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Abstract

It is well known that successive members of the Fibonacci sequence are relatively

prime. Let

fnla) = ged(F,, + a, Fpy1 + a).

Therefore (f,(0)) is the constant sequence 1,1,1,..., but Hoggatt in 1971 noted that
(fn(£1)) is unbounded. In this note we prove that (f,(a)) is bounded if a # +1.

Introduction

Let the generalized Fibonacci sequence be defined by

G,=Gn1+G,_9, forn>3,

and G = a, Go = (3. It is well known that [3, p. 109]

Gn = 04an2 + ﬁanl-

If o« = 8 = 1, then the generalized Fibonacci sequence (), is the Fibonacci sequence F,,
A000045, and if = 1 and § = 3, G,, is the Lucas sequence L,,, A000032. It is well known
that successive members of the Fibonacci sequence are relatively prime. Consider a slightly
different sequence,

(F, +a),
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which we call a shifted Fibonacci sequence by a, e.g., A000071, A0O01611, and A157725. In
1971 Hoggatt [1] noted that

ged(Fyn1 + 1, Fino +1) = Loy,
ged(Fypg1 — 1, Fapgo — 1) = Fip,
ged(Fynys — 1, Fanpa — 1) = Loyqa.

That is to say, the successive members of the shifted Fibonacci sequence by +1 are not
always relatively prime. Let

fnla) = ged(F, + a, Fyq + a).

Therefore (f,,(0)) is the constant sequence 1,1,1, ..., but (f,(£1)) is unbounded above.
In 2003 Hernandez and Luca [2] proved that there exists a constant ¢ such that

ged(Fy, + a, F, + a) > exp(cm),

holds for infinitely many pairs of positive integers m > n.
In this note we prove that (f,(a)) is bounded above if a # 4+1. In fact we prove the
following two theorems in this note.

Theorem 1. For any integers o, 3, n and a with o + af3 — % — a® # 0, we have
ged(Gopoy + a, Gy +a) < |a? +af — 32 — d?|. (1)
Theorem 2. For any integers o, 3, n and a with o + afB — % 4+ a® # 0, we have
gcd(Gop + a, Gopy1 +a) < o+ af — 5%+ a?|. (2)
Let « = =1 in Theorem 1 and Theorem 2. We can get the corollary.
Corollary 1. For integers n and a,
ged(Fopoy +a, Foy +a) < | —1|, ifa# %1,
ged(Fyy, +a, Fopq +a) < a*+1.

Hence we conclude that (f,(a)) is bounded above if a # +1. Another easy corollary is
that
£n<a) = ng(Ln +a, Ln+1 + (I)

has only finitely many values.

Corollary 2. For integers n and a,

ged(Lap—1 4 a, Lo, +a) < a*+5,
ged(Lop 4+ a, Lopy1 +a) < |a* — 5.
Similarly, let @« = 1 and = 3 in Theorem 1 and Theorem 2. We conclude that ¢, (a) is
bounded above for any integers a.
In the next section we will derive two basic lemmas. From them, we determine f,(1),
fn(2), fu(=1), fu(=2), and £,(1), in Section 3, 4, and 5. In the last section we prove
Theorems 1 and 2.
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2 Preliminaries

Lemma 1. For integers n, k, and a,
ged(Gr + aFy, Gy — aFyy1) = ged(Ghog + aFjy2, Grg — aFjys). (3)
Proof. Since ged(a, b) = ged(a + be, b) for any integers a, b, and ¢, we have

ged(Gy, + aFy, Gy — alFyyy) = ged(Gy + aFy — (Gpoy — aFyy1), Groy — alFyyq)

(G
= gcd(Gpog + aFjqa, Gy — akFiq)
= ged(Greg + aFjyy2, Gt — aFjq1 — (Grog + alj2))
= ged(Gr—o + aFyio, Gpog — aFjy3).
]
Lemma 2. For integers m, k, and a,
ged(Gry + a, Gyr + a) = ged(Grn— o) + aFok—1, Grm—(2k41) — aFop). (4)
Proof. We simplify ged(G,, + a, Gpi1 + a),
ged(G + a, Gy +a) = ged(Gp 4+ a, G +a— (G + )
ged(Gr, + a, Grq).
Because F_; = 1 and Fy = 0 we can write
ng(Gm + a, Gm+1 + (I) = ng(Gm + aF—la CTYm—l + aFO)>
and applying (3) k times gives the result. ]
3 The sequence (f,(1))
Theorem 3. For any integer n, we have
ng(F4n—1 + 17 F4n + 1) == FQn—h (5)
2, ifn=1 (mod 3),
ged(Fin + 1, Py +1) = {0 Tn=1 mod3) Q
1, otherunse,
ged(Fyny1 + 1, Fanpo +1) = Loy, (7)

2, ifn=2 (mod 3),
ng(F4n+2 + 1, F4n+3 + 1) = { f ( )

1, otherwise.

