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Abstract

Using the theory of exponential Riordan arrays and orthogonal polynomials, we

demonstrate that the Eulerian polynomials and the shifted Eulerian polynomials are

moment sequences for a simple family of orthogonal polynomials. The coefficient ar-

rays of these families of orthogonal polynomials are shown to be exponential Riordan

arrays. Using the theory of orthogonal polynomials we are then able to characterize

the generating functions of the Eulerian and shifted Eulerian polynomials in continued

fraction form, and to calculate their Hankel transforms.

1 Introduction

The Eulerian polynomials [9, 14, 17, 21]

Pn(x) =
n

∑

k=0

Wn,kx
k

form the sequence Pn(x) which begins

P0(x) = 1, P1(x) = 1, P2(x) = 1 + x, P3(x) = 1 + 4x + x2, . . . ,
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with the well-known triangle of Eulerian numbers [16]























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
...

...
...

...
...

...
. . .























as coefficient array. These coefficients Wn,k obey the recurrence [17]

Wn,k = (k + 1)Wn−1,k + (n − k)Wn−1,k−1

with appropriate boundary conditions. The closed form expression

Wn,k =
n−k
∑

i=0

(−1)i

(

n + 1

i

)

(n − k − i)n

holds. The polynomials Pn(x) were introduced by Euler [13] in the form

∞
∑

k=0

(k + 1)ntk =
Pn(t)

(1 − t)n+1
.

They have exponential generating function

∞
∑

n=0

Pn(x)
tn

n!
=

(1 − x)e(1−x)t

1 − xe(1−x)t
.

In this note we show that the sequence of Eulerian polynomials Pn(x) is the moment sequence
of a family of orthogonal polynomials. In addition, we show that the sequence of shifted
Eulerian polynomials Pn+1(x) is similarly the moment sequence of a family of orthogonal
polynomials. This will enable us to find the form of the continued fraction expressions for
the generating functions of these polynomials, as well as giving us a method for calculating
the Hankel transform [20] of the Eulerian and shifted Eulerian polynomials. For this, we
will require three results from the theory of exponential Riordan arrays (see Appendix for
an introduction to exponential Riordan arrays). These are [5, 6]

1. The inverse of an exponential Riordan array [g, f ] is the coefficient array of a family
of orthogonal polynomials if and only if the production matrix of [g, f ] is tri-diagonal;

2. If the production matrix [10, 11, 12] of [g, f ] is tri-diagonal, then the elements of
the first column of [g, f ] are the moments of the corresponding family of orthogonal
polynomials;
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3. The bivariate generating function of the production matrix of [g, f ] is given by

exy(Z(x) + A(x)y)

where
A(x) = f ′(f̄(x)),

and

Z(x) =
g′(f̄(x))

g(f̄(x))
,

where f̄(x) is the compositional inverse (series reversion) of f(x).

We recall that for an exponential Riordan array

L = [g, f ]

the production matrix PL of L [10, 11, 12] is the matrix

PL = L−1L̄,

where L̄ is the matrix L with the first row removed.
A quick introduction to exponential Riordan arrays can be found in the Appendix to

this note. For general information on orthogonal polynomials and moments, see [8, 15,
28]. Continued fractions will be referred to in the sequel; [30] is a general reference, while
[18, 19] discuss the connection between continued fractions and orthogonal polynomials,
moments and Hankel transforms [20, 25]. We recall that for a given sequence an its Hankel
transform is the sequence of determinants hn = |ai+j|0≤i,j≤n. Many interesting examples
of number triangles, including exponential Riordan arrays, can be found in Neil Sloane’s
On-Line Encyclopedia of Integer Sequences [26, 27]. Sequences are frequently referred to by
their OEIS number. For instance, the binomial matrix (Pascal’s triangle) B with (n, k)-th
element

(

n

k

)

is A007318.
The following well-known results (the first is the well-known “Favard’s Theorem”), which

we essentially reproduce from [18], specify the links between orthogonal polynomials, the
three-term recurrences that define them, the recurrence coefficients of those three-term re-
currences, and the g.f. of the moment sequence of the orthogonal polynomials.

Theorem 1. [18] (Cf. [29, Théorème 9 on p.I-4], or [30, Theorem 50.1]). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x − αn)pn(x) − βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x − α0.
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Theorem 2. [18] (Cf. [29, Proposition 1, (7), on p. V-5], or [30, Theorem 51.1]). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x − αn)pn(x) − βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞

∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1 − α0x −
β1x

2

1 − α1x −
β2x

2

1 − α2x −
β3x

2

1 − α3x − · · ·

.

