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México

fluca@matmor.unam.mx

Vicentiu Tipu
Department of Mathematics

University of Toronto
Toronto, Ontario, Canada M5S 2E4

vtipu@math.toronto.edu

Abstract

In this paper, we study the positive integers n having at least two distinct prime

factors such that the sum of the prime factors of n divides 2n−1 − 1.

1 Introduction

For every positive integer n with factorization n =
∏

p|n pap , we put β(n) =
∑

p|n p. Several

authors have considered this function or one of the closely related functions B(n) =
∑

p|n pap ,

or f(n) =
∑

p|n app, or βk(n) =
∑

p|n pk for some fixed positive integer k. In general, the
questions studied were the sets of positive integers satisfying certain algebraic or divisibility
relations involving one of the above functions. For example, Erdős and Pomerance ([9], [11]
and [12]) studied the set of positive integers n such that f(n) = f(n+1), referred to as Ruth-

Aaron numbers. De Koninck and Luca [6, 7] studied positive integers n with at least two
distinct prime factors for which βk(n) divides n. De Koninck and Luca [8] studied positive
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integers n with at least two distinct prime factors such that B(n) = β(n)2, while Banks and
Luca [3] studied positive integers n such that β(n) | 2n − 1.

Here, we add to the literature on this topic and study positive integers n such that
β(n) | 2n−1 − 1. Note that if n = p is an odd prime, then

β(n) = p | 2p−1 − 1 = 2n−1 − 1.

In particular, by the Prime Number Theorem, there are at least π(x) ∼ x/ log x such positive
integers n not exceeding x as x → ∞. Hence, to make our problem more interesting, we
look at the set

B = {n is not a prime and β(n) | 2n−1 − 1}.
For any subset A of positive integers and a positive real number x we put A(x) = A∩ [1, x].
Our first result shows that the counting function #B(x) is of a smaller order of magnitude
then the counting function of the primes.

Theorem 1. The estimate #B(x) = o(x/ log x) holds as x → ∞.

Thus, if a “random” number n satisfies β(n) | 2n−1 − 1, then it is likely to be a prime.
Observe that if n = pk is a power of an odd prime (of exponent > 1), then n ∈ B. Thus,

again by the Prime Number Theorem, #B(x) ≥ ∑

k≥2 π(x1/k) ≥ (2 + o(1))x1/2/ log x as
x → ∞. A quick computation with Mathematica revealed that B(106) has 3871 elements of
which only 236 are prime powers. So, one would guess that the main contribution to #B(x)
should not come from prime powers for large x. Our next result shows that this is indeed
so.

Theorem 2. The estimate B(x) = x1+o(1) holds as x → ∞.

Our proofs of both Theorem 1 and 2 are effective in that in both cases specific functions
bounding #B(x) from above and from below and which have the indicated orders of magni-
tude are provided. In fact, for Theorem 2, we show that there are at least x1+o(1) squarefree

numbers in B(x) as x → ∞. We choose not to be too specific in the above statements in
order not to complicate the exposition.

Throughout this paper, we use the Landau symbols O and o as well as the Vinogradov
symbols ≫ and ≪ with the usual meanings. The constants implied by the symbols O, ≫
and ≪ are absolute. We recall that U = O(V ), U ≪ V and V ≫ U are all equivalent to
the statement that |U | < cV holds with some positive constant c, while U = o(V ) means
that U/V → 0. We write c1, c2, . . . for positive constants which are labeled increasingly
throughout the paper.

2 Proof of Theorem 1

In [3], it was shown that the counting function of the set positive integers n ≤ x such that
β(n) | 2n − 1 is O(x log log x/ log x). Here, we follow the basic approach of [3], except that
we bring in new arguments since we want an upper bound of a smaller order of magnitude
than x/ log x. First, some notations. Given a positive integer n, we write P = P (n) for the
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largest prime factor of n and Q = Q(n) for the largest prime factor of β(n). If n is odd,
we write t(n) for the order of 2 modulo n; that is, the smallest positive integer k such that
2k ≡ 1 (mod n). Finally, we write ω(n) and Ω(n) for the number of prime and prime power
divisors of n (of exponent ≥ 1), respectively.

