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Abstract

We show that certain properties of positive solutions of disconjugate second
order differential expressions M|y] = —(py')’ + qy imply the separation of the
minimal and maximal operators determined by M in L*(I,) where I, = [a,00),
a > —oo, i.e., the property that M[y] € L*(I,) = qy € L*(I,). This result
will allow the development of several new sufficient conditions for separation
and various inequalities associated with separation. Some of these allow for
rapidly oscillating ¢. It is shown in particular that expressions M with WK B
solutions are separated, a property leading to a new proof and generalization
of a 1971 separation criterion due to Everitt and Giertz. A final result shows
that the disconjugacy of M — \¢? for some \ > 0 implies the separation of J.
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Consider the symmetric second order differential expression

(1.1) Myl .= —(py') +qy

wherep > 0, p’ andq are continuous on the interva) = [a, ), a > —oco. M

is said to be disconjugate if every nontrivial real solution has at most one zero
in I, . A sufficient condition (from Sturm’s comparison theorem) for discon-
jugacy is thaty > 0, and in this case one can show existence of two positive  separation and Disconjugacy
solutionsu; anduy of M[y] = 0 on I,, called theprincipal andnonprincipal

solution respectively, such that < 0 andu), > 0 on I,. More generallyM e o

is disconjugate o, if and only if there exists a positive solutianon the inte-

rior of 1,. For proofs of these facts and additional discussion see Hartimvian | Title Page

Corollaries 6.1 and 6.4]. _ _ _ _ _ Contents
Recall also that\/ determines several differential operators in the Hilbert

spaceL?(1,). In particular the “preminimal” and “maximal” operatofg and 4« dd

L are given byM [y] for y in the domain®;, = C§°(1,,), the space of infinitely < >

differentiable functions with compact support in the interiod pand o ’

o Bac
where AC)o. stands for the real locally absolutely continuous functiond pn Quit
and L*(I,) denotes the usual Hilbert space associated with equivalence classes Page 3 of 35

of Lebesgue square integrable functighg having norm and inner product
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The “minimal operator’Z, with domainD, is then defined as the closuredf.
With the above definitions one can show that

(i) C5°(1.) C Dy C Dy C D,
(i) L = L; =L,
(i) L* = Lo,
(iv) D}, Dy, andD are dense iL?(1,).

The regularity assumptions made in this papep@ndq are stronger than
necessary to properly defing,, L. In general one needs only to assume the
so-called “minimal conditions” that~! andgq are locally integrable ofu, ).

In this case’§°(1,) may not be contained if; but the properties (ii)—(iv) will

still hold. The maximal and minimal operatofsand L, can also be defined
relative to an arbitrary intervala,b) where—oco < a < b < oco. If p7l g

are Lebesgue integrable on some intelfvak) or (¢, b) for a < ¢ < b thena

or b are said to be “regular”; otherwise they are “singular”. (Infinite endpoints
however are considered singular evenif, ¢ are integrable ofa, b).) Thus in

our settinga is regular andx is singular—we signal this by writing, = [a, o)
rather thar(a, b).

M is limit-point or LP at oo if there is at most one solution dff [y] = 0
which is in L*(1,), andlimit-circle or LC' at the point if both solutions are so
integrable. This can be shown equivalent to each of the following properties

(i) {y, 2} (00) == lim, oo (ypZ' — py'2)(xz) = 0 forall y, z € D.
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(i) D = Dy @ sparioy, @), Whereoy, ¢, € D and have compact support in
I,. ThusD is a two dimensional extension o,.

It is clear that if M is disconjugate it iSLP at oo since the nonprincipal
solutionu, ¢ L*(1,). A stronger condition ato than L P is strong limit-point
or SLP which means

lim (pyz)(z) = 0

Vy,z € D. For a thorough development of these operator theoretic ideas see
Naimark, [L7, 817]. Discussion of the SLP concept may be found in Everitt, ~ Separation and Disconjugacy

[ ] R.C. Brown
We turn now to the central concern of this paper.

