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Abstract

We present generalizations of some identities discussed earlier by Shevelev. More-
over, we introduce Ramanujan cubic polynomials of the second kind (RCP2). This
new type of cubic polynomial is closely related to the Ramanujan cubic polynomials
(RCP) defined by Shevelev. We also give many fundamental properties of RCP2’s.

1 Shevelev type identities

V. Shevelev [2] gave a trigonometric equality of the form
√

cos 2π
5

cos π
5

+

√

cos π
5

cos 2π
5

=
√

5. (1)

The theorem, given below, shows that (1) is a special case of a large class of identities
for Fibonacci numbers Fn:

Theorem 1. We have

r

√

Fn−1ϕr−1

ϕn−1 − Fn

+ r

√

ϕn−1 − Fn

Fn−1ϕr−1
=

√
5, n, r ∈ N, (2)

where ϕ denotes the golden ratio
(

ϕ = 1+
√

5
2

)

.
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Proof. We note that (2) is a consequence of the following identities

ϕ + ϕ−1 =
√

5

and
ϕn = Fnϕ + Fn−1

(which is proved by a simple induction) or, equivalently,

ϕr =
Fn−1ϕ

r−1

ϕn−1 − Fn

.

In the next theorem we present identities (2) for the general Fibonacci sequences

{

F ∗
0 = 0, F ∗

1 = 1,

F ∗
n+1 = λ1F

∗
n + λ2F

∗
n−1, n ∈ N,

(3)

where λ1, λ2 ∈ C, λ2
1 + 4λ2 6= 0, λ2 6= 0.

Let x1, x2 be two roots of the characteristic equation

x2 − λ1x − λ2 = 0.

We note that x1 6= x2. Then we have

Theorem 2. The following identities hold:

xn
l = F ∗

nxl + λ2F
∗
n−1, (4)

λ2F
∗
n−1

xn−1
l − F ∗

n

− xn−1
l − F ∗

n

F ∗
n−1

= λ1, (5)

xn
l − λ2F

∗
n−1√

λ2F ∗
n

−
√

λ2F
∗
n

xn
l − λ2F

∗
n−1

=
λ1√
λ2

, (6)

(

λ2F
∗
n−1

x1

+ F ∗
n

)
k

n−1

+

(

λ2F
∗
n−1

x2

+ F ∗
n

)
k

n−1

= λ1F
∗
k + 2λ2F

∗
k−1, (7)

for any l = 1, 2 and k, n ∈ N.

Proof. (4). Equality (4) can be proven by induction with respect to n ∈ N.

(5). From (4) we get

xl =
λ2F

∗
n−1

xn−1
l − F ∗

n

.

Next, we note that

x2
l − λ1xl − λ2 = 0 ⇔ xl − λ2x

−1
l = λ1. (8)
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(6). From (4) we have

xl =
xn

l − λ2F
∗
n−1

F ∗
n

.

Hence, by (8) we obtain (6).

(7). From (4) we receive (l = 1, 2):

xn−1
l =

λ2F
∗
n−1

xl

+ F ∗
n ⇒ xl = n−1

√

λ2F
∗
n−1

xl

+ F ∗
n

(the last one holds for the respective value of (n − 1)-th root of the number
λ2F ∗

n−1

xl

+ F ∗
n),

which implies the identity

(

λ2F
∗
n−1

x1

+ F ∗
n

)
k

n−1

+

(

λ2F
∗
n−1

x2

+ F ∗
n

)
k

n−1

= xk
1 + xk

2

(4)
= λ1F

∗
k + 2λ2F

∗
k−1.

Corollary 3. For any k, n ∈ N the following identity holds:

(

Fn+1 +
Fn

ϕ

)k/n

+
(

Fn+1 −
Fn

ϕ − 1

)k/n

=

=
(

Fn−1 + ϕFn

)k/n

+
(

Fn+2 − ϕ2 Fn

)k/n

= Fk + 2 Fk−1 = Lk, (9)

where Lk denotes the k-th Lucas number.

Remark 4. Identities, similar to those discussed in the previous theorem, can be generated
for the elements of linear recurrence equations of any order. See in particular the relations
defining the so-called quasi-Fibonacci numbers [3, 4, 5, 8].