The Hankel transform [20] of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . . } where hn = |ai+j|

n
i,j=0, i.e

A = {an}n∈N0 → h = {hn}n∈N0 : hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an

a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)

The Hankel transform of a sequence an and that of its binomial transform are equal.
In the case that an has g.f. g(x) expressible in the form

g(x) =
a0

1 − α0x −
β1x

2

1 − α1x −
β2x

2

1 − α2x −
β3x

2

1 − α3x − · · ·

then we have [18]

hn = an+1
0 βn

1 βn−1
2 · · · β2

n−1βn = an+1
0

n
∏

k=1

βn+1−k
k . (2)

Note that this is independent of αn.
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2 The Eulerian polynomials Pn(x)

We consider the sequence with e.g.f.

(α − β)e(α−β)t

α − βe(α−β)t
.

This is the sequence that begins

1, α, α(α + β), α(α2 + 4αβ + β2), α(α3 + 11α2β + 11αβ2 + β3), . . . .

Setting α = 1 and β = x gives us the Eulerian polynomials Pn(x). We have the

Proposition 3. The production matrix of the exponential Riordan array

[

(α − β)e(α−β)t

α − βe(α−β)t
,

e(α−β)t − 1

α − βe(α−β)t

]

is tri-diagonal.

Proof. Writing the above exponential Riordan array as [g, f ], we have

f(t) =
e(α−β)t − 1

α − βe(α−β)t

and hence

f ′(t) =
e(α+β)t(α − β)2

βeαt − αeβt
,

and

f̄(t) =
1

α − β
ln

(

αt + 1

βt + 1

)

.

Then
A(t) = f ′(f̄(t)) = (αt + 1)(βt + 1) = 1 + (α + β)t + αβt2.

We have

g(t) =
(α − β)e(α−β)t

α − βe(α−β)t

and hence

g′(t) =
αe(α+β)t(α − β)2

(βeαt − αeβt)2
,

and so

Z(t) =
g′(f̄(t))

g(f̄(t))
= α(βt + 1) = α + αβt.

Thus the production matrix, which has bivariate g.f. given by

ety(α + αβt + (1 + (α + β)t + αβt2)y),

is tri-diagonal.
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The production matrix takes the form






















α 1 0 0 0 0 . . .
αβ 2α + β 1 0 0 0 . . .
0 4αβ 3α + 2β 1 0 0 . . .
0 0 9αβ 4α + 3β 1 0 . . .
0 0 0 16αβ 5α + 4β 1 . . .
0 0 0 0 25αβ 6α + 5β . . .
...

...
...

...
...

...
. . .























.

For completeness, we observe that while in the special case α = β the Riordan array is
not obviously well-defined, the production matrix is, and it leads in this special case to the
exponential Riordan array

[

1

1 − αt
,

t

1 − αt

]

which has general element
(

n

k

)

n!
k!

αn−k. In the case α = β = 1, we get the exponential Riordan
array

[

1

1 − t
,

t

1 − t

]

whose inverse is the coefficient array of the Laguerre polynomials [3].
Returning now to the Eulerian polynomials, we set α = 1 and β = x, to get

Theorem 4. The Eulerian polynomials Pn(x) are the moments of the family of orthogonal
polynomials Qn(t) defined by Q0(t) = 1, Q1(t) = t − 1, and

Qn(t) = (t − ((n − 1)x + n))Qn−1(t) − (n − 1)2xQn−2(t).

Proof. The initial polynomial terms of the sequence Qn(t) can be read from the elements of
[

(1 − x)e(1−x)t

1 − xe(1−x)t
,

e(1−x)t − 1

1 − xe(1−x)t

]−1

=

[

1

1 + t
,

1

1 − x
ln

(

1 + t

1 + xt

)]

,

which begins














1 0 0 0 . . .
−1 1 0 0 . . .
2 −x − 3 1 0 . . .
−6 2x2 + 5x + 11 −3(x + 2) 1 . . .
...

...
...

...
. . .















.

Hence in particular Q0(t) = 1 and Q1(t) = t− 1. The three-term recurrence is derived from
the production matrix, which in this case is























1 1 0 0 0 0 . . .
x 2 + x 1 0 0 0 . . .
0 4x 3 + 2x 1 0 0 . . .
0 0 9x 4 + 3x 1 0 . . .
0 0 0 16x 5 + 4x 1 . . .
0 0 0 0 25x 6 + 5x . . .
...

...
...

...
...

...
. . .























