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Abstract

In this paper we specialize work done by Bateman and Erdős concerning difference

functions of partition functions. In particular we are concerned with partitions into

fixed powers of the primes. We show that any difference function of these partition

functions is eventually increasing, and derive explicit bounds for when it will attain

strictly positive values. From these bounds an asymptotic result is derived.

1 Introduction

Given an underlying set A ⊆ N, we denote the number of partitions of n with parts taken
from A by pA(n). The k-th difference function p

(k)
A (n) is defined inductively as follows: for

k = 0, p
(k)
A (n) = pA(n). If k > 0, then

p
(k)
A (n) = p

(k−1)
A (n) − p

(k−1)
A (n − 1).

Let f
(k)
A (x) be the generating function for p

(k)
A (n). We have [5] the following power series

identity:
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f
(k)
A (x) =

∞
∑

n=0

p
(k)
A (n)xn (1)

= (1 − x)k

∞
∑

n=0

pA(n)xn (2)

= (1 − x)k
∏

a∈A

1

1 − xa
. (3)

This may be used to define p
(k)
A (n) for all k ∈ Z, including k < 0.

Bateman and Erdős [5] characterize the sets A for which p
(k)
A (n) is ultimately nonnegative.

Note that if k < 0, then the power series representation of (1−x)k has nonnegative coefficients

so that p
(k)
A (n) ≥ 0. For k ≥ 0, they prove the following: if A satisfies the property that

whenever k elements are removed from it, the remaining elements have greatest common
divisor 1, then

lim
n→∞

p
(k)
A (n) = ∞.

A simple consequence of this is the fact that pA(n) is eventually monotonic if k > 0.

No explicit bounds for when p
(k)
A (n) becomes positive are included with the result of

Bateman and Erdős [5]. By following their approach but specializing to the case when

A = {pℓ : p is prime}, (4)

for some fixed ℓ ∈ N, we shall find bounds for n depending on k and ℓ which guarantee that
p

(k)
A (n) > 0. For the remainder, A shall be as in (4), with ℓ ∈ N fixed.

In a subsequent paper, Bateman and Erdős [6] prove that in the special case when ℓ = 1,

p
(1)
A (n) ≥ 0 for all n ≥ 2. That is, the sequence A000607 of partitions of n into primes is

increasing for n ≥ 1. Our result pertains to more general underlying sets; partitions into
squares of primes (A090677), cubes of primes, etc.

In a series of papers (cf. [10]- [13]), L. B. Richmond studies the asymptotic behaviour for
partition functions and their differences for sets satisfying certain stronger conditions. The
results none-the-less apply to the cases of interest to us, that is, where A is defined as above.
Richmond proves [12] an asymptotic formula for p

(k)
A (n). Unfortunately, his formula is not

useful towards finding bounds for when p
(k)
A (n) must be positive, since, as is customary, he

does not include explicit constants in the error term.
Furthermore, his asymptotic formula includes functions such as α = α(n) defined by

n =
∑

a∈A

a

eαa − 1
− k

eα − 1
.

As we are seeking explicit constants, a direct approach will be cleaner than than attempting
to adapt the aforementioned formula.
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Another result worthy of comment from Richmond [12] pertains to a conjecture of Bate-
man and Erdős [5]. His result applies to A as defined in (4), and states that

p
(k+1)
A (n)

p
(k)
A (n)

= O(n−1/2), as n → ∞.

We omit the subscript and write p(k)(n) in case the underlying set is A, and omit the
superscript if k = 0. The letter B will always be used to denote a finite subset of A. We
shall also write ζn for the primitive n-th root of unity e2πi/n. The letters ζ and η shall always
denote roots of unity. We shall denote the m-th prime by pm.

Our main results are Theorems 1.1 and 1.2. The former is established in Sections 2 and 3.

Theorem 1.1. Let k be a nonnegative integer, let b0 = 2π
√

1 − π2

12
and let

t =

⌊

6

(

2

b0

)3(k+1)

(k + 2)8ℓk+10ℓ+3

⌋

.

Then there are positive absolute constants a1, . . . , a7 such that if

N = N(k, ℓ) = a1t

(

a2a
ℓ log2 t
3

a
(k+3)ℓ

4

)t−1

+ a5t
3
(

a6(a7t)
6ℓ

)t−1
,

then n ≥ N implies that p(k)(n) > 0.

Remark 1. The values of the constants are approximately

a1 ≈ 1.000148266,

a2 ≈ 2757234.845,

a3 ≈ 1424.848799,

a4 ≈ 2.166322546,

a5 ≈ 1.082709333,

a6 ≈ .0193095561,

a7 ≈ 2.078207555.