Definition 1.1. M is said to be separated dR, or on D—equivalentlyL, or Title Page
L is separated—ifiy € L*(I,). (Obviously also by application of the triangle
. . ") 9 Contents
inequality (py')" € L*(1,).)
The following is an exercise in the Closed Graph Theorem (see’&}. [ 4 dd
< | 2
Proposition 1.1. Separation orD, or D is equivalent to the inequality
Go Back
1.2 All(py") < K|M Lyl
(1.2) 1(ey)'ll + Cligyll < KMy}l + Lyl p——
for nonnegative constant$, C, K and L. Quit
The next result shows some connections betwkénor SLP at co and Page 5 of 35

separation. Its proof may be found if] ]
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Remark 1.1. Two immediate consequences of Propositiohare (i) if M is
LC at oo then it is not separated, (ii) it/ is LP but notSLP at oo thenM is
not separated o®,.

Several criteria for separation 8f given by Everitt and Giertz in a series of
pioneering papers’] — [17], also see Everitt, Giertz, and Weidmanry], and

Atkinson [1]. More recent results (that include weighted cases) may be found

in Brown and Hinton f],[ 3]. We quote three typical results.

Theorem A (Brown and Hinton [2]). If p~! is locally integrable onl,, pg > 0,
q(z) is locally absolutely continuous, and

p'%¢ (z)
2 (z)

on /I, then)M is separated omD.

(1.3)

‘§9<2,

Remark 1.2. The original version of Theorer withp = 1 andq > 0 is due
to Everitt and Giertz [ 1]. The case of nontriviab butd < 1 is given in [].

Theorem B (Brown and Hinton [3]). Suppose thap~! is locally integrable

onl,, pq > 0, andg, p are twice differentiable or,. Then) is separated on

D, if

(pq)
q2

(1.4) lim sup

T—00

<0 <2

Remark 1.3. Note that in the casg = 1 both Theoremg and B work for a
wide class of increasing such asy(z) = exp(z), ¢(z) = exp(z") forn > 0,
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q(z) = exp(exp(- - -exp(x)) - - -), etc. On the other hand, both theorems fail if
q is rapidly oscillatory, e.g.g(z) = exp(z)(1 + sin(exp(z)). Note also that a
consequence of Theordsris that ifp = 1 andq” < 0 (i.e., ¢ is concave down)
thenM is separated.

Theorem C (Brown and Hinton [2]). Suppose! € LL.(1,), pq > 0, qis
differentiable. Ther/ is separated orD, if either

0o
q 1
(1.5) ?Ellp(x o a) / ? =K < 4 Separation and Disconjugacy
a T
or R.C. Brown
[o.¢]
(1.6) sup(z — a)/ (¢')* = Ky < 0. Title Page
z€l, T
Contents

Remark 1.4. In this theorem we see that separation holds for arsatisfying
weak conditions provided thatis of slow enough growth. For exampjér) = S L
2P, B < 3, satisfies {.5) and ¢(z) = Klog(x) satisfies {.6). These facts < >
should not be particularly surprising sincedgf= 1 thenM would be separated

: . Go Back
for any p; consequently one can conjecture that the same ought to be tgue if o=ac
has slow enough growth. Close
Recently Chernyavskaya and Schusigrfave given necessary and suffi- Qi
cient conditions using averaging techniques due to Otelbaev for the inequalities Page 7 of 35
(17) KHM[?/] ||p,]R Z ||y”||p,R + ||qy||p,R J. Ineq. Pure and Appl. Math. 4(3) Art. 56, 2003
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where the norms aré? norms onR, ¢ > 1 and is locally integrable; > 0 is
locally p integrable, M [y] = —y" + qy € L*(R), andl < p < oo. Note that
(1.7) or (1.8) can hold on thd.? analog ofD only if M has noL? or r-weighted
L? solutions. Although the conditions irl][ seem challenging to implement
they can be applied to rapidly oscillating potentials such as

(1.9) q(z) = exp(|x|) + exp(|x|)(1 + sin(exp(|z]))

for which both Theoremé. andB fail.