Remark 5. Shevelev’s intention in the paper [2] was, it seems, to investigate the sum
√

∣

∣

∣

∣

x1

x2

∣

∣

∣

∣

+

√

∣

∣

∣

∣

x2

x1

∣

∣

∣

∣

,

where x1, x2 ∈ R are roots of the polynomial

x2 − λ1x − λ2

and x1x2 < 0. Then we have

√

∣

∣

∣

∣

x1

x2

∣

∣

∣

∣

+

√

∣

∣

∣

∣

x2

x1

∣

∣

∣

∣

=
|x1| + |x2|
√

|x1x2|
=

√

(|x1| + |x2|)2

|x1x2|
=

=

√

(x1 + x2)2 + 2|x1x2| − 2x1x2

|x1x2|
=

√

λ2
1 + 4λ2

λ2

. (10)
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In the particular case of

x2 + x − 1 =

(

x + 2 cos
π

5

)(

x − 2 cos
2π

5

)

,

the identity (1) follows from (10).

The extension of sums (10) to sums for roots of a given cubic polynomial is described in
the next section.

Remark 6. We note that (see formula (7)):

λ1 F ∗
k + 2 λ2 F ∗

k−1 = F ∗
k+1 + λ2 F ∗

k−1 = L∗
k, (11)

where L∗
k denotes the generalized Lucas sequence

{

L∗
0 = 2, L∗

1 = λ1,

L∗
n+1 = λ1 L∗

n + λ2 L∗
n−1, n ∈ N.

(12)

2 Cubic Shevelev sums

Let us assume that ξ1, ξ2, ξ3 are complex roots of the following polynomial with complex
coefficients

f(z) := z3 + p z2 + q z + r.

The symbols 3
√

ξ1,
3
√

ξ2,
3
√

ξ3 will denote any of the third complex roots of the numbers ξ1,
ξ2 and ξ3, respectively (only in the case that ξ1, ξ2 and ξ3 are real numbers we will assume
that 3

√
ξ1,

3
√

ξ2 and 3
√

ξ3 also denote the respective real roots).
Let us set

A :=
(

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3

)3

and

B :=
(

3

√

ξ1
3

√

ξ2 + 3

√

ξ1
3

√

ξ3 + 3

√

ξ2
3

√

ξ3

)3

.

Thus, the numbers

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3 and 3

√

ξ1
3

√

ξ2 + 3

√

ξ1
3

√

ξ3 + 3

√

ξ2
3

√

ξ3

belong to the sets of the third complex roots of A and B, respectively, which, for the
conciseness of notation, will be denoted by the symbols 3

√
A and 3

√
B, respectively. In other

words, we have
3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3 ∈ 3
√

A

and
3

√

ξ1
3

√

ξ2 + 3

√

ξ1
3

√

ξ3 + 3

√

ξ2
3

√

ξ3 ∈ 3
√

B.

Then we can deduce the relation

27AB = (A + p − 3 3
√

r)3. (13)
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We note that

ξ
1/3
1 ξ

1/3
2 ξ

1/3
3

(

ξ
1/3
1

ξ
1/3
2

+
ξ

1/3
2

ξ
1/3
1

+
ξ

1/3
2

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
2

+
ξ

1/3
1

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
1

)

=

= ξ
1/3
1 ξ

1/3
2

(

ξ
1/3
1 + ξ

1/3
2

)

+ ξ
1/3
2 ξ

1/3
3

(

ξ
1/3
2 + ξ

1/3
3

)

+ ξ
1/3
1 ξ

1/3
3

(

ξ
1/3
1 + ξ

1/3
3

)

=

=
(

ξ
1/3
1 + ξ

1/3
2 + ξ

1/3
3

)(

ξ
1/3
1 ξ

1/3
2 + ξ

1/3
2 ξ

1/3
3 + ξ

1/3
1 ξ

1/3
3

)

− 3ξ
1/3
1 ξ

1/3
2 ξ

1/3
3 .

Hence and from (13), for the respective values of 3
√

A,
3
√

B and 3
√

r we get

ξ
1/3
1

ξ
1/3
2

+
ξ

1/3
2

ξ
1/3
1

+
ξ

1/3
2

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
2

+
ξ

1/3
1

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
1

=

=
3
√

A
3
√

B

− 3
√

r
− 3 =

1

−3 3
√

r
(A + p) − 2

(from the formula (3.5) in [6])

=
1

3
√

2 3
√

r

(

3

√

S +
√

τ +
3

√

S −
√

τ

)

=
1
3
√

2

(

3

√

S1 +
√

τ1 + 3

√

S1 −
√

τ1

)

,

where

S = rS1, τ = r2τ1,

S1 =
pq

r
+

6

r2/3

(

q + p 3
√

r + 3
3
√

r2
)

− 9,

τ1 =

(

pq

r

)2

− 4
q3

r2
− 4

p3

r
+ 18

pq

r
− 27 =

=

(

pq

r
+ 9

)2

− 4

r2
(q3 + p3r + 27r2).

