Cj, q) = q(e1e2···em)α , where ei = ai − 1, and α = j − 1 − t.
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Figure 20: An example of a q-weighting of a placement of non-attacking rooks in the board
B

aug,(3)
3 with B = F (1, 2, 2, 4, 5).

An example of this type-II q-weighting can be seen in Figure 20, where the same board
and placement as in Figure 14 are used above the high bar. Here,

V
B

aug,(m)
x

(P, q) = (−1)LA(P)

5
∏

i=1

ν(Ci, q)

= (−1)1q(112)3q(100)2q(101)3q(102)3q(101)2

= (−1)q14q4q3q11q5

= −q37.

Theorem 15. Suppose x, n ∈ N
0. If B = F (0, 1, . . . , n − 1), then

([xm]q)
n =

n
∑

k=0

rn−k,(m)(B
(m), q)

k
∏

j=1

([xm]q − [(j − 1)m]q). (34)

Proof. Let B = F (0, 1, . . . , n − 1) and define

T q(B
aug,(m)
x ) :=

∑

P∈Nn,(m)(B
aug,(m)
x )

V
B

aug,(m)
x

(P, q).

We first consider the number of ways to places rooks in the first column of B
aug,(m)
x ,

starting with the leftmost column and working right. In the fist column of B
aug,(m)
x , there
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are xm possible rook placement, and by our weighting scheme, these come with a total q-
weight of ν(C1, q) = [xm]q. Now suppose that we are placing rooks in column Cj with j > 1,
and further suppose that we have placed rooks above the high bar in s of the columns to the
right of Cj. Then above the high bar we will have ((j − 1) − s)m ways to place rooks, and
similarly, we will have ((j−1)−s)m ways to place rooks in the augmented part. Since we still
have xm ways to place rooks in the x-part, the total q-weight over all such placement is, when
considering the sign contributed by LA(P), [xm]q +[((j−1)−s)m]q− [((j−1)−s)m]q = [xm]q.
Thus,

T q(B
aug,(m)
x = ([xm]q)

n.

Next, suppose we first fix an (n − k)-nonattacking rook placement U ∈ Nn−k,(m)(B
(m)),

Then the q-weight of U is ν(U, q). We wish to extend U to a placement P ∈ Nn,(m)(B
aug,(m)
x )

such that P ∩ B(m) = U . Each such P arises by placing m rooks below the high bar in each
column which does not contain a rook of U . In the first such column, reading from left to
right, there will be xm ways to place rooks in the x-part and 0 ways to place rooks in the
augmented part, contributing a total q-weight of [xm]q = [xm]q − [0m]q. In general, suppose
we are placing rooks in the ith such column below the high bar. Then there will still be
xm ways to place rooks in the x-part, and there will be (i − 1)m ways to place rooks in the
augments part, giving a total q-weight of [xm]q − [(i − 1)m]q. As there are k such empty
columns, we have

T q(B
aug,(m)
x ) =

n
∑

k=0

∑

U∈Nn−k,(m)(B
(m))

ν(U, q)
k
∏

j=0

([xm]q − [(j − 1)m]q)

=
n
∑

k=0

(

k
∏

j=0

([xm]q − [(j − 1)m]q)

)

∑

U∈Nn−k,(m)(B
(m))

ν(U, q)

=
n
∑

k=0

(

k
∏

j=0

([xm]q − [(j − 1)m]q)

)

rn−k,(m)(B
(m), q),

which is the desired result.

Using these notions of q-counting in m-partition boards, we could extend these results
to obtain type-II q-poly rook and file numbers, which would yield the following corollary to
Theorem 13.

Corollary 16. Suppose that B = F (b1, . . . , bn) and B̄ = F (b1, . . . , bn, bn+1) are Ferrers
boards and let p(x) ∈ N[x]. Then for all 0 ≤ k ≤ n + 1,

rk,p(x)(B(p(x)), q) = rk,p(x)(B(p(x)), q) + [p(bn − (k − 1))]qrk−1,p(x)(B(p(x)), q) (35)

and
fk,p(x)(B(p(x)), q) = fk,p(x)(B(p(x)), q) + [p(bn)]qfk−1,p(x)(B(p(x)), q), (36)
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where
r0,p(x)(B(p(x)), q) = f0,p(x)(B(p(x)), q) = 1

and
rk,p(x)(B(p(x)), q) = fk,p(x)(B(p(x)), q) = 0 if k < 0 or k > n.

