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Abstract

The number of elements whose square is the identity in the symmetric group Sn

is recursive in n. This recursion may be proved combinatorially, and there is also a

nice exponential generating function for this sequence. We study q-analogs of this

phenomenon. We begin with sums involving q-binomial coefficients which come up

naturally when counting elements in finite classical groups which square to the iden-

tity, and we obtain a recursive-like identity for the number of such elements in finite

special orthogonal groups. We then study a q-analog for the number of elements in

the symmetric group whose pth power is the identity, for some fixed prime p. We find

an Eulerian generating function for these numbers, and we prove the q-analog of the

recursion for these numbers by giving a combinatorial interpretation in terms of vector

spaces over finite fields.
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1 Introduction

Let Sn denote the symmetric group on the first n positive integers, and let Tn be the number
of elements g in Sn such that g2 is the identity permutation. Chowla, Herstein, and Moore
[2] studied the sequence {Tn} (A000085), and they began by observing that it is recursive.
In particular, T0 = T1 = 1 (where we let S0 and S1 be trivial groups), and for n ≥ 1,

Tn+1 = Tn + nTn−1. (1)

There is a direct combinatorial argument that gives (1). Namely, an element in Sn+1 whose
square is the identity either fixes the point n+1, the number of which is Tn, or moves n+1.
In the latter case, n+1 can be paired with one of the n other points to form a transposition,
which may be combined with a permutation of the remaining n − 1 points whose square is
the identity, giving nTn−1 such elements.

Another property of the sequence {Tn} noticed by Chowla, Herstein, and Moore [2], is
that it has a particularly nice exponential generating function, in that we have

∞
∑

n=0

Tn

n!
xn = ex+x2/2.

Chowla, Herstein, and Moore [2] applied the above properties of the numbers Tn to obtain
asymptotic formulas in n for Tn/Tn−1 and Tn, as well as several divisibility properties of
Tn. Jacobsthal [8] studied similar properties of the number of elements in Sn of order
some fixed prime (which we discuss in Section 4.1); Chowla, Herstein, and Scott [3] gave an
exponential generating function for the number of elements g of Sn that satisfy gd = 1 for any
fixed positive integer d; and Moser and Wyman [10] obtained further results on asymptotic
formulas for these quantities. More recently, these ideas have been applied to study related
exponential generating functions for larger classes of groups, such as in the papers of Chigira
[1] and Müller [11].

The purpose of this paper is to study q-analogs of recursions similar to (1). In Section 2,
we introduce properties of the q-binomial coefficients. In Section 3, we study sums involving
q-binomial coefficients that are related to counting elements in finite classical groups whose
square is the identity. We prove a recursive-like formula for these numbers in Theorem 5,
and we apply this to obtain an interesting result on the number of order two elements in
finite special orthogonal groups in Corollary 6.

In Section 4, we turn to the problem of counting elements g in the symmetric group Sn

which satisfy gp = 1, for some fixed prime p (yielding the sequence A052501 when p = 5).
Section 4.1 summarizes the classical results on this problem. In Section 4.2, we give a
q-analog for these numbers, for which we give a combinatorial interpretation in terms of
Fq-vector spaces (Proposition 7) and an Eulerian generating function (Proposition 8). We
then prove Theorem 9, a recursive-like formula for these numbers. Finally, in Section 4.3,
we specialize to the case p = 2, and relate our results to other results on involutions in the
symmetric groups.
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2 Properties of q-binomial coefficients

Let q denote a parameter different from 1. For the sake of combinatorial interpretation it
will often be useful to think of q as the power of some prime. For any positive integer n, we
let [n] denote the nth q-integer, defined as

[n] = qn−1 + qn−2 + · · · + q + 1 =
qn − 1

q − 1
.

The q-integer [n] is an example of a q-analog of an expression, since we have limq→1[n] = n.
We define the q-factorial of the integer n ≥ 0, denoted [n]!, recursively as

[n]! =

{

1, if n = 0;

[n][n − 1]!, if n > 0.

Once we have the q-factorial, we may define the q-binomial coefficients in a natural way.
That is, if n and k are non-negative integers with n ≥ k, we define

(

n
k

)

q
as

(

n

k

)

q

=
[n]!

[k]![n − k]!
. (2)

We recognize the q-binomial coefficient as a q-analog of the classical binomial coefficient
since we have limq→1

(

n
k

)

q
=
(

n
k

)

.

