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Abstract

In this paper we prove that there is no geometric progression that contains four
distinct integers of the form Dm2 + C, D, m ∈ N, C = ±1,±2,±4.

1 Introduction

The integers of the form Tn = n(n + 1)/2, n ∈ N, are called triangular numbers. Sierpiński
[7, D23] asked whether or not there exist four (distinct) triangular numbers in geometric
progression. Szymiczek [10] conjectured that the answer is negative. The problem of finding
three such triangular numbers is readily reduced to finding solutions to a Pell equation (by
an old result of Gérardin [6]; see also [9, 4]). This implies that there are infinitely many
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such triples, the smallest of which is (T1, T3, T8). In fact, an easy calculation shows that if
Tn = m2 then

(Tn, Tn+2m = m(2n + 3m + 1), T3n+4m+1 = (2n + 3m + 1)2)

forms a geometric progression.
Recently M. Bennett [1] proved that there do not exist four distinct triangular numbers

in geometric progression with the ratio being a positive integer. Chen and Fang [3] extended
Bennett’s result to the rational ratio and proved that there do not exist four distinct trian-
gular numbers in geometric progression. Using the theory of Pell equations and a result of
Bilu-Hanrot-Voutier [2] on primitive divisors of Lucas and Lehmer numbers, Yang-He [15]
and Yang [14] claimed that there is no geometric progression that contains four distinct
triangular numbers. But their proof is under the assumption that the geometric progression
has an integral common ratio. Fang [5], using only the Störmer theorem on Pell’s equa-
tion, showed that there is no geometric progression which contains four distinct triangular
numbers.

Note that if Tn = n(n + 1)/2, n ∈ N is a triangular number, then 8Tn = m2 − 1, where
m = 2n + 1. Thus the Sierpiński problem is equivalent to whether or not there exist four
distinct integers of the form m2 − 1 in geometric progression. In this paper, we consider the
more general question whether or not there exists a geometric progression which contains
four distinct integers of the form Dm2 +C with D,m ∈ N, C = ±1,±2,±4. We use Störmer
theory on Pell equations to prove the following results:

Theorem 1. Let D be a positive integer. Then there is no geometric progression which
contains four distinct integers of the form Dm2 + C, m ∈ N, C ∈ {−4, 4}.

By Theorem 1, we have the following two Corollaries immediately.

Corollary 2. Let D be a positive integer. Then there is no geometric progression which
contains four distinct integers of the form Dm2 + C, m ∈ N, C ∈ {−1, 1}.
Corollary 3. Let D be a positive integer. Then there is no geometric progression which
contains four distinct integers of the form Dm2 + C, m ∈ N, C ∈ {−2, 2}.

2 Some Lemmas

To prove the above theorem, we need the following lemmas. Throughout this paper, we
assume that k, l are coprime positive integers and kl nonsquare; and let 2 ∤ kl when C = 2
or 4. We need some results on the solutions of the diophantine equations

kx2 − ly2 = C, C = 1, 2, 4. (1)

We recall that the minimal positive solution of Diophantine equation (1) is the positive
integer solution (x, y) of equation (1) such that x

√
k + y

√
l is the smallest. One can easily

see that this is equivalent to determining a positive integer solution (x, y) of equation (1)
such that x and y are the smallest. By abuse of language, we shall also refer to x

√
k + y

√
l

instead of the pair (x, y) as a solution to (1) and call x
√

k+y
√

l the minimal positive solution.
If x1

√
k + y1

√
l is the minimal positive solution of (1), then we have the following result.
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Lemma 4. ([11]) All positive integer solutions of (1) are given by

x
√

k + y
√

l√
C

=

(

x1

√
k + y1

√
l√

C

)n

, n ∈ N.

Moreover, we have 2 ∤ n when k > 1 or C = 2.

Störmer (see [4, p. 391]) proved a result on divisibility properties of solutions of Pell
equations. More new results extending Störmer theory had been obtained over the years.
We will list some known results that will be used in the proofs in this paper.

Lemma 5. (Störmer’s theorem [4, p. 391]) Let D be a positive nonsquare integer. Let (x1, y1)
be a positive integer solution of Pell equation

x2 − Dy2 = C, C ∈ {−1, 1}.