Proof. Let m =4n— 1,k =n,and a = 1 in (4):

ged(Fun—1 + 1, Fy +1) = ged(Fop—1 + Fon—1, Fon—o — Fy,)
= ged(2Fon—1, —Fon_1)
FQn—lu
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giving (5). Let m =4n+1, k =n, and a = 1 in (4):
ged(Fyny1 + 1, Fapgo +1) = ged(Fopngr + Fono1, Fon — Foy)
= Fopp1+ Fona
— L2’rL7
giving (7). Let m =4n, k =n, and a = 1 in (4):
ged(Fyn + 1, i1 +1) = ged(Fop + Fono1, Fono1 — Fp)
= ged(Fony1, —Fon2).
Since ged(Fyptr, Fr) = ged(F,, F) for integers ¢, r, and n. This gives
ng(F4n =+ 1, F4n+1 + ].) = ng(FQn_27 F3)
Because ged(Fy, F) = Fyeak,r for integers k and r,
ged(Fyn + 1, Fanpn +1) = ged(Fon—2, F3)
= Fgcd(2n72,3)
 JF3=2, n=1 (mod3),
R = 1, otherwise,
which is (6). Let m=4n+2, k=n+1, and a = 1 in (4):

ged(Fanyo + 1, Fipys +1) = ged(Fon + Fontr, Fono1 — Fang2)
= ng(F2n+27 Fon1 — F2n+2)
= ged(Fanta, Fono1)
= ged(F3, Fon_1)
= Fyed@2n-1)
B {F3 =2, n=2 (mod3),

1 =1, otherwise,

which is (8).

4 The sequence (f,(2))

Theorem 4. For any integer n, we have

ng(F4n71 + 2, F4n + 2) =
ged(Fuy + 2, Fing +2)

—_

I
u)—‘

3, ifn=0 (mod2),
, ifn=1 (mod 2),

5, ifn=1 (modb),
1

, otherwise.

ged(Fupg1 + 2, Fango +2) =

ged(Fungo + 2, Fangs +2) =

—N —



Proof. Let m =4n —1, k =n, and a = 2 in (4):
ged(Fy1+ 2, Fypn+2) = ged(Fon1 + 2F5, 1, Foy o — 2Fy,)
= ged(3F9,—1, Fon_1 + Fy)
= ged(3Fon—1, Font1).
Since ged(a, be) = ged(a, ged(a, b)c) and ged(Fop—1, Fony1) = ged(Fyy,—1, F) = 1, we have
ged(Fun—1 + 2, Fy +2) = ged(3ged(Fan—1, Font1), Font1)
ged(3, Fapy1) = ged(Fy, Fopin)
= Fya@ont) = F1 =1,
which is (9). Let m = 4n, k =n, and a = 2 in (4):
ged(Fyp + 2, By +2) = ged(Fyy, 4 2F5, 1, Fon1 — 2F5,)
= ged(Fopy + Fony1, —Fop — Foy2)
= gcd(Lop, Lop—1)

—_

which is (10). Let m =4n+1, k =n, and a = 2 in (4):
ged(Fypi1 + 2, Finio +2) = ged(Fopyq + 2Fs, 1, Fyy — 2F3,)
= ged(Fopyr + 2Fy, 1 + 2F,,, Fyy,)
= gcd(3Fs41, Fon)
= ged(3, Fyy,) = ged(Fy, Fyy,)
= Fyeaan)
_ JF, =3, ifn=0 (mod2),
B {Flzl, ifn=1 (mod 2),
which is (11). Let m =4n + 2, k =n, and a = 2 in (4):
ged(Fypio + 2, Fanys +2) = ged(Fopya + 2F5, 1, Fopi1 — 2F,)
= ged(Fopyo +2F, 1, —Foy + Fop 1)
= ged(Fonga + 2Fon—1, —Foy_2)
gcd(Fon_, Fonso + 2F).
Since Fy,po + 2Fy, = Fopiq + 3Fy, = 4F5, + F5, 1, we have
ged(Fanso + 2, Finys +2) = ged(Fan—g, 4F2 + Fon1)
= ged(Fyy,_o,5Fs,)
= ged(Fyy_o,5ged(Foy_o, Fop))
= ged(Fyy_0,5) = ged(Faya, Fs)
Fycaizn—25)
Fs=5, ifn=1 (mod5)
{Fl =1, otherwise,

which is (12).