.
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Corollary 5. The sequence of Eulerian polynomials Pn(x) has ordinary generating function
given by the continued fraction

1

1 − t −
xt2

1 − (2 + x)t −
4xt2

1 − (3 + 2x)t −
9xt2

1 − · · ·

.

Corollary 6. The Hankel transform of the sequence of Eulerian polynomials Pn(x) is given
by

hn = x(n+1
2 )

n
∏

k=1

k!2.

3 The shifted Eulerian polynomials Pn+1(x)

For the shifted Eulerian polynomials Pn+1(x), we consider the exponential Riordan array

[g′(t), f(t)],

where

g′(t) =
(α − β)2e(α+β)t

βeαt − αeβt
,

where we retain the use of g(t) = (α−β)e(α−β)t

α−βe(α−β)t from the previous section.

When α = 1 and β = x, g′(t) generates the shifted sequence Pn+1(x). We then have

Proposition 7. The production matrix of the exponential Riordan array
[

(α − β)2e(α+β)t

βeαt − αeβt
,

e(α−β)t − 1

α − βe(α−β)t

]

is tri-diagonal.

Proof. As in the previous proposition, we obtain

A(t) = f ′(f̄(t)) = (αt + 1)(βt + 1) = 1 + (α + β)t + αβt2,

where

f̄(t) =
1

α − β
ln

(

αt + 1

βt + 1

)

.

Then

Z(t) =
g′′(f̄(t))

g′(f̄(t))
= (α + β) + 2αβt.

The bivariate generating function of the production matrix is then

ety((α + β) + 2αβt + (1 + (α + β)t + αβt2)y),

and hence the production matrix is tri-diagonal.
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The production matrix in this case begins














α + β 1 0 0 . . .
2αβ 2(α + β) 1 0 . . .
0 6αβ 3(α + β) 1 . . .
0 0 12αβ 4(α + β) . . .
...

...
...

...
. . .















.

In the case α = β, we obtain the exponential Riordan array
[

1

(1 − αt)2
,

t

1 − αt

]

,

with (n, k)-th element
(

n+1
k+1

)

n!
k!

αn−k. For α = β = 1 this gives us
[

1

(1 − t)2
,

t

1 − t

]

,

which is A105278.
Specializing to the values α = 1, β = x, we get the

Theorem 8. The shifted Eulerian polynomials Pn+1(x) are the moments of the family of
orthogonal polynomials Rn(t) given by R0(t) = 1, R1(t) = t − x − 1, and for n > 1,

Rn(t) = (t − n(1 + x))Rn−1(t) − n(n − 1)xRn−2(t).

Proof. The initial terms of the polynomial sequence Rn(t) can be read from the elements of
the inverse matrix

[

(α − β)2e(α+β)t

βeαt − αeβt
,

e(1−x)t − 1

1 − xe(1−x)t

]−1

=

[

1

(1 + t)(1 + tx)
,

1

1 − x
ln

(

1 + t

1 + xt

)]

,

which begins














1 0 0 0 . . .
−x − 1 1 0 0 . . .

2x2 + 2x + 2 −3(x + 1) 1 0 . . .
−6(x3 + x2 + x + 1) 11x2 + 14x + 11 −6(x + 1) 1 . . .

...
...

...
...

. . .















.

The three-term recurrence is derived from the production matrix, which in this case is






















1 + x 1 0 0 0 0 . . .
2x 2(1 + x) 1 0 0 0 . . .
0 6x 3(1 + x) 1 0 0 . . .
0 0 12x 4(1 + x) 1 0 . . .
0 0 0 20x 5(1 + x) 1 . . .
0 0 0 0 30x 6(1 + x) . . .
...

...
...

...
...

...
. . .























.
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Corollary 9. The sequence of shifted Eulerian polynomials Pn+1(x) has ordinary generating
function given by the continued fraction

1

1 − (1 + x)t −
2xt2

1 − 2(1 + x)t −
6xt2

1 − 3(1 + x)t −
12xt2

1 − · · ·

.

Corollary 10. The Hankel transform of the shifted Eulerian polynomials Pn+1(x) is given
by

hn = (2x)(
n+1

2 )
n

∏

k=1

(

k + 2

2

)n−k

.

4 The Eulerian number triangles

As with the Narayana numbers and their associated number triangles [7], we can distinguish
between three distinct but related triangles of Eulerian numbers. Thus we have the triangle
A173018 [16, 17]























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
...

...
...

...
...

