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Abstract

One can apply Bonse’s inequality to points on the real line to find an upper bound

on any prime gap, including both for first occurrences and for maximal prime gaps.

However, such a result is neither as fine as the upper bound found by Mozzochi, nor

as fine as the lower bound obtained by Rankin for maximal prime gaps. Without deep

sieve methods, such as those used by Maier and Pomerance to compute a lower bound

for maximal prime gaps, we show one can use Bonse’s inequality to arrive at an upper

bound for any given prime gap without intricate derivations for any real constants.

1 Introduction and a new upper bound Γ(pk).

Iwaniec, Pintz, and later Mozzochi [5] found good upper bounds on the difference between
two consecutive primes, namely,

pk+1 − pk ≪ pθ
k,

where either θ = 11
20
− 1

406
or θ = 11

20
− 1

384
[5]. Maier and Pomerance improved a lower bound

for prime gaps found previously by Rankin [4]. All of them used deep methods beyond the
scope of this paper. Here instead we demonstrate the relevance of Bonse’s inequality to the
topic of prime gaps.

We use Bonse’s inequality to find an upper bound on the number g(pk), k = 1, 2, . . ., of
composite integers between two consecutive primes, pk and pk+1 > pk. The result can be
used to find, for each large integer k ≫ 4, an open interval on R

1 within which one will find
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the real value for the prime gap. We also remark in Section 2, that computer work can be
done on comparing the rate of growth of the upper bound on g(pk) we found and the rate of
growth of (log(pk))

2 as k → ∞, which by Cramér’s conjecture, is the asymptotic limit for a
maximal prime gap whenever k is a very large integer. The sequence of prime gaps is related
to the sequence of prime differences [9].

Let
∆pk = pk+1 − pk (1)

denote the prime difference function, and

g(pk) = pk+1 − pk − 1 (2)

the prime gap, meaning the number of consecutive composites between the consecutive
primes pk+1 and pk. We show that for large integer k ≫ 4, such that the consecutive primes
pk, pk+1 are very large, there exists an infinite sequence {Γ(pk)}

∞

k=1, such that each term

Γ(pk) :=
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
− 1 (3)

> g(pk),

is an upper bound for each term g(pk) that appears in the infinite sequence {g(pk)}
∞

k=1 of
prime gaps. However the result is not for a least upper bound on prime gaps g(pk). The
values Γ(pk) also are an upper bound on the prime differences ∆pk. In addition one should
be able to show that each term in the sequence {Γ(pk)}

∞

k=1 is an upper bound on each
corresponding term (i.e., for each k ≫ 4) in the sequence {log(pk)

2}∞k=1, where Cramér’s
conjecture says that, for large k, K, maximal prime gaps G(pK) — meaning maximal if
G(pK) is a prime gap such that G(pK) > g(pk) for all k < K — approach the asymptotic
limit (log(pk))

2.
The graph for the prime difference function ∆pk resembles — at the very least — fre-

quency vs. time graphs in the field of signal processing [8] and Gaussian noise [6]. Our
theorem below rests on the foundations of two previously proved propositions, which imme-
diately follow. One can prove Bonse’s inequality as an exercise [3]. Uspensky and Heaslet [7]
also discuss Bonse’s inequality.

Proposition 1 (Bonse’s inequality). For k > 4,

p2
k+1 <

k
∏

i=1

pi.

Proposition 2. Let pk be the kth prime. Then

pk ∼ k log k.
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For a proof, see Gioia [1]. Now we are ready to prove a theorem that establishes the
upper bound on g(pk) through Bonse’s inequality.

Theorem 3. For k ≫ 4,

g(pk) < Γ(pk)

=
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
− 1.

Proof. By Bonse’s inequality (Proposition 1), when k ≥ 4,

p2
k < p1p2 · · · pk−1

=⇒ p2
k+1 − p2

k < (p1p2 · · · pk) − p2
k

=⇒ pk+1 − pk <
p1 · · · pk − p2

k

pk+1 + pk

=
pk(

∏k−1
i=1 pi − pk)

pk+1 + pk

.