For the remainder of the paper, b0 shall be as defined in Theorem 1.1. Note that b0 ≈
2.6474. Furthermore, Define

F (k, ℓ) = min {N ∈ N : n ≥ N implies that p(k)(n) > 0}.

We show in Section 4 that Theorem 1.1 yields the following asymptotic result:

Theorem 1.2. Fix ℓ ∈ N. Then as k → ∞,

log F (k, ℓ) = o
(

(k + 2)8ℓk
)

.

Following Bateman and Erdős [5], we first tackle the finite case.
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2 Finite subsets of A

Lemma 2.1. Let B be a finite subset of A of size r, and suppose k < r. The function p
(k)
B (n)

can be decomposed as follows:

p
(k)
B (n) = g

(k)
B (n) + ψ

(k)
B (n),

where g
(k)
B (n) is a polynomial in n of degree r−k−1 with leading coefficient

(

(r − k − 1)!
∏

q∈B q
)−1

,

and ψ
(k)
B (n) is periodic in n with period

∏

q∈B q.

Proof. We use partial fractions to decompose the generating function f
(k)
B (x) as follows:

f
(k)
B (x) =

1

(1 − x)r−k

∏

q∈B

q−1
∏

j=1

1

1 − ζj
qx

(5)

=
α1

1 − x
+

α2

(1 − x)2
+ . . . +

αr−k

(1 − x)r−k
+

∑

q∈B

q−1
∑

j=1

β(ζj
q )

1 − ζj
qx

, (6)

where the αi, and β(ζj
q ) are complex numbers that can be determined. Note that

αr−k =

(

∏

q∈B

q

)−1

.

The power series expansion for (1 − x)−h is given by

1

(1 − x)h
=

∞
∑

n=0

(

n + h − 1

h − 1

)

xn.

Hence, if

g
(k)
B (n) =

r−k
∑

h=1

αh

(

n + h − 1

h − 1

)

,

and

ψ
(k)
B (n) =

∑

q∈B

q−1
∑

j=1

β(ζj
q )ζ

jn
q ,

then the lemma is proved.

For the remainder of this paper, g
(k)
B (n) and ψ

(k)
B (n) shall be as in Lemma 2.1, for a given

finite set B ⊆ A which shall be clear from the context.

Remark 2. Let B be as in Lemma 2.1. We wish to know the precise value of β(ζj
q ). To

simplify notation a little, we will frequently write βζ instead, when ζ is clear from the context.
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In particular, suppose η = ζj
q , where q ∈ B, and 0 < j < q. Then

(1 − ηx)f
(k)
B (x) = (1 − x)k 1

1 + ηx + · · · + (ηx)q−1

∏

p∈B
p 6=q

1

1 − xp

= βη + (1 − ηx)

(

α1

1 − x
+ · · · + αr−k

(1 − x)r−k
+

∑

ζ 6=η

βζ

1 − ζx

)

,

hence,

βη =
(1 − η̄)k

q

∏

p∈B
p 6=q

1

1 − η̄p
.

We shall frequently make use of the inequality

1 − θ2

2
≤ cos θ ≤ 1 − θ2

2
+

θ4

24
,

which holds for all values of θ. Note that

|eiθ − 1| =
√

2(1 − cos θ),

so for −2
√

3 ≤ θ ≤ 2
√

3,

|θ|
√

1 − θ2

12
≤ |eiθ − 1| ≤ |θ|.

In particular, for 0 ≤ θ ≤ π,

θ

√

1 − θ2

12
≤ |eiθ − 1| ≤ θ. (7)

Lemma 2.2. Suppose that ζ 6= 1 is a q-th root of unity, q ≥ 2. Then

b0

q
≤ |1 − ζ| ≤ 2.

Proof. Clearly |1 − ζ| ≤ 2. On the other hand, by equation (7),

|1 − ζ| ≥ |1 − e2πi/q|

≥ 2π

q

√

1 − 4π2

12q2

≥ b0

q
.
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Lemma 2.3. Suppose that k < r, and B ⊆ A, satisfies |B| = r. Suppose further that η = ζj
q ,

for some q ∈ B, j ∈ {1, . . . , q − 1}. Then for k ≥ 0,

|βη| ≤







2kqr−2

br−1
0

, if k ≥ 0;
qr−k−2

br−k−1
0

, if k < 0.