If every prime divisor of y1 divides D, then x1 + y1

√
D is the minimal positive solution.

Considering the Diophantine equation

kx2 − ly2 = 1, k > 1, (2)

D. T. Walker [12] obtained a result similar to Störmer’s theorem. See also Q. Sun and P.
Yuan [11].

Lemma 6. ([12, 11]) Let (x, y) be a positive integer solution of (2) .
(i) If every prime divisor of x divides k, then either

x
√

k + y
√

l = ε

or
x
√

k + y
√

l = ε3, and x = 3sx1, 3 ∤ x1, 3s + 3 = 4kx2
1,

where in both cases ε = x1

√
k + y1

√
l is the minimal positive solution of (2) , s ∈ N.

(ii) If every prime divisor of y divides l, then either

x
√

k + y
√

l = ε

or
x
√

k + y
√

l = ε3, and y = 3sy1, 3 ∤ y1, 3s − 3 = 4ly2
1, s ≥ 2.

Using the method in [11], the first author proved the following results.

Lemma 7. ([8]) Let k, l be coprime positive odd integers and kl nonsquare. Suppose that
(x, y) is a positive integer solution of the Diophantine equation

kx2 − ly2 = 2. (3)

3



(i) If every prime divisor of x divides k , then either

x
√

k + y
√

l = ε

or
x
√

k + y
√

l√
2

=

(

ε√
2

)3

, and x = 3sx1, 3
s + 3 = 2kx2

1,

where in both cases ε = x1

√
k + y1

√
l is the minimal positive solution of (3) , s ∈ N.

(ii) If every prime divisor of y divides l , then either

x
√

k + y
√

l = ε

or
x
√

k + y
√

l√
2

=

(

ε√
2

)3

, and y = 3sy1, 3
s − 3 = 2ly2

1, s ≥ 2.

Lemma 8. ([8]) Let k, l be coprime positive odd integers and kl nonsquare. Suppose that
(x, y) is a positive integer solution of the Diophantine equation

kx2 − ly2 = 4. (4)

(i) If every prime divisor of x divides k , then x
√

k+y
√

l = ε is the minimal positive solution
of equation (4) except for the case (k, l, x, y) = (5, 1, 5, 11).
(ii) If every prime divisor of y divides l , then x

√
k+y

√
l = ε is the minimal positive solution

of equation (4) .

Lemma 9. Let k, l = a0a
m be coprime positive integers and kl nonsquare with m > 1 an

integer. If (x, ar) is a positive integer solution of the Diophantine equation

kx2 − ly2 = C, C ∈ {−1, 1,−2, 2,−4, 4}, (5)

where r is a non-negative integer. Then x
√

k + ar
√

l = ε is the minimal positive solution of
equation (5).

Proof. We only consider the case of C = 1 (the proofs of the other cases are similar). If
x
√

k + ar
√

l is not the minimal positive solution of equation (5) , then by Lemma 6(ii) and
since u

√
k+v

√
l is the minimal positive solution, we have ar = 3sv and 3 ∤ v. Therefore, 3|a.

Since m ≥ 2, 3s − 3 = 4a0a
mv2 is also divisible by 9. Hence 9|3, which is a contradiction.

This completes the proof of Lemma 9.

Remark 10. Lemma 9 is also true for l = a0a
m/2t, C = ±1 with t ≤ m is a nonnegative

integer and 2|l.

Lemma 11. ([13]) Let x1

√
k+y1

√
l be the minimal positive solution of (1) such that 2 ∤ x1y1

when C = 2 or 4. If x
√

k + y
√

l is a positive integer solution of (1), then y1|y. And if k > 1
or C = 2, then x1|x.
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Lemma 12. Let k, l, a, b, r2, r3, r4 be positive integers such that gcd(k, lab) = 1, gcd(a, b) =
1, a > b, r2 < r3 < r4. If 2|ab but 2 ∤ l, then following system of Diophantine equations

kx2
1 − lar4 = C, (6)

kx2
2 − lar4−r2br2 = C, (7)

kx2
3 − lar4−r3br3 = C, (8)

kx2
4 − lbr4 = C, (9)

where C ∈ {−4, 4}, has no positive integer solutions (x1, x2, x3, x4) with x1 > x2 > x3 > x4.