In this paper we show that certain pointwise properties of a positive solution
of a disconjugate expressiavi imply that M is separated of®. This means
in particular that separation occurs M has a fundamental set of solutions,
sometimes calletl’ K B solutions, with a particular asymptotic behaviopat Title Page
Since the existence &7 K B solutions follows from certain integral conditions
satisfied byp and g, we are led to a test for separation that includes a well-
known 1971 result of Everitt and Giertz as a special case. We also show that 4« 33
our approach leads to several other sufficient conditions for separation which P >
do not require verification of properties of positive solutions\éf Some of
these will work for rapidly oscillating potentials similar th.0). We look also Go Back
at conditions that ensure that the mapping associated with the inequality
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when is the same true df/z[y] = —(py')’ + ¢y when in some sensg is
“close” to ¢, ?

Although our tests for separation hold onlyii(1,) and are sufficient but
not necessary, they are easy to apply. Moreover we consider nonprasial on
occasion allow; to be negative or even unbounded below which is a more gen-
eral setting than inf]. Finally, as already mentioned, the inequalities (such as
(2.17) below) associated with separation may be more complicated 1h@g- (
(1.8).

We use the following notational conventions in the paper. Positive constants
will be denoted by capital letters with or without subscripts suct'a&’, K1,
etc. The value of a constant may change from line to line without a change in
the symbol denoting it. If andg are functionsf ~ ¢ denotes the asymptotic
equivalence off andg, i.e.,lim, ... f/g = 1. L*(w;1,) is the standardv-
weighted Hilbert space with norm and inner product

_ 2 % _ _
||f\|w—</]aw!f|), 1F. gl /L,,“’fg’

wherew is a weight. The class of Lebesgue integrable or locally Lebesgue
integrable functions o, will be denoted byL.(1,) or Lioc(1,).

Remark 1.5. The Hilbert space theory (see e.d./] of the operatorsL, and

L is usually developed on complex domains. Thuis the space of locally
absolutely continuous complex valued functignsn 7, such thatf and M| f]
belong toL?(I,) with similar changes in the definitions & and D,. All the
standard closure and adjoint properties bf and L remain true in both cases.
Since the chief tool in our development is the concept of disconjugacy which is
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defined only for real-valued solutions &f, we will derive conditions for the
separation ofM only for real D, andD. However all our results go over to the
complex case. This is seen from observation that# f; + i fs € D then

IMA1? = [IMIAINP + | M £
lgf11? = llgfull® + llgfell

ThereforeM (f), qf € L2(1,) < M[fi], M[fs], qf1. qf2 € L*(1,).
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Theorem 2.1.Letp > 0, ¢ beC! functions. Suppos&/[y] =

a positive solution on the interior df, such that

(2.1)
(2.2)
(2.3)

(pu')'u = qu* < 2p(u')?,

(1=0)()?* <u'u,
pu’

> 0.

Theng > 0 and M is separated orD.

Proof. We need only show thal/ is separated ofv,. BecauseV/ is disconju-
gate and as will be seen below (s€e) ¢ > 0, M is LP atoo and separation

5 €[0,1/3),

—(py') + qy has

onD will follow by Proposition1.Z; in this case by Propositioh 1y will satisfy

an inequality of the form

lgyll* < CliyllI* + DM [y]|

for certain positive constants, D.
Let z(t) = —u’/u. Thenz satisfies the Riccati-type equation

(2.4)

Since

(2.5)

(p2) = pz* —q.
(pZ)/ _ _u(pul)u;_ p( )
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(2.1 — (2.3 is equivalent to the properties

(2.6) —p2* < (p2),
(2.7) 2 <622,
(2.8) p'z <0.

To see this, note that from the definition:oénd .5

p()® _ —u(pu)’

(2.1) & -2 I R
o P —ulpd) + p(u)?
u? u?
& (p2) > —p2t
Also
(u/>2 —
(22) & -1 -8 > —
(u/)2 —uu + (u/)2
0 w2 = U2
& 022>

Finally, the definition of: and @.3) clearly implies thap’z < 0.
Next define the operators

L(y) =y + 2y,
L*(y) = -y + 2y

Separation and Disconjugacy
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wherey € C5°(1,).
We now derive sufficient conditions for the “separation”I¢t We have

IL*()|I* = [L*(y), L* ()]
=[LL*(y),y]
= [y + (22 + )y, y]

— [wr+ @ e
I
Sincep’z < 0 we see that

(pz) =p'z+pz' = pz' > (pz) > —p2°
=2 > — 22,

Because’ + z? is nonnegative the inequality
IZ*W)I1* = lly'II?
holds. By the triangle inequality it also follows that
lzyll* < 4L (y)|I*.