Proof. Making use of Remark 2 and Lemma 2.2 we have that for k ≥ 0:

|βη| =
|1 − ζ−j

q |k
q

∏

p∈B
p 6=q

1

|1 − ζ−jp
q |

≤ 2k

q

∏

p∈B
p 6=q

1

|1 − ζq|

≤ 2k

q

(

q

b0

)r−1

=
2kqr−2

br−1
0

.

A similar arguments works for the case when k < 0.

Theorem 2.1. Suppose that k < r, and B ⊆ A, satisfies |B| = r. Then

|ψ(k)
B (n)| ≤







2k

br−1
0

∑

q∈B qr−1, if k ≥ 0;

1

br−k−1
0

∑

q∈B qr−k−1, if k < 0.

Proof. First assume that k ≥ 0. By Lemmas 2.3 and 2.1,

|ψ(k)
B (n)| =

∣

∣

∣

∣

∣

∑

q∈B

q−1
∑

j=1

β(ζj
q )ζ

jn
q

∣

∣

∣

∣

∣

≤
∑

q∈B

q−1
∑

j=1

|β(ζj
q )|

≤
∑

q∈B

q−1
∑

j=1

2kqr−2

br−1
0

=
2k

br−1
0

∑

q∈B

(q − 1)qr−2

≤ 2k

br−1
0

∑

q∈B

qr−1.

A similar argument works for k < 0.
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To obtain bounds for the coefficients αh, we will use Laurent series.

Lemma 2.4. Suppose that k < r, and B ⊆ A, satisfies |B| = r. Denote the largest element

of B by Q, and suppose further that 0 < r0 < |1 − ζQ|. Let

dB(r0) =
∏

q∈B

q−1
∏

j=1

(|ζj
q − 1| − r0).

Then

|αh| ≤
1

rr−k−h
0 dB(r0)

.

Proof. Let γ be the circle |z−1| = r0. From equations (5) and (6), and the Laurent expansion
theorem, we have that

|αh| =

∣

∣

∣

∣

1

2πi

∫

γ

f
(k)
B (z)(z − 1)h−1 dz

∣

∣

∣

∣

≤ 1

2π

∫

γ

1

|z − 1|r−k−h+1

∏

q∈B

q−1
∏

j=1

1

|1 − ζj
qz|

dz

≤ 1

rr−k−h
0 dB(r0)

.

For the following proposition, we define several new constants:

c1 =
∞
∏

k=3

(

1 − π2

3 · 4k

)

,

c2 =
∞
∏

k=3

(

1 − π2

3 · 4k

)
1

2k

,

c3 = 4π−6c1,

c4 =
2 log π

log 2
− 1,

c5 =
(π

2

)1/2

c2,

c6 =
(π

2

)1/2
(

1 − π2

48

)1/4

,

c7 =
sin 4π/5

4π/5
,

b1 = c5c6 = 1.471843248 . . . ,

b2 =
c3

c6

= .003278645140 . . . ,

b3 = c4 = 2.302992260 . . . ,

b4 = c7π/2 = .3673657828 . . . .
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Proposition 2.1. Let B ⊆ A satisfy |B| = r, and suppose that all the elements of B are

odd. Let Q = max{B}, and T = ⌈log2 Q⌉. If

r0 = min {|ζ⌈
q

2j ⌉
q − 1| − |ζ2j − 1| : q ∈ B, j = 2, . . . , T},

then

0 <
b4

Q2
≤ r0 < |1 − ζQ| ≤

2π

Q
.

Furthermore, if dB = dB(r0), then

dB ≥ b
∑

q∈B q

1

(

b2Q
b3e−

log2 Q

log 2

)r

.

Proof. Observe that T satisfies
2T−1 < Q < 2T .

Now, let

δq =

q−1
∏

j=1

(|ζj
q − 1| − r0),

so that
dB =

∏

q∈B

δq.

Note that since each element of B is odd, we have that

δq =

q−1
2

∏

j=1

(|ζj
q − 1| − r0)

2.

Consequently,

δq ≥
T

∏

k=2

∏

⌈ q

2k ⌉≤j<⌈ q

2k−1 ⌉
|ζ2k − 1|2

≥
T

∏

k=2

(

π2

4k−1

(

1 − π2

3 · 4k

))⌈ q

2k−1 ⌉−⌈ q

2k ⌉

=

(

π2

4

(

1 − π2

48

))⌈ q

2⌉−⌈ q

4⌉
×

T
∏

k=3

(

π2

4k−1

(

1 − π2

3 · 4k

))⌈ q

2k−1 ⌉−⌈ q

2k ⌉

≥
(

π2

4

(

1 − π2

48

))
q−1
4

×
T

∏

k=3

(

π2

4k−1

(

1 − π2

3 · 4k

))
q

2k +1

.