Proof. We now suppose that 2|a but 2 ∤ b.

Case 1: 2|r4.

If 2|r2, then we get k ≡ l ≡ C/4 (mod 4) by considering the equations k
(

x1

2

)2 −
l
(

ar4/2

2

)2

= C/4 and (9) mod 4. And so by taking mod 4 for k
(

x2

2

)2 − l
(

a(r4−r2)/2

2

)2

= C/4,

we have
(

x2

2

)2 −
(

a(r4−r2)/2

2

)2

≡ 1 (mod 4). This follows that 2|ar4−r2

4
. Thus by (6) and

Remark 10 of Lemma 9, we know that (x1

2
, a

r2
2 ) is the minimal positive solution of the

Diophantine equation

kx2 − lar4−r2

4
y2 = C/4. (10)

By (7), (x2

2
, b

r2
2 ) is a positive integer solution of (10). By Lemma 11, we obtain a

r2
2 |b r2

2 ,
which contradicts the assumption that a > b.

Similarly we have that 2 ∤ r3 from (8).

We now suppose that 2 ∤ r2 and 2 ∤ r3. Then, by (7), (8), both (x2

2
, a

r3−r2
2 b

r2−1
2 ) and

(x3

2
, b

r3−1
2 ) are positive integer solutions of the Diophantine equation

kx2 − lar4−r3b

4
y2 = C/4.

Noting that x2 > x3, by Lemmas 6 and 7, x3

2

√
k + b

r3−1
2

√

lar4−r3b
4

= ε must be the minimal

positive solution. Therefore again by Lemmas 6 and 7, x3

2

√
k + a

r3−r2
2 b

r2−1
2

√

lar4−r3b
4

= ε3

and a
r3−r2

2 b
r2−1

2 = 3sb
r3−1

2 , 3s ∓ 3 = lar4−r3br3 . It follows that a(r3−r2)/2 = 3sb(r3−r2)/2, and
thus b = 1, a = 3, which contradicts the assumption that 2|a. This concludes the analysis
of Case 1.
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Case 2: 2 ∤ r4. We can prove that 2 ∤ r2r3 is impossible by using the same method of
proving Case 1.

If 2|r2, then, since r4 − r2 > 2, we have 2|ar4−r2

4
. Therefor by (6) and Remark 10

of Lemma 9, we know that (x1

2
, a

r2
2 ) is the minimal positive solution of the Diophantine

equation

kx2 − lar4−r2

4
y2 = C/4. (11)

By (7), (x2

2
, b

r2
2 ) is a positive integer solution of (11). So by Lemma 11, we obtain a

r2
2 |b r2

2 ,
which contradicts the assumption that a > b.

If 2 ∤ r2, then 2|r3, noting that b
r4−1

2 6= 5, by (9) and Lemma 2.5, (x4, b
r4−1

2 ) is the minimal

positive solution of the Diophantine equation kx2 − lby2 = C. By (7) , (x2, a
r4−r2

2 b
r2−1

2 ) is a

positive integer solution of kx2 − lby2 = C. Thus by Lemma 11, we obtain b
r4−1

2 |a r4−r2
2 b

r2−1
2 .

This follows that b
r4−r2

2 |a r4−r2
2 , and so, since gcd(a, b) = 1, b = 1. We have 2|ar4−r3

4
as

shown at the beginning of Case 1. Proceeding as before, we can prove 2 ∤ r3, which is a
contradiction. This concludes the analysis of Case 2. The proof of 2 ∤ a and 2|b is similar.
This completes the proof of Lemma 12.