The q-binomial coefficient has an important combinatorial interpretation when q is the
power of a prime. In this case,

(

n
k

)

q
is equal to the number of k-dimensional subspaces of an

n-dimensional vector space over the finite field Fq with q elements [13, Proposition 1.3.18].
Note that it follows immediately from (2) that we have

(

n

k

)

q

=

(

n

n − k

)

q

. (3)

The q-binomial coefficients have many other properties which are very similar to those of
the classical binomial coefficients, and these properties can be proven using the definition
(2) directly, as well as bijectively in terms of Fq-vector spaces.

The following result is the q-Pascal identity for the q-binomial coefficients, which follows
quickly from (2). In a bijective proof of the Proposition 1, the key observation is that in an
n-dimensional Fq-vector space V , the number of k-dimensional subspaces of V which are not
contained in some fixed (n − 1)-dimensional subspace of V is exactly qn−k

(

n−1
k−1

)

q
.

Proposition 1. The q-binomial coefficients satisfy the following property, when n, k ≥ 1:
(

n

k

)

q

=

(

n − 1

k

)

q

+ qn−k

(

n − 1

k − 1

)

q

.

It follows from Proposition 1 and an induction argument that the q-binomial coefficients
are always polynomials in q. The next result is also most directly obtained by the definition
(2), although an Fq-vector space proof may be obtained by induction on d.

3



Proposition 2. The q-binomial coefficients satisfy the following property, for any d ≥ 1,
and any n and k such that n ≥ k ≥ d:

[k][k − 1] · · · [k − d + 1]

(

n

k

)

q

= [n][n − 1] · · · [n − d + 1]

(

n − d

k − d

)

q

.

Finally, define a q-analog of the exponential function as ex
q =

∑∞
j=0

xj

[j]!
. If {An}

∞
n=0 is any

sequence, then we define the Eulerian generating function for the sequence {An} to be the

power series
∑∞

j=0
Aj

[j]!
xj. That is, an Eulerian generating function is just a q-analog of an

exponential generating function.

3 Counting order 2 elements in finite classical groups

For q the power of a prime, and n ≥ 1 an integer, define

In(q) =
n
∑

k=0

qk(n−k)

(

n

k

)

q

.

The following result is given by Morrison [9, Section 1.11].

Proposition 3. If q is the power of an odd prime, then In(q) is the number of elements in
GL(n, Fq) whose square is the identity.

We note that Proposition 3 also follows by noticing that an element in GL(n, Fq) whose
square is the identity is determined by a choice of the eigenspaces for +1 and −1, which
are complementary subspaces in F

n
q . The number of ways to choose one of these spaces of

dimension k is
(

n
k

)

q
, and the number of complements is qk(n−k) [12, Lemma 3].

If q is the power of an odd prime, and V is an n-dimensional vector space over Fq, let 〈·, ·〉
be a non-degenerate symmetric form on V . The special orthogonal group for 〈·, ·〉 is defined to
be the group of invertible Fq-linear transformations of V with determinant 1 which preserve
the form 〈·, ·〉. See [7], for example, for the classification of symmetric bilinear forms over Fq,
and the isomorphism classes of the corresponding special orthogonal groups. In particular,
when n is odd, there is exactly one isomorphism class of special orthogonal group, which
we denote by SO(n, Fq), and when n is even, there are two classes of these groups, which
we denote by SO+(n, Fq) and SO−(n, Fq), or by SO±(n, Fq) to denote either class of group
simultaneously.

The second-named author [14, Section 4] proved the following, using results on the cen-
tralizers of conjugacy classes in the finite special orthogonal groups.

Proposition 4. Let q be the power of an odd prime. If G = SO±(2m, Fq), then the number
of elements in G whose sequare is the identity is Im(q2). If G = SO(2m + 1, Fq), then the
number of elements in G whose square is the identity is

m
∑

k=0

q2k(m−k+1)

(

m

k

)

q2

.
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Proposition 4 prompts the following definition generalizing In(q). For any integer j,

define I
(j)
n (q) by

I(j)
n (q) =

n
∑

k=0

qk(n−k+j)

(

n

k

)

q

.

So, I
(0)
n (q) = In(q), and the number of elements in SO(2m + 1, Fq) whose square is the

identity is I
(1)
m (q2). The numbers I

(j)
n (q) have the following property.

Theorem 5. The numbers I
(j)
n (q) satisfy the formula

I
(j)
n+1(q) = I(j)

n (q) + qnj(qn − 1)I
(1−j)
n−1 (q) + q(n+1)jI(2−j)

n (q).