Now
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T
∏

k=3

(

π2

4k−1

(

1 − π2

3 · 4k

))
q

2k +1

≥ π2(T−2)

4(T
2)−1

(

π2( 1
4
− 1

2T )

4
3
4
−T+1

2T

)q

c1c
q
2

≥ 4π−4Q
2 log π

log 2

Qe
log2 Q

log 2

(

π2( 1
4
− 1

Q
)

4
1
4

)q

c1c
q
2

≥ 4π−4c1Q
2 log π

log 2
−1e−

log2 Q

log 2

(

π1/2c2

21/2

)q

π−2

= c3Q
c4e−

log2 Q

log 2 cq
5

So we have that

dB ≥
∏

q∈B

((

c3

c6

)

(c5c6)
qQc4e−

log2 Q

log 2

)

= b
∑

q∈B q

1

(

b2Q
b3e−

log2 Q

log 2

)r

Our next task is to bound r0 from below. For q ∈ B, j ∈ {2, . . . , T}, let

f(x) =
√

2(1 − cos x),

θ = θ(j) =
2π

2j
, and

ε = ε(q, j) =
2π

q

⌈ q

2j

⌉

− 2π

2j
.

Then by the mean value theorem,

|ζ⌈
q

2j ⌉
q − 1| − |ζ2j − 1| = f(θ + ε) − f(θ)

=
ε sin c

√

2(1 − cos c)
,

for some c ∈ (θ, θ + ε).
It is easily seen that 2π⌈q/2j⌉/q can be no greater than 4π/5. On the interval [0, 4π/5],

we have sin x ≥ c7x. Therefore

f(θ + ε) − f(θ) ≥ εc7c

c
= εc7. (8)

Choose a ∈ N such that (a−1)2j +1 ≤ q ≤ a2j −1. Then clearly a ≤ 2T−j. Furthermore,
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ε ≥ 2πa

a2j − 1
− 2π

2j

=
2π

2j − 1/a
− 2π

2j

≥ 2π

2j − 2j−T
− 2π

2j

≥ 2π

2T − 1
− 2π

2T

≥ π

2Q2
.

Hence, by (8) we conclude that

r0 ≥
b4

Q2
.

Bounding r0 from above is a far simpler matter. By definition,

r0 < |ζQ − 1| ≤ 2π

Q
. (9)

3 Infinite subsets of N and A

Proposition 3.1. For k ≤ 0, and D1 ⊆ D2 ⊆ N, we have p
(k)
D2

(n) ≥ p
(k)
D1

(n) ≥ 0.

Proof. This follows immediately from equation 2 and the fact that for k ≤ 0, the power
series expansion for (1 − x)k has nonnegative coefficients.

For the sake of clarity and the comprehensiveness of this exposition we include the fol-
lowing theorem of Bateman and Erdős [5] suitably adapted to our needs.

Theorem 3.1. Let D ⊆ N be an infinite set. For any t ∈ N, we have that

pD(n)

p
(−1)
D (n)

≤ 1

t + 1
+

(t − 1)2

t + 1

n2t−3

p
(−1)
D (n)

.

Proof. Denote by Pq(n), the number of partitions of n into parts from D such that there are
exactly q distinct parts. Pq(n) has generating function

∞
∑

n=0

Pq(n)xn =
∑

{a1,...aq}⊆D

xa1

1 − xa1
· · · xaq

1 − xaq
.

If Rq(n) is defined by

∞
∑

n=0

Rq(n)xn =
∑

{a1,...aq}⊆[n]

xa1

1 − xa1
· · · xaq

1 − xaq
,
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where [n] = {1, . . . , n}, then Pq(n) ≤ Rq(n).
There are

(

n
q

)

subsets of [n] of size q. Also, the coefficient of xn in

(xa1 + x2a1 + · · · ) · · · (xaq + x2aq + · · · )
is less than or equal to the coefficient of xn in

(x + x2 + · · · )q =
∞

∑

m=q

(

m − 1

q − 1

)

xm,

so

Pq(n) ≤
(

n

q

)(

n − 1

q − 1

)

≤ n2q−1.

Any partition n = n1a1 + · · ·nqaq, where a1, . . . , aq ∈ A, gives rise to a partition of n−ai

for i = 1, . . . , q, namely

n − a1 = (n1 − 1)a1 + n2a2 + · · · + nqaq,

n − a2 = n1a1 + (n2 − 1)a2 + · · · + nqaq,

...

n − aq = n1a1 + n2a2 + · · · + (nq − 1)aq.

