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Abstract

The goal of this paper is to study the existence of weak periodic solutions for
some quasilinear parabolic equations with data measures and critical growth
nonlinearity with respect to the gradient. The classical techniques based on
C“-estimates for the solution or its gradient cannot be applied because of the
lack of regularity and a new approach must be considered. Various necessary
conditions are obtained on the data for existence. The existence of at least one
weak periodic solution is proved under the assumption that a weak periodic
super solution is known.The results are applied to reaction-diffusion systems
arising from chemical kinetics.

2000 Mathematics Subject Classification: 35K55, 35K57, 35B10, 35D05, 31C15.
Key words: Quasilinear equations, Periodic, Parabolic, Convex nonlinearities, Data

=

measures, Nonlinear capacities.

Contents
INntroduction. . ... oo 4
Necessary Conditions for Existence. .................. 7
2.1 No Existence in Superquadratic Case.......... 7
2.2 Regularity ConditionontheDafa. .. ............ 10
An Existence Result for Subquadratic Growth.......... 14
3.1 Statementofthe Result. . ..................... 14
3.1.1 AssSumption. . ... 14
3.1.2 The MainResult. .................... 15

3.2 Proof ofthe MainResult . . .................... 15

Weak Periodic Solutions of
Some Quasilinear Parabolic
Equations with Data Measures

N. Alaa, M. Iguernane

Title Page

“« | »
« |

Go Back

Close
Quit
Page 2 of 31

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:alaa@fstg-marrakech.ac.ma
mailto:iguernane@ucam.ac.ma
http://jipam.vu.edu.au/
http://www.ams.org/msc/

3.2.1 Approximating Problem.............. 15

3.2.2 A Priori Estimates and Passing to the Lindi¥

APrioriEstimate. ............. ... ... 17

PassingtotheLimit.................... 22

4  Application to a Class of Reaction-Diffusion Systems... 26
References

Weak Periodic Solutions of
Some Quasilinear Parabolic
Equations with Data Measures

N. Alaa, M. Iguernane

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 3 of 31

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:alaa@fstg-marrakech.ac.ma
mailto:iguernane@ucam.ac.ma
http://jipam.vu.edu.au/

Periodic behavior of solutions of parabolic boundary value problems arises from
many biological, chemical, and physical systems, and various methods have
been proposed for the study of the existence and qualitative property of periodic
solutions. Most of the work in the earlier literature is devoted to scalar semilin-
ear parabolic equations under either Dirichlet or Neumann boundary conditions
(ef. 11, 19, [14, 119, [19, 19, 12, [29, [24, [29]) all these works ex- = C il
amine the classical solutions. In recent years attention has been given to weak some Quasilinear Parabolic
solutions of parabolic equations under linear boundary conditions, and different Eauations with Data Measures

methods for the existence problem have been used}di, [2], [©], [ 7], [©], N. Alaa, M. Iguernane
(81, [10], [1], [1€], [27], [27], etc.).
In this work we are concerned with the periodic parabolic problem .
Title Page
uy — Au=J(t,z,u, Vu) + \f inQr Contents
(1.1) u(t,z) =0 on Y, « dd
< 4
0,2) =u(T in Q
u(0,2) = u(T, ) Inss, Go Back
where() is an open bounded subset®f, N > 1, with smooth boundarys, Close
Qr = 10,T[ x Q, > 7 = 10,T[ x 0Q, T > 0, X are given numbers;-A .
denotes the Laplacian operator 6t with Dirichlet boundary conditions, the Qui
perturbation/ : Qr x R x RN — [0, +00[ is measurable and continuous with Page 4 of 31
respect ta, andVu, and f is a given nonnegative measure@n.
The work by Amann 4] is concerned with the probleni (1) under the hy- 3. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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respect to the gradient is sub-quadratic, namely
I (t,2,u, V) < e (u]) (|Vul> + 1) .

He obtained the existence of maximal and minimal solutiors'iff2) by using
the method of sub- and super-solutions and Schauder’s fixed point theorem in a
suitable Banach space (see alsp [17]).

In this work we are interested in situations wherés irregular and where
the growth of.J with respect toVu is arbitrary and, in particular, larger than
|Vu|? for large|Vu| . The fact thatf is not regular requires that one deals with
“weak” solutions for whichVu, u; and evenu itself are not bounded. As a
consequence, the classical theory ugifiga priori estimates to prove existence
fails. Let us make this more precise on a model problem like

u —Au+au=|Vul’ + A\f in Qr

(1.2) u(t,z) =0 on > -

u(0,2) = u(T, ) in

where|-| denotes thé&®” -euclidean normg > 0 andp > 1.

If p < 2, the method of sub- and super-solutions can be applied to prove
existence in1.2) if f is regular enough. For instanceiif> 0 andf € C*(Qr),
then (L.2) has a solution sinces = 0 is a sub-solution and@i(¢, x) = v(x),
wherew is a solution of the elliptic problem

av — Av = [Vol" + X ||f]l, InQ

v=>0 onof

Weak Periodic Solutions of
Some Quasilinear Parabolic
Equations with Data Measures

N. Alaa, M. Iguernane

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 5 of 31

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:alaa@fstg-marrakech.ac.ma
mailto:iguernane@ucam.ac.ma
http://jipam.vu.edu.au/

is a super-solution ofl(2) (see Amann4]). The situation is quite different if
p > 2 : for instance a size condition is necessary)Xjnto have existence in
(1.2) evenf is very regular, indeed we prove in Secti@ri that there exists
A* < 400 such that {.2) does not have any periodic solution for> \*. On
the other hand we obtain another critical vapfe= 1 + % of the problem,
indeed as proved in Sectidh2, existence in1.2) with p > p* requires thatf
be regular enough.