The remaining step is use the separatio.oto show thatM/ restricted to
Cs°(1,) is also separated. We first observe that

L*(pL(y)) = —(py' + pzy)' + z(py’ + pzy)
= —(py) + [—(p2) +p="ly
= —(py') + qu.

Separation and Disconjugacy
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A consequence of(7) — (2.9) is that

—(pz)' +p2* = —p2' — p'z + p2°
> —p2 + p2?
> pz*(1 - 6)
> 0.

Therefore both
(2.9) ¢>0 and (pz) < dp2’.

Now also

IMyl|I> = [L*(pL)(y), L* (pL)(y)]
= ||L*(pL(y))|I?

L)

[L*((2p)*L(y)), y]

[—((zp)*y) + ("9 = (z°p?)'y, 9]
(2.10) =1 [ P+ = )

1o

Hence since’z < 0 andz’ < §z22,

>

= =

2p? — (2Pp?) = 2 — 3222 p? — 22%p(p'2)
(2.11) > (1-30)2"p",
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But (pz)’ > —p2?, so
2 / > . 2
pz"=q+ (p2) > q—pz".

Hence als@z? > ¢/2. Combining this with 2.10 and @.11) gives the inequal-
ity

gl

1 /
(2.12) M = < lIvVPay I+

which immediately yields the separation inequality

16
2.13 My]||* > 2,
(2.13) s | M = llay]
A closure argument (cf.Z] Lemma 1]) shows that the same inequalities are
true on the minimal domaif,. O
Remark 2.1.

() Itis well-known that the existence of a positive solutipthe existence of
a continuously differentiable solutionof the inequality:’ + 2%/p + ¢ <
0, or the identityM[y] = L*(pL(y)) for y having a continuous second
derivative are each equivalent to the disconjugacy\bfon I; see e.g.
[15, Corollary 6.1, Theorem 7.2] or Coppeb| p.6].

(i) We may require that both the conditions> 0 and .1) — (2.3 hold
“eventually”, i.e. on [, for sufficiently largea’ > a. In this case the
restriction of M to I, will be separated on its maximal domain. Sinde
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bounded oria, a'] it is immediate that separation holds also fr(cf. [2,
Remark 1 and Proposition 2]) although the corresponding inequality may
be of the form 1.1) rather than ¢.13).

(i) If we retrace the proof of Theorethlwithp = 1 (2.1) — (2.3) becomes

(2.14) (1 —0)(u)* < u'u < 2(u/)?
& (1-6)W)? <qu? <2)?, §€10,1/3),

with a corresponding change i ©) — (2.9). Syt A1) BISsaT e

(iv) If ¢ is positive andu satisfies 2.1) or (2.2) thenw’ is strictly positive or R.C. Brown
negative, for ifu’(xy) = 0 eitheru(zy) = 0 or one of(pu’)" or u vanishes
at zy. In either case; > 0 = u(xo) = 0, implying thatu = 0.

Title Page
In the remainder of the paper “separated” means separatéduwness the E—
restriction toD, is stated. Also, in proving separation inequalitiesIansuch
as (L.2) we will generally start withy € Cg°(I,) and omit the routine closure 44 >
argument which extends the inequalityZdg. < >
We now show that information about the asymptotic behavior of positive
solutions of M[y] = 0 can yield criteria for separation based on the stable Go Back
conditions ofp andg. Close
Theorem 2.2. Suppose thap, ¢ are positive and twice differentiable witht Quit

nonnegative or nonpositive. Set
Page 16 of 35

“fq
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and assume théitm, . t(z) = oo, u(py')" € L'(1,), andlimsup,_, . [p'|//Pq =
6 < 3. ThenM is separated.

Proof. By Coppel [, Theorem 13],M has fundamental solutionssuch that
forz —

u~=pexp(£t(x)), u ~=%(pu)"" exp(£t(z)).