Proof. First, by Proposition 1, we have

I
(j)
n+1(q) =

n+1
∑

k=0

qk(n+1−k+j)

(

n + 1

k

)

q

= 1 +
n+1
∑

k=1

qk(n+1−k+j)

(

(

n

k

)

q

+ qn+1−k

(

n

k − 1

)

q

)

.

We may rewrite this as

n
∑

k=0

qk(n−k+j)

(

n

k

)

q

+
n
∑

k=0

(qk(n+1−k+j) − qk(n−k+j))

(

n

k

)

q

+
n+1
∑

k=1

q(k+1)(n+1−k)+kj

(

n

k − 1

)

q

= I(j)
n (q) +

n
∑

k=0

qk(n−k+j)(qk − 1)

(

n

k

)

q

+
n
∑

k=0

q(k+2)(n−k)+(k+1)j

(

n

k

)

q

.

Now, by applying Proposition 2 with d = 1, and then reindexing the first summation, we
have

I
(j)
n+1(q) = I(j)

n (q) + (qn − 1)
n
∑

k=1

qk(n−k+j)

(

n − 1

k − 1

)

q

+
n
∑

k=0

q(k+2)(n−k)+(k+1)j

(

n

k

)

q

= I(j)
n (q) + (qn − 1)

n−1
∑

k=0

q(k+1)(n−k−1+j)

(

n − 1

k

)

q

+
n
∑

k=0

q(k+2)(n−k)+(k+1)j

(

n

k

)

q

.

Finally, by (3), we may switch k with n− 1− k in the first summation, and k with n− k in
the second summation above to obtain

I
(j)
n+1(q) = I(j)

n (q) + (qn − 1)
n−1
∑

k=0

q(n−k)(k+j)

(

n − 1

k

)

q

+
n
∑

k=0

qk(n−k+2)+(n−k+1)j

(

n

k

)

q

= I(j)
n (q) + (qn − 1)

n−1
∑

k=0

qnjqk(n−k−j)

(

n − 1

k

)

q

+
n
∑

k=0

q(n+1)jqk(n−k+2−j)

(

n

k

)

q

= I(j)
n (q) + qnj(qn − 1)I

(1−j)
n−1 (q) + q(n+1)jI(2−j)

n (q),

as desired.
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If we let j = 0 in Theorem 5, then we have the following relationship between the number
of elements in GL(n + 1, Fq) and in GL(n, Fq) whose square is the identity, when q is the
power of an odd prime:

In+1(q) = In(q) + (qn − 1)I
(1)
n−1(q) + I(2)

n (q).

This is reminiscent of the recursion of the numbers Gn(q) =
∑n

k=0

(

n
k

)

q
, which satisfy

Gn+1(q) = 2Gn(q) + (qn − 1)Gn−1(q), a result due to Goldman and Rota [6].
If we let j = 1 in Theorem 5, and replace q with q2, where q is the power of an odd prime,

then we get the following particularly nice result, which follows from Proposition 4.

Corollary 6. Let q be the power of an odd prime, and let n > 1. The number of elements
whose square is the identity in SO(2n + 3, Fq) (which is I

(1)
n+1(q

2)), in SO(2n + 1, Fq) (which

is I
(1)
n (q2)), and in SO(2n − 2, Fq) (which is I

(0)
n−1(q

2)) are related in the following way:

I
(1)
n+1(q

2) = (q2n+2 + 1)I(1)
n (q2) + q2n(q2n − 1)I

(0)
n−1(q

2).

It would be interesting to have a purely combinatorial proof of Corollary 6, by directly
counting elements whose square is the identity in these groups, but we have not been able
to find such a proof.

4 A q-analog of the number of prime order elements in

Sn

4.1 Counting prime order elements in Sn

Let p be prime, and let T
(p)
n be the number of elements g in Sn such that gp is the identity.

In the Introduction, we gave some properties of the numbers Tn = T
(2)
n , and here we give

the analogous properties of T
(p)
n due to Jacobsthal [8].

An element g in Sn+1 which satisfies gp = 1 either fixes the point n + 1, or it does not.