We let x be a large positive number. We let α > β ≥ γ be numbers in (0, 1). Let y, z
and Ω be functions of x of growth

y = exp
(

(log x)α+o(1)
)

, z = exp
(

(log x)β+o(1)
)

, Ω = (log x)γ+o(1)

as x → ∞. We shall make these functions more precise later. We split the set B(x) into six
subsets as follows:

B1 = {n ∈ B(x) : P ≤ y};
B2 = {n ∈ B(x)\B1 : p2 | n for some prime p ≥ y};
B3 = {n ∈ B(x)\(B1 ∪ B2) : Ω(n) ≥ Ω};
B4 = {n ∈ B(x)\(∪3

j=1Bj) : Q ≤ z};
B5 = {n ∈ #B(x)\(∪4

j=1Bj) : t(Q) ≥ Q1/3 and Ω(t(Q)) ≤ Ω};
B6 = B(x)\(∪5

j=1Bj).

We now bound the cardinalities of each of the sets Bi for i = 1, . . . , 6.
The set B1. Numbers in B1 are called y-smooth. Well-known results concerning the

number of y-smooth numbers n ≤ x (see [5]) show that in our range the estimate

#B1 = xu−u+o(u)

holds as u → ∞, where u = log x/ log y (= (log x)1−α+o(1) as x → ∞). Thus,

#B1 ≤ x exp(−(1 + o(1))u log u) as x → ∞. (1)

The set B2. If p ∈ [y, x1/2] is a fixed prime, then there are ⌊x/p2⌋ ≤ x/p2 positive
integers n ≤ x divisible by p2. Summing up over all the possible values for p, we get that

#B2 ≤
∑

y≤p≤x1/2

x

p2
≤ x

∑

y≤m

1

m2
≤ x

∫ ∞

y−1

dt

t
≪ x

y
. (2)

The set B3. Lemma 13 in [10] shows that uniformly for all integers k ≥ 1 we have

∑

n≤x
Ω(n)≥k

1 ≪ kx log x

2k
. (3)

Applying this with k = ⌊Ω⌋, we get that

#B3 ≤ x exp (−(log 2 + o(1))Ω) as x → ∞. (4)

From now on until the end of the argument, we consider n ∈ B(x)\(∪3
j=1Bj). Write

n = Pm and observe that P (m) < P and that y ≤ P ≤ x/m. Thus, m ≤ x/y. Note also
that m ≥ 2 since n is not prime.
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The set B4. Let us fix a positive integer m ≤ x/y. Note that β(n) = P + β(m) <
PΩ(n) < xΩ/m and that if m is fixed and β(n) is known, then P = β(n)−β(m) is determined
uniquely; thus, n is also determined uniquely. Since n ∈ B4, it follows that β(n) ≤ xΩ/m is
a z-smooth number. As in the argument for B1, it follows from the results from [5] that for
a fixed m, the number of possibilities for n is

≤ xΩ

m
v−vm+o(vm)

m ,

as vm → ∞, where vm = log(xΩ/m)/ log z. Since x/m ≥ y, we get that vm ≥ v = log y/ log z
(= (log x)α−β+o(1) as x → ∞). Thus, for large x, it follows that uniformly in m ≤ x/y, the
number of possibilities for n ∈ B4 is

≤ x

m
exp(−(1 + o(1))v log v)

as x → ∞. Summing up now over all the possible values for m ≤ x/y, we get that

#B4 ≤ x exp(−(1 + o(1))v log v)
∑

2≤m≤x/y

1

m

≤ x(log x) exp(−(1 + o(1))v log v)

as x → ∞, which implies that

#B4 ≤ x exp(−(1 + o(1))v log v) (5)

as x → ∞.
The set B5. This is by far the most interesting set. We fix again m ≤ x/y. Since

Q | β(n), we have that P ≡ −β(m) (mod Q). Further, since Q | β(n) | 2n−1 − 1, we get
that n − 1 ≡ 0 (mod t(Q)), so Pm ≡ 1 (mod t(Q)). By the Chinese Remainder Theorem
(note that t(Q) | Q−1, so t(Q) and Q are coprime), it follows that P is uniquely determined
modulo Qt(Q). The number of such possibilities for P ≤ x/m (without even accounting for
the fact that P is prime) is

≤ 1 +
x

mQt(Q)
. (6)

We now distinguish several cases according to the size of Qt(Q) versus x/m. We also write
d = t(Q). Note that d = t(Q) ≥ Q1/3 > z1/3.

Case 1. Qt(Q) ≤ x/m. Let us write B5,1 for the subset of B5 formed by such numbers n.
In this instance, the second term in equation (6) dominates and the number of possibilities
for P when m and Q are fixed is

≤ 2x

mQt(Q)
.