It follows that (pu')’ ~ qy; and so

D Separation and Disconjugacy
A 2 "2
) [ esp2n(o)) ~ oo
Clearly 2.1) is satisfied on/,, for sufficiently largea’ > a. To derive @.2) _
observe that the asymptotic equivalence(f)* and(pu’)’ implies that Title Page
Ik Contents
(u')? ~u"u + =u'u.
D 44 44
But < >
p'u u Back
(/o) (') () = 25~ pf——— Go Bac
pu p\/q/pu Close
;2 1P| 1 .
~ppt < —<d+e< o Quit
Nz 3

_ . Page 17 of 35
asxr — oo. Thus fore > 0 and on som€,, with «’ sufficiently large we have

that J. Ineq. Pure and Appl. Math. 4(3) Art. 56, 2003
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which obviously impliesZ.2) if € is small enough. Finally, it” > 0 we choose
y1 = p(z) exp(t(x)) and ifp’ < 0 we choose); = pexp(—t(x)). In either case
(2.3 holds. By Remark.1(ii), the fact thatM is LP atoco, and Theoren2.1,
separation follows. O

In 1970 [F] Everitt and Giertz showed:
Corollary2.3. If p=1,¢ > d > 0, and

/q_1/4|(q_1/4)”‘<oo,
Ia

then ) is separated.

Proof. Evidently this condition is a special case of Theorarmwith p = 1, cf.
[6, Theorem 14]. O

Remark 2.2. The hypothesis of Corollarg.3 can be shown to be equivalent to
(see |, p. 122]

|q—3/2q//{ < o0,
Ia

unlessg(x) ~ cx=* andq'(z) ~ —4ca~> for c a positive constant. But in this
caselM is trivially separated o, if a > 0.

A similar result using the asymptotic properties of solutions but requiring
less smoothness @nis given by:
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Theorem 2.4. Suppose that = 1, ¢ > d > 0 is differentiable, and

¢l
/1 £/ .

for somer, 1 < r < 2. ThenM is separated.

Proof. By a result of Hartman and Wintet §, p. 320]M has solutiong: such
that

u~ g exp((@)),
u/ ~ iq1/2u7

wheret(z) = [,/g. Sinceu” ~ ¢**exp(+ [ ¢'/?), itis clear that .19 is
satisfied on somé,, a’ > a. O

In most cases however it is difficult to verif.(l) — (2.3) or (2.14) directly,
which motivates us to seek an equivalent formulation of Thedidrfor which
knowledge of properties of positive solutionsMf[y] = 0 is not required.

Theorem 2.5.Letp > 0 and z be C*(I) functions. Then if4.6) — (2.8) hold
andq = pz? — (pz)’. M[y] is separated and the inequalit.(.3 holds.

Proof. The fact that Theorea.1 implies Theoren®?.5is clear. On the other
hand, if we set. = e~/ #, thenu is a positive solution oM [y] = 0. z = —u/'/u,
and the conditionsA 1) — (2.3) hold as they are equivalent t8.6) — (2.8). Thus
all the assumptions of Theoreml are satisfied. ]
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Theorem 2.6. Suppose that/ is separatedg > d > 0, and thath is a weight.
Assume further that either

(2.15) lim — = o0
or lim,_ .., h = oo, and

(2.16) K ||v/py'|| = |[n°"y]|

for somefd > 1 and ally € C5°. LetGu(y) = {(y,My]),y € D},
equipped with the graph norm. Then the mappi\ng&,, — L?(h; I) given by
MG (y) =y is compact, and// satisfies an inequality of the form

(2.17) elazlylll + K@iyl = || Vy|

onD fore > 0.

Proof. If (2.19 holds andV/ is separated, then by @) of Propositionl.1there
is an inequality of the form

L K
— —||M >
Syl + 1M1= gl

(2.18) >n (/:o hyQ) "
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for any positive integer and where the sequeficg} — oo. Let )\, : Gy —
L?(I") be given by the characteristic function ép composed with\, where
I = la,x,]. Since the solutions o} [y] = 0 andgq are continuous oi”,
a Green’s function argument shows that the maps G, — L?(h;I") are
compact. By 2.18 the A\, converge in operator norm to a compact limit
Also sinceq > d > 0, ¢ is closed, considered as a multiplication operator
q: L*(I,) — L*(I,), and sinceM is separated C D(g). In this situation
Corollary V.3.8 of Goldbergl4, p. 123] applies and give& (L7).