There are T
(p)
n such elements in Sn+1 which fix the point n + 1. If such an element does not

fix the point n + 1, then it contains a p-cycle permuting n + 1. The number of such p-cycles
can be seen to be n(n− 1) · · · (n− p + 2) by assuming that, in cycle notation, n + 1 appears
in the first position, and then choosing the remaining p − 1 points in the cycle from the set
{1, 2, . . . , n}. To construct the rest of the element, we may permute the remaining n− p + 1
points in such a way that our element still satisfies gp = 1, and the number of ways in which
to do this is exactly T

(p)
n−p+1. This implies that we have the following recursion:

T
(p)
n+1 = T (p)

n + n(n − 1) · · · (n − p + 2)T
(p)
n−p+1. (4)

We may also enumerate T
(p)
n directly. An element g in Sn satisfying gp = 1 may consist

of anywhere from 0 (the identity element) to ⌊n/p⌋ disjoint p-cycles. If g consists of exactly
k disjoint p-cycles, then we may choose the points permuted in these p-cycles in

(

n
pk

)

ways.

We then order these points in one of (pk)! ways, where each block of p points form a p-cycle.
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But each of these p-cycles, written in cycle notation, may be written in p ways, and the k
different p-cycles may be ordered in any of k! ways to obtain the same element. Putting all
of this together, we obtain the formula

T (p)
n =

⌊n/p⌋
∑

k=0

(pk)!

pkk!

(

n

pk

)

. (5)

We may rewrite (5) in a few different useful ways. For any integer m ≥ 2, we define the
m-fold multifactorial of an integer r ≥ 0, denoted r!(m) as the product

r!(m) = r(r − m)(r − 2m) · · · (r − tm), where t ≥ 0 is maximum such that r > tm.

So, for example, r!(2), which is also written r!!, is the product of every other decreasing pos-
itive integer, starting with r. Using this notation, and by rewriting the binomial coefficients
as factorials and reindexing, we may write T

(p)
n as

T (p)
n =

⌊n/p⌋
∑

k=0

(pk)!

(pk)!(p)

(

n

pk

)

=
∑

i,j≥0,pi+j=n

n!

pii!j!
. (6)

It follows from the second formula for T
(p)
n in (6) above, that ex+xp/p is the exponential

generating function for T
(p)
n .

4.2 A q-analog

For any integer m ≥ 2, and a parameter q, define the m-fold q-multifactorial of an integer
r ≥ 0, denoted [r]!(m), by

[r]!(m) = [r][r − m][r − 2m] · · · [r − tm], where t ≥ 0 is maximum such that r > tm.

Continue to let p be a prime, and let n ≥ 0. Define T
(p)
n (q) to be the following:

T (p)
n (q) =

⌊n/p⌋
∑

k=0

[pk]!

[pk]!(p)

(

n

pk

)

q

. (7)

It is immediate from the first formula for T
(p)
n in (6) that we have limq→1 T

(p)
n (q) = T

(p)
n , so

that T
(p)
n (q) is a q-analog of T

(p)
n . In the case that q is the power of a prime (independent

of the prime p), there is a combinatorial interpretation of T
(p)
n (q). Before that, we need a

definition.
If V is any vector space of dimension n, define a complete flag of V to be a chain of

subspaces of V ,
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V,

such that dim(Vi) = i for each i. For example, if we have a basis {v1, v2, . . . , vn} of V , then
a complete flag of V may be obtained by taking Vi = span{v1, . . . , vi}. Henceforth, we will
let a line in a vector space V mean a one-dimensional subspace of V .
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Proposition 7. Let p be prime, q the power of a prime (independent of p), n ≥ 0, and V an

n-dimensional Fq-vector space. Then T
(p)
n (q) is the number of ways to choose a subspace W

of V with dimension divisible by p, together with, for some complete flag of W , a sequence
of lines, one in each subspace of the complete flag with dimension not divisible by p.

Proof. First, to choose a subspace of V with dimension divisible by p, we must take some
non-negative integer k ≤ ⌊n/p⌋, and choose a subspace W of V of dimension pk, the number
of which is

(

n
pk

)

q
. Now, given a complete flag of W , if Wi is a subspace in the flag with

dim(Wi) = i, then the number of lines in Wi is
(

i
1

)

q
= [i]. So, the number of ways to choose

a sequence of lines, one in each subspace of dimension not divisible by p in a given flag of
W , is exactly

[pk − 1][pk − 2] · · · [pk − p + 1][pk − p − 1][pk − p − 2] · · · [p + 1][p − 1] · · · [2][1] =
[pk]!

[pk]!(p)
.

Putting all of this together, we get exactly the formula for T
(p)
n (q) in (7).

We can also describe T
(p)
n (q) in terms of an Eulerian generating function, as follows.

Proposition 8. The Eulerian generating function for T
(p)
n (q) is given by

(

∞
∑

i=0

xpi

[pi]!(p)

)

ex
q .