Note that no two distinct partitions of n can give rise to the same partition of any m < n in
this way, and so

n
∑

q=1

qPq(n) ≤
n−1
∑

m=0

pD(m).

Now if t ∈ N, then

p
(−1)
D (n) =

n
∑

m=0

pD(m)

≥ pD(n) +
n

∑

q=1

qPq(n)

= (t + 1)pD(n) +
n

∑

q=1

(q − t)Pq(n)

≥ (t + 1)pD(n) − (t − 1)
t−1
∑

q=1

Pq(n)

≥ (t + 1)pD(n) − (t − 1)2n2t−3,

and the theorem is proved.

For the remainder of this section, we follow the approach of Bateman and Erdős [5]
and simultaneously make the results explicit by applying them to the special case under
consideration. To be consistent, we shall assume k ≥ 0, and use the following notation:
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Notation 1. Let B be the least k+2 elements of A, and let C = A\B. B1 = {pℓ
k+3, p

ℓ
k+4, . . . , p

ℓ
k+2t}

be the least 2t − 2 elements of C, where t is determined as in the statement of Theorem 1.1

from the values of k and ℓ in question. Furthermore, let

g =

(

2

b0

)k+1

(k + 2)2ℓ(k+1)+1, and (10)

h = 3(k + 2)2ℓ(k+2)g = 3

(

2

b0

)k+1

(k + 2)4ℓk+6ℓ+1.

Finally, let us remark that numerous constants shall be defined in the subsequent argument.

Their definitions shall remain consistent throughout.

Note that the right hand side of (10) is increasing in k and ℓ, so g ≥ 16/b0 = 6.04 . . ..

Lemma 3.1. For all n ≥ 0, we have

p
(k)
B (n) ≥ 1 − g. (11)

Proof. Since |B| = k + 2, g
(k)
B (n) is linear in n, and g

(k+1)
B (n) is a constant function. By

Lemma 2.1,

g
(k)
B (n) =

2
∑

h=1

αh

(

n + h − 1

h − 1

)

where α2 = (p1 · · · pk+2)
−ℓ. Substituting x = 0 into (5) and (6) gives

α1 + α2 +
∑

q∈B

q−1
∑

j=1

β(ζj
q ) = 1.

Hence,

g
(k)
B (n) = (p1 · · · pk+2)

−ℓn + 1 −
∑

q∈B

q−1
∑

j=1

β(ζj
q ),

so
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p
(k)
B (n) = g

(k)
B (n) + ψ

(k)
B (n)

= (p1 · · · pk+2)
−ℓn + 1 −

∑

q∈B

q−1
∑

j=1

(1 − ζjn
q )β(ζj

q )

≥ (p1 · · · pk+2)
−ℓn + 1 −

∑

q∈B

q−1
∑

j=1

|1 − ζjn
q ||β(ζj

q )|

≥ (p1 · · · pk+2)
−ℓn + 1 − 2

∑

q∈B

q−1
∑

j=1

|β(ζj
q )|

≥ (p1 · · · pk+2)
−ℓn + 1 −

(

2

b0

)k+1
∑

q∈B

qk+1

≥ 1 −
(

2

b0

)k+1
∑

q∈B

qk+1.

Now, it is easy to see that

∑

q∈B

qk+1 ≤ Qk+1
0 (k + 2) ≤ (k + 2)2ℓ(k+1)+1,

where Q0 = max (B). From this, the Lemma follows.

Lemma 3.2. For all n ≥ 0, we have

1 + |p(k+1)
B (n)| < g − 1. (12)

Proof. Note that

g
(k+1)
B (n) = (p1 · · · pk+2)

−ℓ.

Making use of Theorem 2.1, we see that

g − 2 − |p(k+1)
B (n)| ≥g − 2 − (p1 · · · pk+2)

−ℓ − |ψ(k+1)
B (n)|

≥g − 2 − (p1 · · · pk+2)
−ℓ − 2k

bk+1
0

∑

q∈B

qk+1

≥
k+2
∑

i=1

(

(

2(k + 2)2ℓ

b0

)k+1

− 1

2

(

2pℓ
i

b0

)k+1
)

− 2 − (p1 · · · pk+2)
−1.