Under the second set of conditions we have from the Cauchy-Schwartz in-
equality, integration by parts, and sifae, .., h = oo thaton somé,., a’ > «a,
and fory € C§°(1) that

1y") I IRyl > [(py")' | 1y
> [(py"), v
= |vpy'II?

> K72y,
Hence
I(py')' | = K2 |h"2y)
> K2|[RO0-072/hy|
> K720 Vhy | (2 00)-

SinceM is separated we obtain fror.@) the inequality

L K AV -
Syl + Z 1MW = 1yY 1 = K |[Viy

(Zn,00)
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on theC§°(1,,) functions and therefore also @n; the proof that\ restricted to
D, is compact continues as in the first part. But sifites a finite dimensional
extension ofD,, \ is also compact. O

Remark 2.3. Following Everitt and Giertz{] we say that; is in the classP ()

or g € P(v) if whenevery € D then|q|” € L?*(I,). Thus the separation dff
onDis equivalenttg € P(1). Itis also easy to verify by thinking of= ¢; + ¢
whereq; () < 1andgq(z) > 1thatq € P(y) = q € P(3) foranys € (0,7].
Suppose now € P(1) andlim,_,., ¢ = co. Then from the first part of Theorem
2.6notonly willg € P(0), 6 < 1, but the “compactness” inequality2(17) will

hold if h = ¢°. If M is separatedg — oo, and @.16 holds forh = ¢?
andé > 1theng € P(#), and we have the interesting consequence that the
mapping\ : Gy, — L%*(q; I,) is compact. In general, if € P(v) andqg — oo
then\ : Gy, — L%(¢°; 1,) is compact.

A disadvantage of Theoreth5is that althoughy has the fornpz? — (pz)’,
since M is disconjugate, it may be difficult to determineand to verify @.6)
— (2.8). We attempt to remedy this problem in the next three corollaries and
obtain additional usable tests.

Corollary 2.7. If My[y] = —(py')' +qy whereq (z1) = (p2f — (p21)’) satisfies
the hypotheses of Theoréhb and M, .[y] = —(py') + q1..y Whereq, .(z1) =

(pc?z} — (pez1)')y, wherec > 1 thenM, .[y] is separated. More generally, §f
is a differentiable function such that¢’ > 0 and

2

(2.19) gl

@ =
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then ifgy = 22 — 2}, wherez, = g(21) M, is separated. Conversely, i |y]
satisfies the hypotheses of Theofmand

(2.20) g

then)/, is separated.

Proof. Let z; = c¢z;. Then sincec > 1, z, satisfies 2.6) — (2.8) and ¢, =
pz3 — (pz2)'. Also p'z, < 0. Separation follows by Theoref5.
For the second part, sineg satisfies2.6) — (2.8) and by .19 we have that

2 =g (21)2 > —¢'(21)7] > —g(21)* = —23

<309/ (21)21 < 6g(x)? = 62.

Thusz, satisfies 2.6) — (2.8) and we can again apply Theorén®d. On the other
hand, usingZ%.20

/ 2 /

—~
N
[
~—
)

dg
g/

2y <628 & 2 <

—~
N
—
~—

wlno

Example 2.1.Letp = 1, z/(z) = /z, andq; (z) = = — (}) 273, Ifa > (3)7,
then @.6) — (2.9) is satisfied for somé < If g(z) = exp(2?), (2.19 is

W=
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satisfied for say: > 2. Takingz:(xz) = g(z1) = exp(z) we get thaty,(z) =
exp(2x) — exp(x) and there is an inequality of the form

K| Myl > |lg2y|l

onD, defined on/,. That M, is separated oD, also follows from Theorer,
but the inequality seems new.

The next two lemmas are useful.