3 Proof of Theorem 1

Proof. Suppose that there is a geometric progression {an} which contains four distinct
integers Dm2

1 + C = a1q
t1 , Dm2

2 + C = a1q
t2 , Dm2

3 + C = a1q
t3 , Dm2

4 + C = a1q
t4

with 0 ≤ t1 < t2 < t3 < t4, where q = b/a is the common ratio such that a ≥ 1
and gcd(a, b) = 1. It is easy to see that both a1 and q are not zero and that |q| 6= 1.
Without loss of generality, we may assume that 0 < |q| < 1, so a > |b| > 0. Let
Dm2

1 + C = A, t2 − t1 = r2, t3 − t1 = r3, t4 − t1 = r4, then A 6= 0 and 0 < r2 < r3 < r4

satisfying

Dm2
1 + C = A, Dm2

2 + C = Aqr2 , Dm2
3 + C = Aqr3 , Dm2

4 + C = Aqr4 . (12)

Since Aqr4 is an integer, then ar4|Abr4 , and so ar4|A since gcd(a, b) = 1. Let A = a0a
r4 . We

can derive that all the numbers Dmi + C, i ∈ {1, 2, 3, 4} are positive integers. If not, then
since a > 1, r4 ≥ 3, r4 − r2 ≥ 2, r4 − r3 ≥ 1, we must have either

Dm2
3 + C = a0a

r4−r3br3 = −2,−3

or
Dm2

4 + C = a0b
r4 = −1,−2 or − 3.

This follows either

(D,m3, C, a0, a, b) = (2, 1,−4, 1, 2,−1), (1, 1,−4, 1, 3,−1)

such that r4 is even since Dm2
4 + C = a0b

r4 is a positive integer, or

(D,m4, C, a0, b) = (3, 1,−4, 1,−1), (2, 1,−4, 2,−1), or (1, 1,−4, 3,−1)

6



such that r4 is odd integer and such that both r2 and r3 are even integers since both
Dm2

2 + C = a0a
r4−r2br2 and Dm2

3 + C = a0a
r4−r3br3 are positive integers.

If (D,m3, C, a0, a, b) = (2, 1,−4, 1, 2,−1), we will get m2
1 ≡ 2 (mod 4) by considering

equation m2
1 − 2 = 2r4−1 mod 4, which is impossible.

If (D,m3, C, a0, a, b) = (1, 1,−4, 1, 3,−1), we will get m2
1 − (3r4/2)2 = 4, which is impos-

sible.

If (D,m4, C, a0, b) = (3, 1,−4, 1,−1), we have that both (m2, a
(r4−r2−1)/2) and (m3, a

(r4−r3−1)/2)
are positive integer solutions of Diophantine equation

3x2 − ay2 = 4.

Thus by Lemma 8, (m2, a
r4−r2−1

2 ) = (m3, a
r4−r3−1

2 ) is the minimal positive solution of 3x2 −
ay2 = 4, which contradicts the assumption that m2 6= m3.

If (D,m4, C, a0, b) = (2, 1,−4, 1,−1), we have that both (m1, a
(r4−3)/2) and (m2, a

(r4−r2−3)/2)
are positive integer solutions of Diophantine equation

x2 − a3y2 = 2.

Thus by Lemma 9, (m1, a
r4−3

2 ) = (m2, a
r4−r2−3

2 ) is the minimal positive solution of x2−a3y2 =
2, which contradicts the assumption that m1 6= m2.

If (D,m4, C, a0, b) = (1, 1,−4, 3,−1) and 2 ∤ a, then, both (m1, a
(r4−3)/2) and (m2, a

(r4−r2−3)/2)
are positive integer solutions of Diophantine equation

x2 − 3a3y2 = 4.

Thus by Lemma 9, (m1, a
r4−3

2 ) = (m2, a
r4−r2−3

2 ) is the minimal positive solution, which con-
tradicts the assumption that m1 6= m2.

If (D,m4, C, a0, b) = (1, 1,−4, 3,−1) and 2|a, then, both (m1/2, a
(r4−3)/2) and (m2/2, a

(r4−r2−3)/2)
are positive integer solutions of Diophantine equation

x2 − 3a3

4
y2 = 1.

Thus by Remark 4 of Lemma 9, (m1/2, a
r4−3

2 ) = (m2/2, a
r4−r2−3

2 ) is the minimal positive
solution, which contradicts the assumption that m1 6= m2.