Observe that for a fixed i, 1 ≤ i ≤ k + 2, the expression

(

2(k + 2)2ℓ

b0

)k+1

− 1

2

(

2pℓ
i

b0

)k+1

,

13



is positive and increasing in ℓ, for ℓ ≥ 1, so,

(

2(k + 2)2ℓ

b0

)k+1

− 1

2

(

2pℓ
i

b0

)k+1

≥
(

2(k + 2)2

b0

)k+1

− 1

2

(

2pi

b0

)k+1

≥
(

2(k + 2)2

b0

)k+1

− 1

2

(

2pk+2

b0

)k+1

≥ 2(k + 2)2

b0

− pk+2

b0

≥ 4

b0

+
(k + 2)2 − pk+2

b0

≥ 4

b0

.

Hence,

g − 2 − |p(k+1)
B (n)| ≥ (k + 2)

4

b0

− 2 − (p1 · · · pk+2)
−1

≥ 8

b0

− 13

6
= 0.855167405 . . . > 0,

that is,
1 + |p(k+1)

B (n)| < g − 1.

Corollary 3.1.

p
(k)
B (n)

1 + |p(k+1)
B (n)|

≥ 2 if n ≥ h. (13)

Proof. It follows from the proof of Lemma 3.1 that

p
(k)
B (n) ≥ (p1 · · · pk+2)

−ℓn + 1 − g

> (p1 · · · pk+2)
−ℓn − g.

The Corollary follows from this, together with Lemma 3.2 and the fact that

p1 · · · pk+2 ≤ (k + 2)2(k+2).

Lemma 3.3. There is an h1 ∈ N such that such that n ≥ h1 implies

(t − 1)2

t + 1

n2t−3

p
(−1)
C (n)

≤ (t − 1)2

t + 1

n2t−3

p
(−1)
B1

(n)
≤ 1

t + 1
. (14)

14



Proof. The first inequality is a consequence of Proposition 3.1. Note that

t ≥ 6

(

2

b0

)3(k+1)

(k + 2)8ℓk+10ℓ+3 − 1

≥ 6

(

2

b0

)3k+3

28k+13 − 1

≥ 3 · 216

b3
0

(

211

b3
0

)k

.

Hence

log t ≥ log

(

3 · 216

b3
0

)

+ k log

(

211

b3
0

)

.

since log t ≤ t/e, if we let M = e log (211/b3
0), then

k ≤ t

M
.

Choose r0 and dB1 with respect to the set B1 as in Proposition 2.1, and let Q = pℓ
k+2t =

max (B1). It is clear that t ≥ ⌊6(2/b0)
3213⌋ = 21192, which we denote by t0. By equation (9),

we have that

r0 ≤
2π

Q
≤ 2π

(2t)ℓ
≤ π

t0
.

We also have that

r0 ≥
b4

Q2
≥ b4

(k + 2t)4ℓ
,

and

dB1 ≥ b
∑

q∈B1
q

1

(

b2Q
b3e−

log2 Q

log 2

)2t−2

≥ b
(k+3)ℓ(2t−2)
1

(

b2(k + 2t)b3ℓ(k + 2t)−
2ℓ log (k+2t)

log 2

)2t−2

=

(

b2 · b(k+3)ℓ

1 (k + 2t)b3ℓ

(k + 2t)
2ℓ log (k+2t)

log 2

)2t−2

Let us now bound p
(−1)
B1

(n) from below. Assume that n ≥ 2t, and let b5 = 1/M + 2 =
2.078207555 . . ., and b7 = t0/(t0 − π). Making use of Theorem 2.1, we have
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p
(−1)
B1

(n) =g
(−1)
B1

(n) + ψ
(−1)
B1

(n)

≥α2t−1

(

n + 2t − 2

2t − 2

)

−
2t−2
∑

h=1

|αh|
(

n + h − 1

h − 1

)

− |ψ(−1)
B1

(n)|

≥(pk+3 · · · pk+2t)
−ℓn2t−2

(2t − 2)!
−

(

n + 2t − 3

2t − 3

) 2t−2
∑

h=1

|αh|

− 1

b2t−2
0

k+2t
∑

m=k+3

pℓ(2t−2)
m

≥(k + 2t)−ℓ(2t−2)n2t−2

(2t − 2)!
− (n + 2t − 3)2t−3

(2t − 3)!

2t−2
∑

h=1

rh
0

r2t−1
0 dB1

− 1

b2t−2
0

(2t − 2)(k + 2t)2ℓ(2t−2)

≥(b5t)
−ℓ(2t−2)n2t−2

(2t − 2)!
− n2t−322t−3

(2t − 3)!

1

(1 − r0)r
2t−2
0 dB1

− (2t − 2)(k + 2t)2ℓ(2t−2)

b2t−2
0

≥(b5t)
−ℓ(2t−2)n2t−2

(2t − 2)!
− b7n

2t−322t−3

(2t − 3)!