Lemma 2.8. Suppose that/,[y] = —(py’)’ + qy is separated orD,. If

limsup@ <1+,

z—oo (1

lim inf >1—7,

T—00 ql
wherey is sufficiently small, thei/;[y] is also separated o®,.

Proof. Choose:’ large enough so that afy

2y

qi

<7.

Since Ms[y] = Mi(y) + (¢2 — ¢1)y by the triangle inequality and inequality
(1.2) we have that

MM+KMMM+K‘

q
m(i—Qﬂszmm+um
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fory € Cg°. Hence onl,

Lyl + K||Ma[y]|| + Kv|lqyll > Cllquy|
> C(1+ ) gyl

Thus

Lyl + K| Ma[yl| = dllg2yl],
whered = (1 +~v)~'(C' — K+~), which is positive for small enough. O
Lemma 2.9. Suppose thabd/,[y] = —(py')’ + q1y satisfies the separation in-

equality .17) with h = ¢ for anye > 0 on D,. If also there are constants
K1, K3 > 0 such thatl; < |q1/q2| < Ko thenMs[y] = —(py')’ + oy Satisfies
the same separation inequality @n with /1 = ¢ for sufficiently smalk > 0.

Proof. Since
Msly] = Miy] + ¢2 (1 - %) Y

2
fory € Cg°(1,), we arrive at the inequality

e[ Ma[y]|| + €

w(1-2) yH + K@yl > Ml + K@yl

> |yl > Killgyll

for anye > 0. Hence also

ellMa[y]ll + K (e)llyll = dillgzyll,

whered, = (K; — (1 + K3)e > 0 for small enouglz. O
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Remark 2.4. Takingg; = —¢; and Ky = K, = 1in Lemma2.9, we see that if
M, satisfies 2.17) then so doed/, which means that we can have separation

for a potentialg which is negative and unbounded below provided the expres-

sion constructed with potentigf| satisfies2.17).

Example 2.2. Suppose(x) = 1 andq,(x) = exp(z). Then by Theorem or B
M, is separated. Let,(z) = exp(exp(- - -exp(z)) - - - ) be an-fold iteration of
exp(x) and setgy(z) = exp(x)(1 + esin(t,(z)), € > 0. Then Theorem& and
B do not apply becausé.(3) and (L.4) are unbounded. However, by Lemgh&
M, is separated it is sufficiently small. Clearly, (z) can be replaced by any
other rapidly increasing function.

Example 2.3.Letp,(r) = exp(x) andq, (z) = 2'/3 on1,. By Theorent M, is
separated. It is easy to verify that andg; satisfy the Muckenhoupt condition

o0 X
SUP/ pfl/ ¢ <oo, 6>1,
€l Jo a

and therefore (cf. Opi¢ and Kufner.f, Theorem 6.2]) the Hardy inequal-
ity K| exp(z/2)y'|| > ||qf/2y|| holds onCg°. Therefore from the second part
of Theorem2.6 we obtain an inequality of the forn2(17). If now ¢;(z) =
—q1(z)(2 + sin(exp(z™)) we will have from Lemma.9 the same kind of in-

equality but with
Moly] = —(exp()y’) — «'/*(2 + sin(exp(z™))y.
Theorem 2.10.1f p > 0, z is aC! function,p’> < 0 and

— K22 < 2 < Ky2?
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for positive constant&;, K, then the operators

Myl = —y) + a1y,
M.yl = —(py') + g2y,

whereg; . = *pz? — ¢(pz)’ andqq . = *pz* are separated for sufficiently large

c>1.

Proof. To prove that\/; . is separated we retrace the proof of Theofefn Let
L.(y) =y + czyandLi(y) = —y + czy, wherey € C5°(I). Then

IWIF = [ WP+ e+
1
If ¢ > K, thenc? + 222 > 0 and as before,
ez < 4l L[]
Likewise L} (pL.(y)) = M, .y and

Q1. = —pcz — plez + pc®2?
> —pcz’ + pct2?
> pe*(c— Ky) >0

if ¢ > K,. From the definition ofj; . we also have thapz)’ < Kypz?. And so
1 / Z /
AR 2 § [ (e + @9 = (e
I,

2 / [C4Z4p2 3C3Z2Z/p2]y
Ia
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for ¢ > 3K,. Now also
[(pe2)'yll + [ Mac[yll| > 1M [yl > Ks ||cp2?y||

=+/1—3K5/c, so that

[ Ms [ylll > Ks || pz2y|| = 1(pez)'y

> (V-2 e

Since the constant is positive for large enoughe inequality 2.13) for M, .[y]
is established. Since

wherek;

ql,c (1

= (1— (pz)'(*p2?)
q2,c

(8]
(-5).