In consequence, if f(z) is the RCP polynomial (see [2, 7]), then

pr1/3 + 3r2/3 + q = 0, (14)

which implies

S1 =
pq

r
− 9 and τ1 =

(

pq

r
+ 9

)2

− 36
pq

r
=

(

pq

r
− 9

)2

,

since
a3 + b3 + c3 = (a + b + c)(a2 + b2 + c2 − ab − ac − bc) + 3abc, (15)

for a, b, c ∈ C. Hence, we get the Shevelev formula

ξ
1/3
1

ξ
1/3
2

+
ξ

1/3
2

ξ
1/3
1

+
ξ

1/3
2

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
2

+
ξ

1/3
1

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
1

=

(

pq

r
− 9

)1/3

.
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However, if we assume that
q3 + p3r + 27r2 = 0, (16)

then we obtain

√
τ1 =

∣

∣

∣

∣

pq

r
+ 9

∣

∣

∣

∣

, S1 −
pq

r
− 9 =

6

r2/3

(

q + p 3
√

r
)

,

S1 +
pq

r
+ 9 =

2pq

r
+

6

r2/3

(

q + p 3
√

r + 3
3
√

r2
)

.

Hence, we get the formula

ξ
1/3
1

ξ
1/3
2

+
ξ

1/3
2

ξ
1/3
1

+
ξ

1/3
2

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
2

+
ξ

1/3
1

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
1

=

=
3

√

3

r2/3
(q + p 3

√
r) +

3

√

pq

r
+

3

r2/3
(q + p 3

√
r + 3

3
√

r2).

For example, let us set
f(z) = z3 + 3z2 − 3

3
√

2z + 1. (17)

Then the condition (16) is satisfied and the roots ξ1, ξ2 and ξ3 of f(z) are real: ξ1 = 0.56048,
ξ2 = 0.445392 and ξ3 = −4.00587. Furthermore, the following equality holds

ξ
1/3
1

ξ
1/3
2

+
ξ

1/3
2

ξ
1/3
1

+
ξ

1/3
2

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
2

+
ξ

1/3
1

ξ
1/3
3

+
ξ

1/3
3

ξ
1/3
1

=
3

√

9(1 − 3
√

2) +
3

√

18(1 − 3
√

2) =

=
3

√

9(1 − 3
√

2)(1 +
3
√

2) = −3. (18)

We note that condition (16), by (15), is a condition of a type different from the condition
(14).

3 RCP of the second kind

Shevelev in paper [1] (see also [7]) distinguished polynomials f ∈ R[z] of the form

f(z) = z3 + p z2 + q z + r, (19)

having real roots and satisfying the condition (14), and called them Ramanujan cubic poly-
nomials (shortly RCP).

Now we introduce a new family of cubic polynomials of the form (19), having real roots
and satisfying the condition (16). We will call them Ramanujan cubic polynomials of the
second kind (shortly RCP2). The polynomial (17) is an example of RCP2 which is not RCP.
On the other hand, the polynomials (see [7]):

z3 − 3

2
z2 − 3

2
z + 1 =

(

z − 1

2

)

(z + 1) (z − 2),

z3 + z2 − 2 z − 1 =
(

z − 2 cos
2 π

7

) (

z − 2 cos
4 π

7

) (

z − 2 cos
8 π

7

)

,

6



belong to the set RCP\RCP2. The polynomial

z3 − 3 z + 1 =
(

z − 2 cos
2 π

9

) (

z − 2 cos
4 π

9

) (

z − 2 cos
8 π

9

)

belongs to the common part of families of RCP’s and RCP2’s (see [7] and Theorem 7 a)
written below). The polynomial

z3 − 3 z +
√

3 =
(

z − 2 sin
2 π

9

)(

z + 2 sin
4 π

9

) (

z − 2 sin
8 π

9

)

is neither RCP nor RCP2.
In the next theorem we present the basic properties of RCP2’s.