Proof. We have

(

∞
∑

i=0

xpi

[pi]!(p)

)

ex
q =

∞
∑

i=0

xpi

[pi]!(p)

∞
∑

j=0

xj

[j]!
=

∞
∑

n=0





⌊n/p⌋
∑

k=0

1

[pk]!(p)[n − pk]!



 xn

=
∞
∑

n=0





⌊n/p⌋
∑

k=0

[pk]!

[pk]!(p)

[n]!

[pk]![n − pk]!





xn

[n]!
=

∞
∑

n=0

T
(p)
n (q)

[n]!
xn,

as desired.

Next, we see that the T
(p)
n (q) have a property similar to the recursion in (4) of the T

(p)
n .

Theorem 9. For p a prime, and n ≥ 0, define R
(p)
n (q) to be the following polynomial:

R(p)
n (q) =

⌊n/p⌋
∑

k=0

qn−pk [pk]!

[pk]!(p)

(

n

pk

)

q

.

Then for all n ≥ p − 1, the T
(p)
n (q) satisfy

T
(p)
n+1(q) = T (p)

n (q) + [n][n − 1] · · · [n − p + 2]R
(p)
n−p+1(q),

and T
(p)
n (q) = 1 for 0 ≤ n ≤ p − 2.
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Note that if we let q → 1, the identity for the T
(p)
n (q) in Theorem 9 turns into the

recursion (4), since we have limq→1 R
(p)
n (q) = T

(p)
n . We now give a combinatorial proof of

Theorem 9 using Proposition 7.

Proof of Theorem 9. Let V be an (n+1)-dimensional Fq-vector space, and let {v1, . . . , vn+1}

be a basis for V . By Proposition 7, T
(p)
n+1(q) is the number of ways to choose a subspace W

of V with dimension divisible by p, together with a line in each of the subspaces in some
complete flag of W with dimension not divisible by p. We now count this quantity another
way.

Define V0 = {0} and Vi = span{v1, . . . , vi} for 1 ≤ i ≤ n + 1. For any subspace W of V
of dimension divisible by p, say dim(W ) = pk, we take a complete flag of W as follows. Let
W0 = W ∩ V0 = {0}, and for each j such that 1 ≤ j ≤ pk, define Wj = W ∩ Vi, where i is
minimal so that dim(Wj) = j. Now, W0 ⊂ W1 ⊂ · · · ⊂ Wpk = W is a complete flag of W .

First suppose that the subspace W is contained in Vn. The number of ways to choose a
subspace W of Vn of dimension divisible by p, along with a sequence of lines in each space
of dimension not divisible by p in the complete flag of W defined above, is equal to T

(p)
n (q)

by Proposition 7.
Now consider the case that our subspace W with dimension divisible by p is not a

subspace of Vn. Suppose that dim(W ) = pk, where k satisfies 1 ≤ k ≤ ⌊n
p
⌋. Since W is not

completely contained in Vn, we must have dim(W ∩ Vn) = pk − 1, and so W ∩ Vn = Wpk−1.
By the remarks given before Proposition 1, the number of ways to choose our subspace W
is qn+1−pk

(

n
pk−1

)

q
.

Now that we have chosen our subspace W , we now choose lines from the subspaces Wi,
where pk − p + 1 ≤ i ≤ pk − 1. The number of ways to do this is exactly [pk − p + 1][pk −
p + 2] · · · [pk − 1]. So now, the number of ways to select W , together with these lines, is

qn+1−pk[pk − 1] · · · [pk − p + 2][pk − p + 1]

(

n

pk − 1

)

q

,

where [pk − 1] · · · [pk − p + 2][pk − p + 1]
(

n
pk−1

)

q
counts the number of ways to select our

W ′ = Wpk−1, together with these lines. By Proposition 2 with d = p − 1, we know that
this is also counted by [n][n − 1] · · · [n − p + 2]

(

n−p+1
pk−p

)

q
, by first choosing lines from Vi, for

n − p + 2 ≤ i ≤ n. So, the total number of ways to select our space W , together with these
p − 1 lines, is

qn+1−pk[n][n − 1] · · · [n − p + 2]

(

n − p + 1

pk − p

)

q

.

Now, consider the complete flag {0} = W0 ⊂ · · · ⊂ Wpk = W of W , where {0} = W0 ⊂
· · · ⊂ Wpk−p is a complete flag of Wpk−p. We have already selected lines from the subspaces
Wpk−p+1, . . . ,Wpk−1, so we need only choose lines from the remaining Wi with dimension not
divisible by p. By the argument in the proof of Proposition 7, the number of ways to do
this is [pk−p]!