(

(k + 2t)(4−b3)ℓ+
2ℓ log (k+2t)

log 2

b4b2b
(k+3)ℓ

1

)2t−2

− 2t(b5t)
2ℓ(2t−2)

b2t−2
0

.

Observe that

(k + 2t)(4−b3)ℓ+
2ℓ log (k+2t)

log 2

≤ (b5t)
(4−b3)ℓ+

2ℓ log Ct

log 2

= eℓ(log b5+log t)((4−b3+ 2 log C

log 2 )+ 2 log t

log 2 )

= eℓ( 2
log 2

log2 t+(4−b3+
4 log b5
log 2 ) log t+(4−b3+

4 log b5
log 2 ) log b5)

≤ eb6ℓ log2 t,

where b6 is a constant determined as follows. Let x0 = log t0. Then we may take

b6 =
2

log 2
+

(

4 − b3 +
4 log b5

log 2

)

1

x0

+

(

4 − b3 +
4 log b5

log 2

)

log b5

x2
0

= 3.523150893 . . . .
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It suffices to select h1 such that for n ≥ h1,

p
(−1)
B1

(n)n−(2t−3) ≥ (t − 1)2. (15)

Observe that (15) is implied by

(b5t)
−ℓ(2t−2)n

(2t − 2)!
− b7

2(2t − 3)!

(

2eb6ℓ log2 t

b4b2b
(k+3)ℓ

1

)2t−2

− 2t(b5t)
2ℓ(2t−2)

n2t−3b2t−2
0

≥ (t − 1)2,

which is equivalent to

n ≥ (b5t)
ℓ(2t−2)×



b7(t − 1)

(

2eb6ℓ log2 t

b4b2b
(k+3)ℓ

1

)2t−2

+
2t(b5t)

2ℓ(2t−2)(2t − 2)!

n2t−3b2t−2
0

+ (t − 1)2(2t − 2)!



 . (16)

The inequality

enn! ≤ nn+1,

holds for n ≥ 7. This implies that

(2t − 2)!

(2t)2t−3
≤ (2t)3

e2t(2t − 1)
.

Thus, since n ≥ 2t by assumption, (16) is implied by

n ≥ (b5t)
ℓ(2t−2)(A1 + A2 + A3),

where

A1 = b7t

(

2eb6ℓ log2 t

b4b2b
(k+3)ℓ

1

)2t−2

A2 =
16t4(b5t)

2ℓ(2t−2)

(2t − 1)e2tb2t−2
0

A3 =
(t − 1)2(2t)2t

(2t − 1)e2t
.

The term A3 is negligible relative to A2, yet A1 and A2 are not easily compared since one
or the other may dominate depending on the values chosen for k, and ℓ. None the less, we
may simplify matters a little by absorbing A3 into A2 in the following way:
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A2 + A3

t3(b5t)2ℓ(2t−2)/(e2tb2t−2
0 )

≤ 16t

2t − 1
+

b2t−2
0 (2t)2t

t(2t − 1)(b5t)2(2t−2)

=
16t

2t − 1
+

(

4t

2t − 1

) (

2b0

b2
5t

)2t−2

≤ 16t0
2t0 − 1

+

(

4t0
2t0 − 1

) (

2b0

b2
5t0

)2t0−2

≤ 8.000188756.

So, let

A′
2 = 8.000188756

t3(b5t)
2ℓ(2t−2)

e2tb2t−2
0

.

Then we may take

h1 = (b5t)
ℓ(2t−2)(A1 + A′

2).

Remark 3. Note that

t =

⌊

6

(

2

b0

)3(k+1)

(k + 2)8ℓk+10ℓ+3

⌋

= ⌊2g2h⌋,

and so

1

t + 1
≤ 1

2(g + 1)(g − 1)h
.

Lemma 3.4. There exists an N = N(k, ℓ) > 0, such that if n ≥ N , then

p(k)(n) ≥ p
(−1)
C (n) > 0.