Therefore we can assume that 0 < q < 1, which follows that 0 < b < a and m1 > m2 >
m3 > m4 > 0. It follows from (12) that

Dm2
1 − a0a

r4 = −C, (13)
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Dm2
2 − a0a

r4−r2br2 = −C, (14)

Dm2
3 − a0a

r4−r3br3 = −C, (15)

Dm2
4 − a0b

r4 = −C. (16)

It is easy to see that gcd(a0a, a0b) = a0 since gcd(a, b) = 1. We will consider three cases
according to the divisibility of a0 by 2.

If 2 ∤ a0, we must have either 2 ∤ a0a or 2 ∤ a0b. Suppose now that 2 ∤ a0a, then D is odd,
by (13). Thus by Lemma 12, we have that (D, a0ab) = 1 and 2 ∤ Da0ab. The case of 2 ∤ a0b
is similar, using (16).

If 2||a0, we can derive that 2 ∤ a and 2 ∤ b. Assume to the contrary, we let 2|a (the case
that 2|b is similar), then 2 ∤ b. We get Dm2

4 ≡ 2 (mod 4) by considering equation (16) mod
4, which implies that 2||D since 2|m4 would imply Dm2

4 6≡ 2 (mod 4). Therefore we obtain
from (13) that either 2m2

1 ≡ ±4 (mod 8) or 6m2
1 ≡ ±4 (mod 8) which is impossible. Hence

2 ∤ a and 2 ∤ b, and so 2||D. Let a0 = 2l1, D = 2D1, where l1 and D1 are odd positive
integers. Thus we have from (13), (14), (15), (16) that

D1m
2
1 − l1a

r4 = −C/2, (17)

D1m
2
2 − l1a

r4−r2br2 = −C/2, (18)

D1m
2
3 − l1a

r4−r3br3 = −C/2, (19)

D1m
2
4 − l1b

r4 = −C/2, (20)

where l1, a, b and D1 are odd positive integers.

If 4|a0, we must have either 4|D or 2| gcd(m1, m2, m3, m4). Let D = 4D2, a0 = 4l2 and
(n1, n2, n3, n4) = (m1, m2, m3, m4) when 4|D, and let D2 = D, a0 = 4l2 and (n1, n2, n3, n4) =
(m1/2, m2/2, m3/2, m4/2) when 2| gcd(m1, m2, m3, m4). Thus we have from (13), (14),
(15), (16) that

D2n
2
1 − l2a

r4 = −C/4, (21)

D2n
2
2 − l2a

r4−r2br2 = −C/4, (22)

D2n
2
3 − l2a

r4−r3br3 = −C/4, (23)
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D2n
2
4 − l2b

r4 = −C/4. (24)

From consideration of these three cases, let (k, l, ui, C1) = (D, a0,mi,−C) or (D1, l1,mi,−C/2)
or (D2, l2, ni,−C/4), then one can easily see that the problem is equivalent to proving that
the following questions

ku2
1 − lar4 = C1, (25)

ku2
2 − lar4−r2br2 = C1, (26)

ku2
3 − lar4−r3br3 = C1, (27)

ku2
4 − lbr4 = C1, (28)

where C1 ∈ {−1, 1,−2, 2,−4, 4}, u1 > u2 > u3 > u4 > 0, gcd(k, lab) = 1 and 2 ∤ klab if 2|C1,
cannot be simultaneously satisfied.

Case 1: 2|r4. It is easy to see that kl is not a square. Otherwise both k and l are
squares. And so (

√
ku1,

√
lar4/2) is a positive integer solution of equation X2 − Y 2 = C1 by

(25), which is impossible.

If 2|r2, then, by (25) and Lemma 9, we know that (u1, a
r2/2) is the minimal positive

solution of the Diophantine equation

kx2 − lar4−r2y2 = C1. (29)

By (26), (u2, b
r2/2) is a positive integer solution of (29). So by Lemma 11, we obtain ar2/2|br2/2,

which contradicts the assumption that a > b.

Similarly we have 2 ∤ r3 from (27).

We now suppose that 2 ∤ r2 and 2 ∤ r3.

If C1 = 4, then, by (26), (27) and Lemma 8, (u2, a
r4−r2−1

2 b
r2−1

2 ) = (u3, a
r4−r3−1

2 b
r3−1

2 ) is
the minimal positive solution of the Diophantine equation

kx2 − laby2 = 4,

which contradicts the assumption that u2 > u3.