Fix d = t(Q) and sum up the above bound over all primes Q such that t(Q) = d. Since
Q ≡ 1 (mod d), it follows that Q = 1+ dℓ for some positive integer ℓ ≤ xΩ/(md) < xΩ (the
case ℓ = 0 is not accepted since Q = 1 is not prime). Thus, the number of possibilities for
n ∈ B5,1 when m and d are fixed does not exceed

2x

md

∑

1≤ℓ<xΩ

1

1 + dℓ
<

2x

md2

∑

1≤ℓ<xΩ

1

ℓ
≪ x log x

md2
.
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Summing up the above bound over all m ≤ x/y and d ≥ z1/3, we get that

#B5,1 ≪ x log x
∑

m≤x/y

1

m

∑

z1/3≤d≤xΩ

1

d2

≪ x(log x)2

∫ ∞

z1/3

dt

t2
≪ x(log x)2

z1/3
. (7)

Case 2. Qt(Q) > x/m. We write B5,2 for the subset of B5 consisting of these numbers.
We write also β(n) = P + β(m) = Qδ, where 1 ≤ δ < xΩ/m is some positive integer. Since
P ≤ x/m is uniquely determined modulo Qt(Q) > x/m, it follows that P (hence, n) is
uniquely determined by Q. We now fix both m and δ and observe that Q ≤ xΩ/(mδ). Note
also that

P = β(n) − β(m) = Qδ − β(m) ≡ δ − β(m) (mod d).

Since also Pm ≡ 1 (mod d), we get that d divides m(β(m) − δ) + 1. This last number is
not zero since m ≥ 2 (if it were zero, then m(δ− β(m)) = 1, which is impossible for m ≥ 2).
Since δ ≥ 1, the size of this number is

|m(β(m) − δ) + 1| < max{mδ,mP (m)Ω(m)}
< max{xmΩ,m2Ω}

< xmΩ <
x2Ω

y
< x2

for large values of x. Thus,

Ω(|m(β(m) − δ) + 1|) <
log(x2)

log 2
< 3 log x.

Since d is a divisor of the fixed integer m(β(m) − δ) + 1 having Ω(d) < Ω, it follows that d
can be chosen in at most

(3 log x)Ω < exp ((log log x + log 3)Ω) (8)

ways for large values of x. Now Q ≤ xΩ/(mδ) is a prime with Q ≡ 1 (mod d), so the number
of possibilities for Q (hence, for P ) is

≤ xΩ

mδd
.

Keeping m and δ fixed and summing up over all the possible values of d (the number of
which is indicated by upper bound (8)) we conclude that once m and δ are fixed, then Q
(hence, P ; so also n) can be fixed in at most

xΩ exp ((log log x + log 3)Ω)

z1/3mδ

ways. Summing up over all the possibilities for δ < xΩ and m ≤ x/y, we get that

#B5,2 ≤ x

z1/3
exp ((log log x + log 3)Ω)

∑

m≤x/y

1

m

∑

δ≤xΩ

1

δ

≪ x

z1/3
(log x)2 exp ((log log x + log 3)Ω) (9)
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as x → ∞. Comparing estimates (7) and (9), we conclude that for large x we have

#B5 ≤ #B5,1 + #B5,2

< x exp

(

− log z

3
+ (log log x + log 3)Ω + O(log log x)

)

(10)

as x → ∞.
The set B6. Suppose that n ∈ B6. Then either t(Q) < Q1/3, or Ω(d) > Ω. Let B6,1

and B6,2 be the subsets of B6 such that the first and second inequality holds, respectively.
We first deal with B6,1. Let Q be the set of primes such that t(Q) < Q1/3, and let

Q(t) = Q ∩ [1, t]. The first few elements of the set Q are {8191, 43691, 65537, . . .}. We first
show that Q is sparse. Let t be large and let k = #Q(t). Let 8191 = q1 < · · · < qk be all
the numbers in Q(t). Then

8191k <
k

∏

i=1

qi |
∏

j≤t1/3

(2j − 1) < 2
P

j≤t1/3 j
< 2t1/3(t1/3+1)/2,

which leads easily to the conclusion that the inequality k < 0.04t2/3 holds for large values of
t. By partial summation, we conclude that uniformly in s ≤ t, we have

∑

s≤q≤t
q∈Q

1

q
=

∫ t

s

d#Q(u)

u
=

#Q(u)

u

∣

∣

∣

u=t

u=s
+

∫ t

s

#Q(u)

u2
du ≪ 1

s1/3
. (11)