3.4 Type II q-poly-Stirling numbers

Consider the numbers defined by the recursions

S
p(x)

0,0 (q) = 1 and S
p(x)

n,k (q) = 0 if k < 0 or k > n and (37)

S
p(x)

n+1,k(q) = S
p(x)

n,k−1(q) + [p(k)]qS
p(x)

n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

We will call these numbers the Type II q-poly Stirling numbers of the second kind. We
then define the numbers

s
p(x)
0,0 (q) = 1 and s

p(x)
n,k (q) = 0 if k < 0 or k > n and (38)

s
p(x)
n+1,k(q) = s

p(x)
n,k−1(q) − [p(n)]qs

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0.

We will call these numbers the Type II q-poly Stirling numbers of the first kind. If we now
replace s

p(x)
n,k (q) with (−1)(n−k)c

p(x)
n,k (q), then we have the numbers which satisfy the recursion

c
p(x)
0,0 (q) = 1 and c

p(x)
n,k (q) = 0 if k < 0 or k > n and (39)

c
p(x)
n+1,k(q) = c

p(x)
n,k−1(q) + [p(n)]qc

p(x)
n,k (q) if 0 ≤ k ≤ n + 1 and n ≥ 0,

and we will call these numbers the signless Type II q-poly Stirling numbers of the first
kind.

Theorem 17. Let n ∈ N and consider a nonzero p(x) ∈ N
0[x]. If B = F (0, 1, . . . , n − 1),

then, for every 0 ≤ k ≤ n,

c
p(x)
n,k (q) = fn−k,p(x)(B(p(x)), q) (40)

and
S

p(x)

n,k (q) = rn−k,p(x)(B(p(x)), q). (41)

We omit the proof of this theorem, as it again shows that the respective polynomials
satisfy the same recursions.

Combining this result with Theorem 14, we have the product formula

n
∏

i=1

([p(x)]q + [p(i − 1)]q) =
n
∑

k=0

c
p(x)
n,k (q)([p(x)]q)

k. (42)
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If we then replace [p(x)]q in the above equation with −[p(x)]q and multiply both sides by
(−1)n, then we get

n
∏

i=1

([p(x)]q − [p(i − 1)]q) =
n
∑

k=0

s
p(x)
n,k (q)([p(x)]q)

k. (43)

Now, we can apply Milne Inversion [4] to show that the matrices ||S
p(x)

n,k (q)|| and ||sp(x)
n,k (q)||

are inverses of one another, which also leads to the product formula

([p(x)]q)
n =

n
∑

k=0

S
p(x)

n,k (q)
k
∏

j=1

([p(x)]q − [p(j − 1)]q), (44)

although this formula also arises as a corollary to Theorems 15 and 17.
Finally, using the recursions given above, the following is a generalization of a well-known

generating function for the Stirling numbers of the second kind, the proof of which is similar
to that of Theorem 12.

Theorem 18. For any k ≥ 1,

∑

n≥k

S
p(x)

n,k (q)tn =
tk

(1 − [p(1)]qt)(1 − [p(2)]qt) · · · (1 − [p(k)]qt)
. (45)

4 Concluding remarks

We have given two different q-analogues of the generalizations of the poly-Stirling numbers
defined by Miceli [2]. It is the case that Type I and Type II p, q-analogues of poly-Stirling
numbers may be defined in a similar fashion, where the p, q-analogue of n ∈ N is given by

[n]p,q = pn−1 + qpn−2 + · · · + qn−2p + qn−1.

Most of the results of this paper have p, q-analogue counterparts, and the proofs are similar
once a combinatorial interpretation has been given. Miceli and Remmel [3] provide some
insight into how to p, q-count in this rook setting.

For future work, it may be interesting to see if exponential generating functions can be
found for poly-Stirling numbers in general. While Riordan [5] provides a result for p(x) = x2,
it would be nice to have results for a general p(x).
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