If C1 = −4, then, by (26), (27) and Lemma 8, we have that (a
r4−r3−1

2 b
r3−1

2 , u3) is the mini-

mal positive solution of the Diophantine equation labx2−ky2 = 4, and (lab, k, a
r4−r2−1

2 b
r2−1

2 , u2) =

(5, 1, 5, 11), and so l = b = k = 1, a = 5. Thus (1, 1) = (a
r4−r3−1

2 b
r3−1

2 , u3) is the minimal

9



positive solution of 5x2 − y2 = 4, which follows a = 1, which is a contradiction.

If C1 = ±2 or C1 = ±1, then, by (26), (27), both (u2, a
r4−r2−1

2 b
r2−1

2 ) and (u3, a
r4−r3−1

2 b
r3−1

2 )
are positive integer solutions of the Diophantine equation

kx2 − laby2 = C1.

Noting that u2 > u3, by Lemmas 6 and 7,

u3

√
k + a(r4−r3−1)/2b(r3−1)/2

√
lab = ε

must be the minimal positive solution. Therefore again by Lemmas 6 and 7, u2

√
k +

a(r4−r2−1)/2b(r2−1)/2
√

lab = ε3 and

a(r4−r2−1)/2b(r2−1)/2 = 3sa(r4−r3−1)/2b(r3−1)/2, 3s ∓ 3 =
4

|C1|
lar4−r3br3 .

It follows that a(r3−r2)/2 = 3sb(r3−r2)/2, and thus

b = 1, a = 3, r3 = 2s + r2, l = (3s−1 ∓ 1)|C1|/4,

since gcd(a, b) = 1. By (28), we get 4ku2
4/|C1| = 3s−1 ± 3, and so 3|k and 3| gcd(k, a), which

is impossible since gcd(k, a) = 1. This concludes the analysis of Case 1.

Case 2: 2 ∤ r4.

Subcase 2.1: C1 = ±4. Similarly, by (25) and Lemma 8, we can derive that

u1

√
k + a(r4−1)/2

√
la = ε (30)

is the minimal positive solution of the Diophantine equation

kx2 − lay2 = C1. (31)

If not, we must have (la, k, a(r4−1)/2, u1, C1) = (5, 1, 5, 11,−4). This follows that

l = k = 1, a = 5, r4 = 3,

and thus
r2 = 1, r3 = 2, b = 1 or 3.

Hence by (26), we get either u2
2 = 21 or u2

2 = 71, which is impossible.

If 2|r2, then, by (26), (u2, a
(r4−r2−1)/2br2/2) is a positive integer solutions of (31). We have

by Lemma 11 that a(r4−1)/2|a(r4−r2−1)/2br2/2. Therefore ar2/2|br2/2, contradicting with a > b.

Similarly we have 2 ∤ r3 from (27).
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Now we assume that 2 ∤ r2 and 2 ∤ r3, then since la2b 6= 5, by (26), (27) and Lemma 8,

(u2, a
r4−r2−2

2 b
r2−1

2 ) = (u3, a
r4−r3−2

2 b
r3−1

2 ) is the minimal positive solution of the Diophantine
equation

kx2 − la2by2 = C1,

which contradicts the assumption that u2 > u3.

Subcase 2.2: C1 = ±1 or C1 = ±2.

If 2|r2, then, by (26), (u2, a
r4−r2−3

2 b
r2
2 ) is a positive integer solution of Diophantine equa-

tion
kx2 − la3y2 = C1. (32)

By (25) and Lemma 9, u1

√
k + a(r4−3)/2

√
la3 must be the minimal positive solution of (32).

Therefore we have by Lemma 11 that a(r4−3)/2|a r4−r2−3
2 b

r2
2 . So ar2/2|br2/2, which contradicts

the assumption that a > b.