Now when k ≫ 4 grows ever larger, it is true that pk ∼ k log k while by Proposition 2, it
remains true that ε = o(1), where ε = |pk−k log k

pk

| (See Table 1, and the proof by Gioia [1]

of Proposition 2). Furthermore, when k ≫ 4 grows larger it also follows from Proposition 2
and from the properties of logarithms that

pk+1 + pk ∼ (k + 1) log(k + 1) + k log k = log((k + 1)k+1kk),

where as k → ∞,
∣

∣

∣

∣

(pk+1 + pk) − log((k + 1)k+1kk)

pk+1 + pk

∣

∣

∣

∣

= ε′

→ 0.

Letting 0 ≤ ε′ ≪ 1, that is, so that ε′ ≈ 0, it follows that, as k → ∞,

pk(
∏k−1

i=1 pi − pk)

pk+1 + pk

∼
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
. (4)

Then as k → ∞,

pk+1 − pk <
pk(

∏k−1
i=1 pi − pk)

pk+1 + pk

∼
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
, (5)

where we have used Propositions 1 and 2. Then it follows that for large integer k ≫ 4 such
that both pk, pk+1 are very large,

g(pk) + 1 = pk+1 − pk

= ∆pk

<
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
,

=⇒ g(pk) < Γ(pk) =
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
− 1.
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2 The relationship log(Γ(pk)) has to the upper bound

p
11
20−δ

k and other conclusions.

Table 1 suggests that our formula for Γ(pk) indeed is an upper bound for g(pk), as k gets
large. Also from Table 1 one can see that the fast rate of increase of Γ(pk) by far exceeds the
slower rate of increase of (log(pk))

2. Hence it could be interesting to investigate by computer
the behavior of the three respective functions Γ(pk), g(pk) and (log(pk))

2, where (log(pk))
2

by Cramér’s conjecture is such that for large k, pk+1−pk

(log(pk))2
= O(1) is true for maximal prime

gaps.
Rankin [2] showed that there exists a real constant c such that

c(log k)(log log k)(log log log log k)

(log log log k)2
< pk+1 − pk. (6)

Combined with the result from Theorem 3, this indicates that for large integer k ≫ 4, taken
large enough so that pk and pk+1 both are very large, each term of the prime difference
sequence ∆pk is bounded, for each such k, as

c(log k)(log log k)(log log log log k)

(log log log k)2
< pk+1 − pk

<
pk(

∏k−1
i=1 pi − pk)

log((k + 1)k+1kk)
= Γ(pk) + 1.

Let, for some real constant c and for any fixed integer k = k0 ≫ 4,

a(k0) =
c log(k0) log log(k0) log log log log(k0)

(log log log(k0))2
− 1, (7)

b(k0) =
pk0

(
∏k0−1

i=1 pi − pk0
)

log((k0 + 1)k0+1kk0

0 )
− 1 = Γ(pk0

). (8)

Then it follows from Theorem 3 that, for each such positive integer k = k0 ≫ 4, the value
for the prime gap g(pk0

) lies inside an open interval (a(k0), b(k0)) on the real line.

Remarks: The upper bound Γ(pk) found in Section 1 and which appears on the real line
in Eq. 8 as b(k0) for any large fixed integer k0 ≫ 4 such that g(pk0

) ∈ (a(k0), b(k0)) ⊆ R
1,

admittedly, is a large upper bound. This actually can be an advantage. We now can compare
the values of g(pk) to those for log(Γ(pk), log log(Γ(pk)) and log log log(Γ(pk)). In fact an
inspection of Tables 2 and 3 shows it might be profitable to compare the values of log(Γ(pk)),
log log(Γ(pk)) and log log log(Γ(pk)) to those for g(pk), ∆pk and (log(pk))