[pk−p]!(p) . Putting all of this together, the number of ways to choose a dimension pk

subspace W of V which is not contained in Vn, together with a sequence of lines, one each

9



from the subspaces of dimension not divisible by p in our complete flag of W , is

[n][n − 1] · · · [n − p + 2]qn+1−pk [pk − p]!

[pk − p]!(p)

(

n − p + 1

pk − p

)

q

.

Summing over all possible k and reindexing, gives a total of [n][n−1] · · · [n−p+2]R
(p)
n−p+1(q).

We note that it follows from this argument that R
(p)
n−p+1(q) is the number of ways, after

choosing lines from Vi for n− p + 2 ≤ i ≤ n, to choose our subspace and the remaining lines
appropriately. Adding [n][n − 1] · · · [n − p + 2]R

(p)
n−p+1(q) to T

(p)
n (q), the count for the case

where W is contained in Vn, gives the desired result.

4.3 The case p = 2

We began in the Introduction with a discussion of the number of elements whose square is
the identity, or involutions, in the symmetric group. The set of involutions of the symmetric
group is of particular interest, because, for example, the centralizer of a fixed point free
involution is a Weyl group of type B, and plays an important role in Lie theory. There are
various statistics on involutions which are useful to keep track of using generating functions
[4, 5]. Such generating functions can provide for more examples of q-analogs of the number

T
(2)
n of involutions in Sn.

Deodhar and Srinivasan [4], for example, define the weight of an involution δ ∈ Sn,
denoted wt(δ), as follows. If δ is written in cycle notation, and (i j) is one of the disjoint
transpositions of δ, then write (i j) ∈ δ with the assumption i < j, and define sp(i j) =
j− i−1. If we draw an arc diagram for δ, where an arc from i to j denotes (i j) ∈ δ, then let
c(δ) denote the number of crossings of arcs in the diagram (see [4, Section 1]). Now define
the weight of δ as

wt(δ) =





∑

(i j)∈δ

sp(i j)



− c(δ).

Let Inv(n, k) denote the set of involutions in Sn which are a product of exactly k disjoint
transpositions, and define iq(n, k) to be the generating function

iq(n, k) =
∑

δ∈Inv(n,k)

qwt(δ).

Deodhar and Srinivasan [4, Proposition 2.1] proved that the iq(n, k) satisfy the recursion

iq(n + 1, k) = iq(n, k) + [n]iq(n − 1, k − 1). (8)

If we define In(q) =
∑⌊n/2⌋

k=0 iq(n, k), then it follows from (8) that

In+1(q) = In(q) + [n]In−1(q), (9)

which is a q-analog of (1). Indeed, it follows from the definition of iq(n, k) as a generating

function that limq→1 In(q) = T
(2)
n .
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It is unclear what is exactly the connection between In(q) and T
(2)
n (q), or whether In(q)

has an interpretation in terms of Fq-vector spaces. Such an interpretation seems possible,
since iq(2n, n) = [2n]!/[2n]!! = [2n − 1]!! for n ≥ 1 [4, Corollary 2.2], while

T (2)
n (q) =

⌊n/2⌋
∑

k=0

[2k]!

[2k]!!

(

n

2k

)

q

= 1 +

⌊n/2⌋
∑

k=1

[2k − 1]!!

(

n

2k

)

q

.

We might expect a convenient Eulerian generating function f(x) for In(q). Based on
Proposition 8, we make the guess that f(x) has the form f(x) = F (x)ex

q for some power
series F (x) =

∑∞
m=0 anx

n. We may in fact solve for the an from equations obtained from
f(x) = F (x)ex

q , starting with a0 = I0(q) = 1, by computing the values of In(q). Calculating
the first few values of an, we find

F (x) = 1 +
1

[2]!
x2 +

1 − q2

[3]!
x3 +

q5 + q3 + 2q2 + 3q + 1

[4]!
x4 + · · ·

Unfortunately, this does not seem to shed any light on the meaning of In(q) in terms of Fq-

vector spaces. Likewise, we also do not know if T
(2)
n (q) has an interpretation as a generating

function for involutions in Sn with respect to some statistic. It would be satisfying to
understand any connections amongst these points of view.

We conclude by remarking that it would be of interest to have a statistic on order p
elements of Sn to generalize the work of Deodhar and Srinivasan [4], and to understand the

general connection between T
(p)
n (q) and statistics on order p elements in symmetric groups.
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