LemmaZ2.8 may be applied to conclude thaf; . is separated and satisfies an
inequality like .13. O
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Example 2.4.1f p' is of constant sign, let = —sgn(p’)y/q/p thenp’z < 0 as
required andg,,. = c*q. A calculation shows that the hypothesis of Theorem
2.10becomes

/ 1/2

/
2K, > (fﬁ - ) sgn(p') < 2K>.

Equivalently we can require that

/ 1/2

7 = sup o p_q’ < 00
el | VPG ¢
to conclude thatVl;[y] = —(py’)’ + dqy is separated for sufficiently largé

For example, ifp(z) = ¢(z) = exp(z?) both Theorenf and B fail for any M,
yetn = 0 and so we have an inequality of the form

K| — (exp(2?)y') + dexp(a?)y|| > [|dexp(2?)y]|
for large enoughl.

Corollary 2.11. Letp, z, h, andg be functions such that > 0 andp, z are C*,
p'z<0,2 <d622ford €[0,1/3),h > d >0, gis bounded, and

!/
(2.21) lim h(p’? — 0,
Tr—00 pz
thenMi[y] = —(py')’ + qy, Wwhereq; = pz? — (pz) is separated orD and

Msly] = —(py') + g2, Whereg, = p2? + hg(pz)' is separated on at least di.
If we assume additionally that

(2.22)

. 2
lim pz® = oo,

r—00
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then the inequalities

ellMifyll| + K (o)lyll > llg]yl
holdforl <+, j <2andf <1onDifi=1andonDifi=2.

Proof. Since

)

hip2)') o | @2)
pz? pz?
(pz)'/pz* — 0 asz — oo which implies that forl,, = [¢/,00) andd’ suffi-
ciently large,—pz? < (pz)’. Since the assumptions of Theorérbare satisfied,
M [y] is separated ofv relative/,, and by Remark.1(ii) also onI,. Since
q1

1— ! 2
lim — = lim <pz)/lp22:
z—00 gy z—o0 1 — hg(pz)/pz

the separation o/, and M5 on D, follows from Lemma2.8.
To prove the second claim, a calculation will show that

2

lim % = lim (pz?)2=97(2, p,0) = o0,

1<, <2,

whereT'(z,p, 0) is a term going td asz — oo. For example,

2 . L
lim 5 = lim (p22)20-9) 1 +h9(292)//pz2 :

The inequalities follow from the second part of Theor2si O
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Example 2.5. Setp(z) = exp(z/3), z(x) = —exp(z/3), h(x) = exp((1 —
3e)x/3), andg(x) = —sin(t,(z)), wheret, (z) is as in Exampl&.3. Then

1 2 1 2
Pz = —5 exXp (g) <0, 2= —5 exXp (g) < dexp (g) = 22,

and (2.21) holds. Then

Mly] := — <exp <§) y/>/ + exp(z) {1 + gexp(—ex) sin(tn(x))} Yy

Separation and Disconjugacy
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with equality holding if and only ify = 0. Now consider the expressidd,: =
q *[—py') +qy], wherey is an appropriate function ib*(¢%; 1,). If y € C§°(1,)
then the Cauchy-Schwartz inequality ad?(3 yields that

1M [yl 1y llz > @°ly) = Allyllz: = Mlgyll*.

It follows that the inequality

d? | My]l| = [[Mg2[y]ll 2 = Allgy]

Separation and Disconjugacy

holds on theCg® functions and also therefore dp. BecauseV is LP atoco

R.C. Brown
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z€l, T a 4 44 42
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Close
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(2.25) M)l = Ayl
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