5 The sequences (f,(—1)), (f.(—2)), and ({,(1))

Applying the same methods we get

Theorem 5. For any integer n, we have
ged(Fypq — 1, Fy, — 1)
ged(Fyy — 1, Fypr — 1)
ged(Fipy1 — 1, Fipgo — 1)
ng(F4n+2 — 1, Fypys — 1)

Theorem 6. For any integer n, we have
ged(Fyy1 — 2, Fy,, — 2)

ng<F4n -2, F4n+1 - 2)

ged(Fant1 — 2, Fapio — 2)
ng<F4n+2 — 2, Fypyg — 2)

Theorem 7. For any integer n, we have

ng(L4n71 + 1, L4n =+ 1)

ged(Lan + 1, Lapq + 1)

ged(Lan41 + 1, Lapio + 1)

ged(Lunyo + 1, Lanyz + 1)

ifn=1 (mod 3),
otherwise,

ifn=2 (mod 3),
otherwise.

ifn=4 (modb5),
otherwise,.

ifn=0 (mod 2),
ifn=1 (mod 2),
ifn=0 (mod 6),
ifn=1 (mod 6),
ifn=2 (mod 6),
ifn=3 (mod 6),
ifn=4 (mod 6),
ifn=>5 (mod 6)
ifn=1 (mod 3),
otherwise,

ifn=0 (mod 3),
otherwise,

ifn=2 (mod 3),
otherwise.



6 The proofs of Theorems 1 and 2

First we give the proof of Theorem 1. Let m =4n — 1 and k = n in (4):
ged(Gypn1 + a, Gy +a) = ged(Gop1 + aFon_1, Gop_o — aFy,)
ged(aFy, 3+ BFo o+ aFa, 1, aFs, 4+ BFs, 3 — aFy,).
Using the recursion relation for F;,, let
an, = OFy g+ BFoy o+ aFsy 1 = (a0 +a) o3+ (B +a)Fons

and
by = aFon_g + BFo_3 — aFy, = (—a+ [ —a)Fon_3 + (o — 2a) Foyp—o.

Since ged(ay, by,) divides ya,, + 0b,, for any integers v and 6, and
(a+a), — (—a+B—a)a, = (@+af— 3 —a*)F, o
(= 2a)an — (B+a)by = (®+af —3° —a®)Fa s,

we see that if o + af — 32 — a? # 0, then the greatest common divisor of the two numbers
is |[a? + a3 — 3% — a?|. Therefore ged(ay,,b,) divides a? + a3 — % — a®. That is to say,

ged(Guno1 +a, Gy +a) < |a* +af — 32 —d?|.
If we let m =4n + 1 and k = n in (4) we have, in exactly the same way, that

gcd(Guns1 + a, Gapeo +a) < |0 4+ aff — 5% — d?).

In the following we give the proof of Theorem 2. Let m = 4n and k = n in (4):
ged(Gyn + a,Gypy1 +a) = ged(Gay, + aFoy_1,Goy1 — aFyy,)
= ged(aFop—o + BFop_1 + aFoy_1, alb, 5+ BFh, o — akyy,).
Using the recursion relation for F;,, let
an = Fsy_o + BFoy_1 + aFo 1 = aFsy o+ (B + a)Fapy

and
by = aFyy 5+ BFoy 9 — aFyy, = (—a+ B — a)Fopn_o + (0 — a) Fop.

Since ged(ay, b,) divides ya, + 0b,, for any integers v and 6, and
(a—a)a, —(a+P)bn = (o +af = +a”) Fos
ab, — (B—a—a)a, = (&®+af— B>+ a*) Fy,_1,

we see that if o + af — 32 + a® # 0, then the greatest common divisor of the two numbers
is |[o? + aff — 3 + a?|. Therefore ged(ay, b,) divides a? + af — 32 + a?. That is to say,

gcd(Gup + a, Gapy1 +a) < |a? + af — % +d?|.
If we let m =4n + 2 and k = n in (4) we have, in exactly the same way, that

gcd(Gunya + a,Ganss +a) < |o® +af — 3>+ d*|.



7 Acknowledgement

The author would like to thank the referee for some useful comments and suggestions.

References

[1] U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences,
Fibonacci Quart. 9 (1971), 89-91.

[2] S. Herndndez and F. Luca, Common factors of shifted Fibonacci numbers, Period. Math.
Hungar. 47 (2003), 95-110.

[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11A05.
Keywords: Fibonacci numbers, Lucas numbers, generalized Fibonacci numbers.

(Concerned with sequences A000032, A000045, A000071, A001611, and A157725.)

Received January 31 2011; revised version received March 26 2011. Published in Journal of
Integer Sequences, March 26 2011.

Return to Journal of Integer Sequences home page.


http://oeis.org/A000032
http://oeis.org/A000045
http://oeis.org/A000071
http://oeis.org/A001611
http://oeis.org/A157725
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	The sequence (fn(1))
	The sequence (fn(2))
	The sequences (fn(-1)), (fn(-2)), and (n(1))
	The proofs of Theorems 1 and 2
	Acknowledgement