2, whenever k > 4
is large enough so that both pk and pk+1 are two very large consecutive primes. This is
because one should be able to find by computer that log(Γ(pk)) > g(pk), log(Γ(pk)) > ∆pk

and log(Γ(pk)) > (log(pk))
2 as k grows large, after which one even might be able to prove
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that log(Γ(pk)) is a better upper bound on g(pk) than is Γ(pk), as k → ∞. In Table 3 the
reader can compare the upper bound found by Iwaniec and Pintz [5],

p
11

20
−δ (9)

with Γ(pk), log(Γ(pk) and log log(Γ(pk)), where in Table 3 we have allowed δ = 1
406

. As an
alternative one could use the refinement found by Mozzochi, who found that, for real δ = 1

384
,

pk+1 − pk ≪ p
11

20
−

1

384

k . However a comparison of column 3 and column 5 with column 9 in
Table 3 elicits the following question:

Does there exist, as k → ∞, a real constant α > 0, such that

g(pk) = pk+1 − pk − 1 < log((log(Γ(pk))
α) < p

11

20
−δ

k − 1?

Finally we can use the fact that the field of real numbers on the real line R
1 is closed

for the two binary operations (+, ×), to express the upper bound for prime gaps found by
Iwaniec and Pintz [5] for real δ = 1

406
, by using log(Γ(pk)). Let

a1, a2, . . . , (10)

be an infinite sequence {ak}
∞

k=1 of real numbers such that

pk = ak log(Γ(pk)) = log((Γ(pk))
ak). (11)

Then we have at once
p

11

20
−δ

k = (log((Γ(pk))
ak))

11

20
−δ (12)

=⇒ g(pk) ∈ (a(k), b′(k)) ⊆ R
1, (13)

where in Eq. (13) we have replaced a(k0) in Eq. (7) with a(k) and, by utilizing the upper
bound result found by Iwaniec and Pintz [5],

b′(k) = p
11

20
−δ

k (14)

= (log((Γ(pk))
ak))

11

20
−δ. (15)

In the following Tables 1–3, we have chosen δ = 1
406

, Iwaniec and Pintz’s [5] result) and
relative error (see [1, Theorem 45.3]).

ε =

∣

∣

∣

∣

pk − k log k

pk

∣

∣

∣

∣

→ 0. (16)
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k pk g(pk) ∆pk (log(pk))
2 k log k Γ(pk) ε

3 5 1 2 2.59 . . . 3.27 . . . −0.44 . . . 0.34 . . .

4 7 3 4 3.79 . . . 5.56 . . . 10.85 . . . 0.21 . . .

5 11 1 2 5.75 . . . 8.00 . . . 115.45 . . . 0.27 . . .

6 13 3 4 6.58 . . . 10.74 . . . 1224.22 . . . 0.17 . . .

7 17 1 2 8.03 . . . 13.65 . . . 16860.24 . . . 0.19 . . .

Table 1

k pk g(pk) ∆pk (log(pk))
2 Γ(pk) log(Γ(pk)) log log(Γ(pk))

3 5 1 2 2.59 . . . −0.44 . . . ———– ——————
4 7 3 4 3.79 . . . 10.85 . . . 2.38 . . . 0.87 . . .

5 11 1 2 5.75 . . . 115.45 . . . 4.74 . . . 1.55 . . .

6 13 3 4 6.58 . . . 1224.32 . . . 7.11 . . . 1.96 . . .

7 17 1 2 8.03 . . . 16860.24 . . . 9.73 . . . 2.28 . . .

Table 2

k pk g(pk) ∆pk p
11

20
−δ

k Γ(pk) log(Γ(pk)) ak log log(Γ(pk))
3 5 1 2 2.42 . . . −0.44 . . . ———– ———– ——————-
4 7 3 4 2.90 . . . 10.85 . . . 2.38 . . . 2.94 . . . 0.87 . . .

5 11 1 2 3.72 . . . 115.45 . . . 4.74 . . . 2.32 . . . 1.55 . . .

6 13 3 4 4.07 . . . 1224.32 . . . 7.11 . . . 1.83 . . . 1.96 . . .

7 17 1 2 4.72 . . . 16860.24 . . . 9.73 . . . 1.74 . . . 2.28 . . .

Table 3
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