Returning to our problem, let n ∈ B6,1. To count such n, write again n = Pm and β(n) = Qδ
and assume that m ≤ x/y and Q ∈ [z, xΩ] are fixed. Then δ can be chosen in at most

xΩ

mQ

ways. Note that Q ∈ Q. Summing up the above bound over m ≤ x/y and Q ∈ Q ∩ [z, xΩ],
we get that

#B6,1 ≪ xΩ
∑

m≤x/y

1

m

∑

z≤Q≤xΩ
Q∈Q

1

Q

≪ x(log x)Ω

z1/3
=

x

z1/3+o(1)
(12)

as x → ∞, where in the above estimate we used the upper bound (11) with s = z and
t = xΩ.

We now deal with B6,2. Note that for such numbers, Q − 1 is a multiple of d, so
Ω(Q− 1) ≥ Ω(d) > Ω. Fix m and Q < xΩ. Then δ (hence, P ; so, n) can be fixed in at most

xΩ

Q
<

xΩ

Q − 1
(13)
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ways. It follows easily by partial summation from formula (3) that uniformly in k ≥ 1 and
t, we have

∑

n≤t
Ω(n)≥k

1

n
≪ k(log t)2

2k
. (14)

Summing up bounds (13) over all primes Q with Ω(Q − 1) > Ω and using bound (14) for
t = xΩ and k = ⌊Ω⌋, we get that

#B6,2 ≪
x(log x)2Ω2

2Ω
= x exp(−(log 2 + o(1))Ω) (15)

as x → ∞. From estimates (12) and (15), we get

#B6 ≤
x

z1/3+o(1)
+

x

exp ((log 2 + o(1))Ω)
(16)

as x → ∞.
Comparing bounds (1), (2), (4), (5), (10) and (16), we see that the optimal bounds are

obtained when the parameters y, z and Ω are chosen such that

Ω log 2 =
log z

3
− (log log x + log 3)Ω = v log v = u log u.

This gives

log y = (c1 + o(1))(log x)2/3(log log x)2/3,

log z = (c2 + o(1))(log x)1/3(log log x)4/3,

Ω = (c3 + o(1))(log x)1/3(log log x)1/3

as x → ∞, where c1 = (log 2)−1/3, c2 = (log 2)−2/3, c3 = c2/3. Note that this agrees with
the conventions we made at the beginning on y, z, Ω with α = 2/3, β = γ = 1/3. Therefore
we have just shown that

#B(x) ≤ x exp
(

−(c4 + o(1))(log x log log x)1/3
)

(17)

as x → ∞, where c4 = (log 2)1/3/3. This finishes the proof of Theorem 1.

Remark. Notice that as a byproduct of our effort we conclude immediately, by partial
summation, that

∑

n∈B

1

n
< ∞.

3 Proof of Theorem 2

We let p be a large prime and put M = 2p−1. Let k be a positive integer such that k = o(p)
holds as p → ∞. Choose positive integers a ≥ 3 and b even such that a + b = k and
a − b = 1. Clearly, a = (k + 1)/2 and b = (k − 1)/2, and in order for a and b to be integers
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with b even we must have k ≡ 1 (mod 4). From now on, we work under this assumption.
Let I = ⌊M/(2p2),M/p2⌋. We choose a − 3 distinct primes in I which are 1 modulo p and
b distinct primes in I which are −1 modulo p. By the Siegel-Walfisz Theorem (note that
that the inequality p < 2 log(M/(2p2)) holds for large enough values of p so we may apply
the Siegel-Walfisz Theorem to estimate the number of primes congruent to either 1 or −1
modulo p in I), it follows that the inequality

Uη = π(M/p2; p, η) − π(M/(2p2); p, η) ≥ M

3p3 log M
for η ∈ {±1}

holds for large values of p. Recall that π(x; v, u) means the number of primes p ≤ x congruent
to u modulo v. The number of choices of pairs of primes as above is

=

(

U1

a − 3

)(

U−1

b

)

≥
(

U1

a − 3

)a−3 (

U1

b

)b

≥
(

U1

a

)a−3 (

U−1

b

)b (

1 + O

(

kp3

M

))k

≫ Mk−3

(3(log 2)kp4)k−3
≫ Mk−3

p5k−15
(18)

since 3(log 2)k < p for large p. Here, we also used the fact that log M < p(log 2). Let
p1 < · · · < pa−3 and q1 < · · · < qb be such primes. Put

N = p1 + · · · + pa−3 + q1 + · · · + qb < (a − 3 + b)
M

p2
<

kM

p2
<

M

p

for large values of p. Note also that since a + b = k − 3 is even and all the above primes
are odd (because M/(2p2) > 2 for large values of p), it follows that N is even. Furthermore,
N ≡ a − 3 − b (mod p) ≡ −2 (mod p). Thus, M − N > M − M/p is a large odd number
which is congruent to

2p − 1 − N ≡ 2 − 1 − (−2) ≡ 3 (mod p).