...
. . .























of Eulerian numbers Wn,k that obey the recurrence

Wn,k = (k + 1)Wn−1,k + (n − k)Wn−1,k−1

with appropriate boundary conditions, for which the closed form expression

Wn,k =
n−k
∑

i=0

(−1)i

(

n + 1

i

)

(n − k − i)n

holds. We have the reversal of this triangle, which is the triangle A123125 of the coefficients
An,k [1] where

An,k =
k

∑

i=0

(−1)i

(

n + 1

i

)

(k − i)n,

9
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which begins






















1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
0 1 4 1 0 0 . . .
0 1 11 11 1 0 . . .
0 1 26 66 26 1 . . .
...

...
...

...
...

...
. . .























,

and finally we have the Pascal-like triangle of coefficients

Ãn,k = An+1,k+1 =
k+1
∑

i=0

(−1)i

(

n + 2

i

)

(k − i)n+1,

which begins






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 11 11 1 0 0 . . .
1 26 66 26 1 0 . . .
1 57 302 302 57 1 . . .
...

...
...

...
...

...
. . .























.

This is A008292.
We have

Ãn,k = (n − k + 1)Ãn−1,k−1 + (k + 1)Ãn−1,k,

with appropriate boundary conditions. As with the Narayana numbers, each of these trian-
gles has significant combinatorial applications and it is often important to distinguish one
from the other.

Example 11. The sequence an =
∑n

k=0 Wn,k2
k is the sequence A000670 of preferential

arrangements, or rankings of competitors in a race, with ties [23]. The sequence

bn =
n

∑

k=0

An,k2
k =

n
∑

k=0

Wn,n−k2
k

or A000629 is the sequence of rankings of competitors in a race, with ties and dropouts [22].
Note that from our results above, the sequence an has generating function given by

1

1 − x −
2x2

1 − 4x −
8x2

1 − 7x −
18x2

1 − · · ·

.
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The g.f. of the sequence an+1 is given by

1

1 − 3x −
4x2

1 − 6x −
12x2

1 − 9x −
24x2

1 − · · ·

.

In this case it happens that bn is the binomial transform of an, and hence [4] its g.f. has
continued fraction expression

1

1 − 2x −
2x2

1 − 5x −
8x2

1 − 8x −
18x2

1 − · · ·

.

We deduce from this that the Hankel transform of bn is

hn = 2(
n+1

2 )
n

∏

k=0

k!2,

which is the sequence A091804 that begins

1, 2, 32, 9216, 84934656, 39137889484800, . . .

5 A related ODE

The form of f(t) above is related to a simple ODE. This arises as follows. In order to have
a tri-diagonal production matrix, we need to have an expression of the form

A(z) = f ′(f̄(z)) = 1 + µz + νz2.

Now substituting z = f(t) we obtain

f ′(f̄(f(t))) = 1 + µf(t) + νf(t)2

or
f ′(t) = 1 + µf(t) + νf(t)2

or
dy

dt
= 1 + µy + νy2,

where y = f(t). In the Eulerian case above, we have

dy

dt
= (1 + αy)(1 + βy),

with initial condition y(0) = 0. The form of y = f(t) follows from this variant of the logistic
equation.
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6 Appendix: exponential Riordan arrays

The exponential Riordan group [2, 10, 12], is a set of infinite lower-triangular integer matrices,
where each matrix is defined by a pair of generating functions g(x) = g0 + g1x + g2x

2 + · · ·
and f(x) = f1x + f2x

2 + · · · where g0 6= 0 and f1 6= 0. We usually assume that

g0 = f1 = 1.

The associated matrix is the matrix whose i-th column has exponential generating function
g(x)f(x)i/i! (the first column being indexed by 0). The matrix corresponding to the pair
f, g is denoted by [g, f ]. The group law is given by

[g, f ] · [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f .

If M is the matrix [g, f ], and u = (un)n≥0 is an integer sequence with exponential generat-
ing function U (x), then the sequence Mu has exponential generating function g(x)U(f(x)).
Thus the row sums of the array [g, f ] have exponential generating function given by g(x)ef(x)

since the sequence 1, 1, 1, . . . has exponential generating function ex.
As an element of the group of exponential Riordan arrays, the binomial matrix B with

(n, k)-th element
(

n

k

)

is given by B = [ex, x]. By the above, the exponential generating
function of its row sums is given by exex = e2x, as expected (e2x is the e.g.f. of 2n).

To each exponential Riordan array L = [g, f ] is associated [11, 12] a matrix P called its
production matrix, which has bivariate g.f. given by

exy(Z(x) + A(x)y)

where

A(x) = f ′(f̄(x)), Z(x) =
g′(f̄(x))

g(f̄(x))
.

We have
P = L−1L̄

where L̄ [24, 30] is the matrix L with its top row removed.
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[28] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., 1975.
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