Proof. The second inequality is obvious. For the first, by Proposition 3.1, Theorem 3.1,
Lemma 3.3 and Remark 3, we have that for n ≥ h1,

pC(n)

p
(−1)
C (n)

≤ 1

t + 1
+

(t − 1)2

t + 1

1

p
(−1)
B1

(n)n−(2t−3)
≤ 1

(g + 1)(g − 1)h
. (17)

Now, using, (11), (12), (13), (17), and the identity

p(k)(n) =
n

∑

m=0

p
(k)
B (n − m)pC(m),

we have that for n ≥ h + h1 − 1,
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p(k)(n) ≥2
∑

0≤m≤n−h

(1 + |p(k+1)
B (n − m)|)pC(m)

− (g − 1)
∑

n−h<m≤n

(1 + |p(k+1)
B (n − m)|)pC(m)

≥2
n

∑

m=0

(1 + |p(k+1)
B (n − m)|)pC(m) − (g + 1)(g − 1)

∑

n−h<m≤n

pC(m)

≥2
n

∑

m=0

(1 + |p(k+1)
B (n − m)|)pC(m)

− (g2 − 1)

(

n
∑

n−h<m≤n

pC(m)

p
(−1)
C (m)

)

p
(−1)
C (n)

≥
(

2 − (g2 − 1)
∑

n−h<m≤n

pC(m)

p
(−1)
C (m)

)

×
n

∑

m=0

(1 + |p(k+1)
B (n − m)|)pC(m)

≥
n

∑

m=0

(1 + |p(k+1)
B (n − m)|)pC(m)

≥
n

∑

m=0

pC(m)

=p
(−1)
C (n).

Proof of Theorem 1.1.

By the proofs of Lemmas 3.3 and 3.4, it suffices us to choose N ≥ h+h1 = h+(b5t)
ℓ(2t−2)(A1+

A′
2). First observe that A′

2 ≥ 2t. The quantity (b5t)
ℓ(2t−2)A1 may be simplified further with

an upper bound. Let

b9 =
log b5

x2
0

+
1

x0

+ b6 = 3.630910490 . . . ,

and

b10 =
2

b2b4

.

Then
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(b5t)
ℓ(2t−2)A1 = b7t

(

b10(b5t)
ℓeb6ℓ log2 t

b
(k+3)ℓ

1

)2t−2

= b7t

(

b10e
ℓ(log b5+log t+b6 log2 t)

b
(k+3)ℓ

1

)2t−2

≤ b7t

(

b10e
b9ℓ log2 t

b
(k+3)ℓ

1

)2t−2

Denote

A′
1 = b7t

(

b10e
b9ℓ log2 t

b
(k+3)ℓ

1

)2t−2

.

We will use the fact that h ≤ t to absorb h into (b5t)
ℓ(2t−2)A′

2 in the following way:

h + (b5t)
ℓ(2t−2)A′

2

t3(b5t)3ℓ(2t−2)/(e2tb2t−2
0 )

≤ e2tb2t−2
0

t2(b5t)3(2t−2)
+ 8.000188756

=
e2

t2

(

eb0

b3
5t

3

)2t−2

+ 8.000188756

≤ e2

t20

(

eb0

b3
5t

3
0

)2t0−2

+ 8.000188756

≤ 8.000188757

Letting b8 = 8.0002, we may take

N = A′
1 +

b8t
3(b5t)

3ℓ(2t−2)

e2tb2t−2
0

= b7t

(

b10e
b9ℓ log2 t

b
(k+3)ℓ

1

)2t−2

+
b8t

3(b5t)
3ℓ(2t−2)

e2tb2t−2
0

.

We conclude the proof by restructuring the constants as follows:

a1 = b7

a2 = b2
10

a3 = e2b9

a4 = b2
1

a5 = e−2b8

a6 = e−2b−2
0

a7 = b5.

2
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4 Asymptotic results

Observe that as k → ∞, log t ≍ k log k, when ℓ remains fixed. This implies that if ℓ > 2,
then

aℓ log2 t
3

a
(k+2)ℓ

4

→ 0, as k → ∞,

and so in this situation, the second term dominates in the expression for N(k, ℓ) in Theo-
rem 1.1.

If ℓ = 1 or 2, then

aℓ log2 t
3

a
(k+2)ℓ

4

= eλ1(k),

where λ1(k) ≍ k2 log2 k, and
(a7t)

6ℓ = eλ2(k),

where λ2(k) ≍ k log k. In this case the first term dominates in the expression for N(k, ℓ).
Thus we have proved the following corollary to Theorem 1.1:

Corollary 4.1. Let ℓ ∈ N be fixed. Then as k → ∞,

F (k, ℓ) = O



t

(

a2a
ℓ log2 t
3

a
(k+3)ℓ

4

)t−1


 , if ℓ = 1, 2;

F (k, ℓ) = O
(

t3
(

a6(a7t)
6ℓ

)t−1
)

, if ℓ > 2.

Theorem 1.2 follows from Corollary 4.1 simply by taking logarithms.
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