Up: Schröder Triangles, Paths, and Previous: 7. An algorithm for

Bibliography

1
E. Barcucci, S. Lanini, A. Del Lungo, M. Macri, R. Pinzani, The inversion number of some permutations with forbidden subsequences, Proc. of the International Symposium on Combinatorics and Applications Tianjin (China) (1996).

2
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Some combinatorial interpretations of q-analogues of Schröder numbers, COMBINATORICS'96, Assisi (Italy) (1996).

3
J. Bonin, L. Shapiro, R. Simion, Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths, J. Statistical Planning and Inference 34 (1993) 35-55.

4
A. Cayley, On the analytical form called trees, Part II, Philos. Mag. (4) 18 (1859), 374-378.

5
F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr, M. Kleiman, The number of Baxter permutations, J. Combinatorial Theory (Series A), 24 (1978), 382-394.

6
A. Erdélyi and I. M. H. Etherington, Some problems of non-associative combinatorics (2), Edinburgh Math. Notes 32 (1940), 7-12.

7
I. M. H. Etherington, Some problems of non-associative combinatorics (1), Edinburgh Math. Notes 32 (1940), 1-6.

8
D. Foata, D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb. Theor.-Ser. A., 80 (1997), 380-384.

9
S. Gire, Arbres, permutations à motifs exclus et cartes planaires: quelques problèmes algorithmiques et combinatoires, Thèse de l'Université de Bordeaux I (1993).

10
O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, Thèse de l'Université de Bordeaux I (1995).

11
L. Habsieger, M. Kazarian, and S. Lando, On the second number of Plutarch, Am. Math. Monthly, 105 (1998) 446.

12
J. \Lukasiewicz, Selected Works (L. Borkowski, ed.), North-Holland, Amsterdam (1970).

13
Plutarch, Moralia, Vol. IX, Loeb Classical Library, Harvard Univ. Press, Cambridge, Mass., 1961

14
G. N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc. 94 (1960), 441-451.

15
D. G. Rogers and L. W. Shapiro, Deques, trees and lattice paths, Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference. Lecture Notes in Mathematics, vol 882, Springer-Verlag, Berlin (1981) 293-303.

16
D. G. Rogers, The enumeration of a family of ladder graphs part II: Schröder and superconnective relations, Quart. J. Math. Oxford (2) 31 (1980) 491-506.

17
D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math 22 (1978) 301-310.

18
D. G. Rogers, A Schröder triangle, Combinatorial Mathematics V: Proceedings of the Fifth Australian Conference. Lecture Notes in Mathematics, vol 622, Springer-Verlag, Berlin (1977) 175-196.

19
D. G. Rogers, L. W. Shapiro, Some correspondence involving the Schröder numbers and relations, Comb. Math., Proc. of the intern. Conf., Camberra 1977, Lecture Notes in Math. 686, Springer Verlag (1978), 267-276.

20
E. Schröder, Vier Kombinatorische Probleme, Z. Math. Phys. 15 (1870) 361-376.

21
L. W. Shapiro, S. Geta, W-J. Woan, and L. Woodson, The Riordan Group, Discrete Appl. Math. 34 (1991) 229-239.

22
N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org.

23
R. Sprugnoli and C. Verri, Catalan, Motzkin and Schröder walks, report RT 8/91, Dipartimento di Sistemi e Informatica, Università di Firenze (1991).

24
R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Amer. Math. Monthly, 104 (1997) 344-350.

25
R. A. Sulanke, A recurrence restricted by a diagonal condition: generalized Catalan array, Fibonacci Q., 27 (1989), 33-46.

26
R. A. Sulanke, Bijective recurrences concerning Schroder paths, preprint 1998.

27
R. A. Sulanke, Three recurrences for parallelogram polyominoes, 1997, to appear in J. of Difference Eq. and Appl.

28
J. West, Generating trees and the Catalan and Schröder numbers, Discrete Mathematics 146 (1995), 247-262.