If 2 ∤ r2 and 2 ∤ r3, then, by (26) and (27), both (u2, a
r4−r2−2

2 b
r2−1

2 ) and (u3, a
r4−r3−2

2 b
r3−1

2 )
are positive integer solutions of Diophantine equation

kx2 − la2by2 = C1. (33)

Noting that u2 > u3, by Lemmas 6 and 7,

u3

√
k + a(r4−r3−2)/2b(r3−1)/2

√
la2b = ε

must be the minimal positive solution. Therefore again by Lemmas 6 and 7, u2

√
k +

a(r4−r2−2)/2b(r2−1)/2
√

la2b = ε3 and that

a
r4−r2−2

2 b
r2−1

2 = 3sa
r4−r3−2

2 b
r3−1

2 , 3s ∓ 3 =
4

|C1|
lar4−r3br3 .

This follows that a
r3−r2

2 = 3sb
r3−r2

2 , and so 3|a. Since r4 − r3 is even, 3s ∓ 3 = 4
|C1| la

r4−r3br3

is also divisible by 9. Hence 9|3, which is a contradiction.

If 2 ∤ r2 and 2|r3, then, by (25), (u1, a(r4−1)/2) is a positive integer solution of Diophantine
equation

kx2 − lay2 = C1, (34)

and by (28), (u4, b(r4−1)/2) is a positive integer solution of Diophantine equation

kx2 − lby2 = C1. (35)

We have by Lemmas 6 and 7 that either

u1

√
k + a(r4−1)/2

√
la = ε,

11



or

u1

√
k + a(r4−1)/2

√
la

√

|C1|
=

(

ε
√

|C1|

)3

, a(r4−1)/2 = 3sy1, 3s ∓ 3 =
4

|C1|
lay2

1, s ≥ 2,

where ε = x1

√
k + y1

√
la is the minimal positive solution of (34), and that either

u4

√
k + b(r4−1)/2

√
lb = δ,

or

u4

√
k + b(r4−1)/2

√
lb

√

|C1|
=

(

δ
√

|C1|

)3

, b(r4−1)/2 = 3s1v1, 3s1 ∓ 3 =
4

|C1|
lbv2

1, s1 ≥ 2,

where δ = d1

√
k + v1

√
lb is the minimal positive solution of (35).

If u1

√
k+a(r4−1)/2

√
la√

|C1|
=

(

ε√
|C1|

)3

and u4

√
k+b(r4−1)/2

√
lb√

C1
=

(

δ√
|C1|

)3

, then a(r4−1)/2 = 3sy2
1, b(r4−1)/2 =

3s1v2
1. Thus 3|a and 3|b, which contradicts the assumption that gcd(a, b) = 1.

If u1

√
k + a(r4−1)/2

√
la = ε, then, by (27), (u3, a

r4−r3−1
2 b

r3
2 ) is a positive integer solution

of (34). By Lemma 4, we obtain

u3

√
k + a(r4−r3−1)/2br3/2

√
la

√

|C1|
=

(

u1

√
k + a(r4−1)/2

√
la

√

|C1|

)n

for some positive integer n. This implies that u3 ≥ u1, which is a contradiction.

If u4

√
k + b(r4−1)/2

√
lb = δ, then, by (26), (u2, a

r4−r2
2 b

r2−1
2 ) is a positive integer solution of

(35). We have by Lemma 11 that b(r4−1)/2|a(r4−r2)/2b(r2−1)/2. This implies b(r4−r2)/2|a(r4−r2)/2,

and so, since gcd(a, b) = 1, b = 1. By (25) and (27), both (u1, a
r4−1

2 ) and (u3, a
r4−r3−1

2 ) are
positive integer solutions of Diophantine equation

kx2 − lay2 = C1.

Noting that u1 > u3, by Lemmas 6 and 7,

u3

√
k + a

r4−r3−1
2

√
la = ε

must be the minimal positive solution. Therefore again by Lemmas 6 and 7, u1

√
k +

a(r4−1)/2
√

la = ε3 and that a
r4−1

2 = 3sa
r4−r3−1

2 , 3s ∓ 3 = 4
|C1| la

r4−r3 . It follows that

a = 3, l = (3s−1 ∓ 1)|C1|/4,

which is impossible as shown at the end of Case 1. This concludes the analysis of Case 2.

This completes the proof of Theorem 1.
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