Theorem 7. Let f(z) ∈ R[z] and be of the form (19). Then the following facts hold.

a) If f(z) is either RCP or RCP2 and p q r = 0, then f(z) must be RCP and RCP2
simultaneously. Conversely, if f(z) belongs to the intersection of the sets RCP and
RCP2 then p q r 6= 0.

b) If f(z) satisfies (16), then f(z) is RCP2. In other words, the condition (16) implies that
all the roots of f(z) are real. Only in the case of p q = −9 r polynomial f(z) possesses
double root. In this case we have

g(z) :=
1

p3
f(p z) = z3 + z2 +

√
5 − 1

6
z +

1 −
√

5

54
. (20)

Moreover, if ξ1 ξ2 and ξ3 = ξ2 are roots of g(z), then we obtain (see formula (25) below):

3

√

ξ1 + 2 3

√

ξ2 =
3

√

√

√

√

√−1 + 2
3

√√
5 − 1

2
− 6

3

√

√

√

√1

3

3

√

(

√
5 − 1

2

)2

− 1

3

3

√

(

√
5 − 1

2

)4

(21)

and

9

√√
5 − 1

2

(

1 + 3

√

ξ1

ξ2

+ 3

√

ξ2

ξ1

)

=
3

√

√

√

√ 3

√

(

√
5 − 1

2

)2

− 1. (22)

Next, whenever f(z) satisfies the condition (14), then f(z) is RCP if and only if r > 0.

c) If f(z) is RCP2, then we have

r 6= 0 =⇒ p q

r
6

9
3
√

4
. (23)

If f(z) is RCP, then we have (see [1]):

r 6= 0 =⇒ p q

r
6

9

4
. (24)
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d) If f(z) is RCP, then
p2

> 12 q,

whereas, if f(z) is RCP2, then
p2

> 3
3
√

4 q.

e) Let f(z) belong to family of RCP2’s and let ξ1, ξ2, ξ3 be roots of f(z). Then we have

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3 =

=
3

√

−p − 6 3
√

r − 3 3

√

3 3
√

r
(

q + p 3
√

r
)

− 3
3

√

(

p + 3 3
√

r
) (

q + 3
3
√

r2
)

. (25)

For example, for the polynomial (17) we obtain

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3 = 0.

f) Let f(z) belong to the family of RCP2’s and a, b ∈ R. Suppose that ξ1, ξ2, ξ3 are roots
of f(z). If a ξ1 + b, a ξ2 + b, a ξ3 + b are also roots of some RCP2, then

b
(

9 b2 − 9 a b p + a2 (p2 + 6 q)
)(

9 b3 − 9 a b2 p + a2 b (p2 + 6 q) − a3 (p q + 9 r
)

= 0. (26)

g) If a, a ̺, a ̺2 ∈ R are roots of some RCP2, then

2
3
√

2 ̺ = − 3
√

2 − 3 ±
√

3
(

3 + 2
3
√

2 − 3
√

4
)

.

Moreover, for a = 2 3
√

2 we have

a ̺2 = 6 − 3
√

2 +
9
3
√

2
∓

(

1 +
3
3
√

2

)

√

3
(

3 + 2
3
√

2 − 3
√

4
)

.

h) If f(z) is RCP2, then

f(z) = z3 +
3

√

(

α − 27

2

)

r z2 − 3

√

(

α +
27

2

)

r2 z + r, (27)

for any α, r ∈ R. We note that if g(z) is RCP then from (18) in [7] we have

g(z) = z3 +
(

β − 3

2

)

̺1/3 z2 −
(

β +
3

2

)

̺2/3 z + ̺

for some β, ̺ ∈ R.

Proof. a) Both conclusions follow from (14), (15) and (16).

b) Suppose that f(z) satisfies (16). Then

f ′(z) =

(

z +
p −

√

p2 − 3 q

3

) (

z +
p +

√

p2 − 3 q

3

)

8



and

f

(−p +
√

p2 − 3 q

3

)

f

(−p −
√

p2 − 3 q

3

)

(16)
= − 1

27

(

p q + 9 r
)2

,

which means that all the roots of f(z) are real.
Now let p q = −9 r. Then from (16) we get

q2 +
3

9
p2 q − 1

9
p4 = 0,

which implies

q =

√
5 − 1

6
p2 and r =

1 −
√

5

54
p3,

and the relation (20) follows.
The equality (21) can be deduced from formula (25).

c) From (16) we get
p3 q3

r3
= −p6

r2
− 27

p3

r
,

which implies
93

4
−

(p q

r

)3

=
(27

2
+

p3

r

)2

> 0, (28)

i.e.,
p q

r
6

9
3
√

4
.

d) From (16) we obtain
27 r2 + p3 r + q3 = 0,

∆r = p6 − 4 · 27 · q3
> 0,

i.e,
p2

> 3
3
√

4 q.