By a Theorem of Ayoub [1] (see also [4]), it follows that for large p the number M − N can
be written as

M − N = r1 + r2 + r3,

where r1 < r2 < r3 are distinct primes all congruent to 1 modulo p. Moreover, the number
of such representations is

∼ pCM−NM2

6((p − 1)3 + 1)(log M)3
(1 + o(1)) (19)

as p → ∞, where

CM−N =
∏

ℓ|M−N

(

1 − ℓ

(ℓ − 1)3 + 1

)

∏

ℓ>2

(

1 +
1

(ℓ − 1)3

)

.
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Observe that CM−N ≫ 1. In what follows, we will see that at least half of the above
representations will have r1 > M/p2. Indeed, assume that this is not so. Then r1 ≤ M/p2 is
a prime congruent to 1 modulo p and r2 ≤ M is a prime congruent to 1 modulo p, and once
r1 and r2 are chosen then r3 is fixed by the equation r3 = M − N − r1 − r2. The number of
such pairs (r1, r2) is

≤ π(M/p2; p, 1)π(M ; p, 1) ≪ M2

p4(log M)2
≪ M2

p3(log M)3

and the above upper bound is of a smaller order of magnitude then the function appearing
at (19). Thus, for large p, there are

≫ M2

p2(log M)3
≫ M2

p5
(20)

such representations where r1 > M/p2. From now on we work with such representations.
Now observe that {p1, . . . , pa−3, q1, . . . , qb, r1, r2, r3} are distinct primes because r1 > pa−3.
Let n be the product of the above a + b = k primes. Then

β(n) =
a−3
∑

i=1

pi +
b

∑

j=1

qj + r1 + r2 + r3 = 2p − 1

and n ≡ 1 · (−1)b ≡ 1 (mod p), therefore p | n− 1, so β(n) | 2p − 1 | 2n−1 − 1. Thus, n ∈ B.
The size of n is

n < Mk < 2pk.

We write x = 2pk. Thus, pk = (log x)/(log 2). By unique factorization, it follows that
positive integers n arising from distinct sets of primes

{p1, . . . , pa−3, q1, · · · , qb, r1, r2, r3}

are distinct. The number of such sets is obtained by multiplying the bounds (18) and (20).
Thus,

#B(x) ≫ Mk−1

p5k
≫ x

exp(p log 2 + 5k log p)
.

Thus, with kp = (log x)/(log 2), our task is to choose k and p such that p(log 2) + 5k log p
is minimal. This suggests to choose k and p such that k = (c5 + o(1))p/ log p as p → ∞,
where c5 = (log 2)/5. Since kp = (log x)/ log 2, we need to choose p such that p2/ log p =
(c6 + o(1))(log x), where c6 = 5/(log 2)2. This shows shows that we should choose p close
to y = c7(log x log log x)1/2, where c7 = (2.5)1/2/ log 2. A recent result of Baker, Har-
man and Pintz (see [2]) says that for large x it is always possible to choose a prime p in
[c7(log x log log x)1/2, c7(log x log log x)1/2 +O((log x)0.26)], which is good enough for our pur-
poses. In fact, the statement that for large x there exists a prime in an interval like the above
with the exponent 0.26 replaced by any exponent < 1/2 is good enough for our purposes.
Once such p is chosen, we choose k ≡ 1 (mod 4) such that k = (log x)/(p log 2)+O(1), which

9



is obviously possible. Since k ≪ p/ log p, it follows that the condition k = o(p) is indeed
fulfilled as p → ∞. This argument shows that

#B(x) ≥ x exp((−c8 + o(1))(log x log log x)1/2) (21)

holds as x → ∞, where c8 = 2(log 2)c7 =
√

10. This finishes the proof of Theorem 2.

Remark. Obviously, our arguments for the upper bound (17) and lower bound (21) are not
tight and at least the involved multiplicative constants inside the exponentials can easily be
improved. We leave it to the reader as an open problem to bring the upper and lower bounds
(17) and (21) substantially closer.
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