Similarly, if we have
3

3
√

r2 + p 3
√

r + q = 0

and p, q, r ∈ R, then
∆ 3

√
r = p2 − 12 q > 0 ⇔ p2

> 12 q.

e) We have the formula (see formula (3.5) in [6]):

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3 = 3

√

−p − 6 3
√

r − 3
3
√

2

(

3

√

S +
√
T +

3

√

S −
√
T

)

, (29)

9



where

S := p q + 6 q 3
√

r + 6 p
3
√

r2 + 9 r,

T := p2 q2 − 4 q3 − 4 p3 r + 18 p q r − 27 r2.

Hence, by (16) we get

T = p2 q2 + 18 p q r + 81 r2 = r2
(p q

r
+ 9

)2

, (30)

which implies
{

S ±
√
T

}

=
{

S ±
(

p q + 9 r
)}

,

S − p q − 9 r = 6 3
√

r
(

q + p 3
√

r
)

,

S + p q + 9 r = 2 p q + 6 q 3
√

r + 6 p
3
√

r2 + 18 r =

= 2 q
(

p + 3 3
√

r
)

+ 6
3
√

r2
(

p + 3 3
√

r
)

= 2
(

p + 3 3
√

r
) (

q + 3
3
√

r2
)

and, at last, the formula (25) follows.
In consequence, if f(z) = z3 + 3 z2 − 3 3

√
2 z + 1, then p = 3, q = −3 3

√
2, r = 1 and

from (25) we get

(

3

√

ξ1 + 3

√

ξ2 + 3

√

ξ3

)3

= −9 − 3
3

√

9 (1 − 3
√

2) − 3
3

√

18 (1 − 3
√

2) =

= −9 − 3
3

√

9 (1 − 3
√

2)
(

3
√

2 + 1
) (18)

= −9 + 9 = 0.

f) We have
(

x − a ξ1 − b
) (

x − a ξ2 − b
) (

x − a ξ3 − b
)

= x3 + p1 x2 + q1 x + r1,

where

p1 = a p − 3 b,

q1 = a2 q + 3 b2 − 2 a b p,

r1 = a3 r − a2 b q − b3 + a b2 p.

If this polynomial is also RCP2, then q3
1 + p3

1 r1 + 27 r2
1 = 0, which (with assistance of

Mathematica) implies the equation (26).

g) Suppose that a 6= 0 and

z3 + p z2 + q z + r = (z − a) (z − a ̺) (z − a ̺2).

Then we have the relations

r = −(a ̺)3,

p = −a (1 + ̺ + ̺2),

q = a2 (̺ + ̺2 + ̺3),

10



and the condition (16) has now the form
(

̺ + ̺2 + ̺3
)3

+ 27 ̺6 + ̺3 (1 + ̺ + ̺2)3 = 0

or
2 (1 + ̺ + ̺2)3 + 27 ̺3 = 0.

Hence
3
√

2 (1 + ̺ + ̺2) = −3 ̺,

̺2 +
(

1 +
3
3
√

2

)

̺ + 1 = 0,

which implies

2
3
√

2 ̺ = − 3
√

2 − 3 ±
√

3
(

3 + 2
3
√

2 − 3
√

4
)

.

h) Let us set

α :=
27

2
+

p3

r
. (31)

Then from (28) we generate the relation

93

4
−

(

α − 27

2

) q3

r2
= α2,

i.e.,
93

4
− α2 =

(

α − 27

2

) q3

r2
,

q3 = −
(

α +
27

2

)

r2.

From (31) we obtain

p3 =
(

α − 27

2

)

r.

The following theorem, proved by Shevelev for RCP’s [1], holds also for RCP2’s.

Theorem 8. If for two RCP2’s of the form

y3 + p1 y2 + q1 y + r1, z3 + p2 z2 + q2 z + r2

the following condition holds (r1 r2 6= 0):

p1 q1

r1

=
p2 q2

r2

,

then for their roots y1, y2 y3 and z1, z2, z3, respectively, the sequence of numbers

y1

y2

,
y2

y1

,
y1

y3

,
y3

y1

,
y2

y3

,
y3

y2

,

is a permutation of the sequence

z1

z2

,
z2

z1

,
z1

z3

,
z3

z1

,
z2

z3

,
z3

z2

.

11



Proof. The proof runs like Shevelev’s proof of Theorem 5 in [1]. Only one change is needed,
for the case of RCP2 in formula (38) we have

p3 r + q3

r2

(16)
= −27.
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