We prove in Sectiord, that existence of a nonnegative weak periodic super Weak Periodic Solutions of
solution implies existence of nonnegative weak periodic solution in the case of Eijgg%“@iﬂ'?;;ﬁﬁﬂ;gs
sub quadratic growth. Obviously, the classical approach fails to provide exis-
tence sincef is not regular enough and new techniques must be applied. We
describe some of them here. Finally in Sectigrnthe results are applied to
reaction-diffusion systems arising from chemical kinetics. Title Page

To finish this paragraph, we recall the following notations and definitions:

N. Alaa, M. Iguernane

Contents

Notations: <« Y
Cs° (Qr) = {¢ : Qr — R, indefinitely derivable with compact supportdn;}
Cpo (2) = {¢ : Q2 — R, continuous and bounded i}

M, (Qr) = {i bounded Radon measuredy } Go Back
M (Qr) = {1 bounded nonnegative Radon measur@i} .

< 4

Close
Definition 1.1. Letu € C(]0,T[; L'(Q)), we say that(0) = u(T) in M, () Quit
if forall ¢ € G, (22, Page 6 of 31
lim (u(t, CC) — U(T — t, CL’))QOd$ = 0. J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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Throughout this section we are given

(2.2) f anonnnegative finite measure @ 7 x Q
andJ : [0, 7] x Q x RY — [0, +-00] is such that
(2.2) J is measurable, almost everywheez) , r — J (¢, z,7)

iS continuous, convex.
(2.3) vr € R, J(-,-,r) isintegrable ono, T'[ x €.
(2.4) J(t,2,0) =min{J (t,z,r),r e RV} = 0.

For A € R, we consider the problem
((we LY0,T; Wyt () N C(0,T[; L)), u>0 inQr
J(t,z,Vu) € L. (Qr),

(2.5)
uy — Au > J (t,x, Vu) + A\F in® (Qr)

u(0) = u(T) in M, ().

We prove in this section, if/ (-,-,r) is superquadratic at infinity, then there
exists\* < +o0o such that?.5) does not have any periodic solution for- \*.
The techniques used here are similar to thosée Jiridr the parabolic problem
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with initial data measure. A rather sharp superquadratic conditiohisigiven
next where thét, x)-dependence is taken into account. We assume

(2.6) There existse, 7| openin]0,7T[,p > 2, and a constanty > 0
(2.7) suchthat/ (t,z,r) > c¢o|r|” almost every wherét, x) € |e, 7[ x Q

(2.8) /] [Qf>0.

Theorem 2.1. Assume that4.1) — (2.4), (2.6) — (2.8) hold. Then there exists
A* < +o00 such that 2.5) does not have any solution far> \*.

Proof. Assumeu is a solution of 2.5). By (2.6) and @.7), we have
(2.9) u — Au > co |[Vulf + A in® (Je, 7[ x Q).

Letp € C° (10, T[ x Q), ¢ > 0andy (g) = ¢ (1) = 0. Multiply (2.9) by ¢
and integrate to obtain

s [re< [ [ vuve-alvare -
5 Q 5 Q

Taking into account the equality
por=—A(Ge) = —A(Gy),

whereG is the Green Kernel of2. We obtain from 2.10)

)\/ /f(pﬁ/ /Vchp—co|Vu|pg0—VuV(Ggo)t
€ Q € Q

(2.10)
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this can be extended for gl € C" ([0,7]; L= (Q)) N L= (0, T; W, (),
¢ > 0andp () = ¢ (1) = 0. We obtain

(2.11) )\/ /ﬁpg/ /gp[|vu| 'W_Z(GW ~ o |Vul?| dudt
€ Q € Q

if we recall Young's inequality's € R sr < ¢ [r[" +c|s|*, ; + 2 = 1. We see

q

that 2.11) implies

//f¢<6//|v<p v )|qudt

Y € CH([0,T]; L= (Q)) N L (0,T; Wy'™ (Q))

(2.12)

L ¢ >0andp(e) = ¢ (1) = 0.

Let us prove that this implies thatis finite (hence the existence af). We
choosep (t,z) = (t — &) (1 — t)? ® (z) , ® is a solution of

—Ad (2) =P (z), 2 >0 inQ
O (z)=0 in 0%2,

where); is the first eigenvalue of A in Q2. We then have from4.12)

Y R IOY
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t—e)' (1 =1V (z )_A_l(t—s)q Y-t

1/ [e=aret =y o
/ / (t— o) T—t> Ve () ddec?/: dexdt

® (x)"!
//t—e (=) (x

/ |V<I>
By the definition of® we haved € W, (Q) and@( € Ll(Q) forall o < 1.
Sincep > 2 thena = ¢ — 1 < 1, therefore|, 'gq’ " dz < oo. This completes

the proof. O

<[ L]

X(T+e—=2t)VP(x)

it provides

We consider the following problem
((we L' (0,T3Wy" () N C(0, T[; L'(Q),
J(,u,Vu) € L. (Qr)

(2.13)
—Au>J(t,z,u, Vu) + Af inD (Qr)

in M, (Q)
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wheref, J satisfy .1) — (2.4) and
(2.14) there exists > 1 ¢y, o >0, J (t,x,8,7) > c1|r|’ — co,

Theorem 2.2. Assume that4.1) — (2.4), (2.14) hold. AssumeZ.13 has a
solution for some\ > 0. Then the measurg¢ does not charge the set qul_

capacity zerd ; + ; = 1) .

Remark 2.1. We recall that a compact sét in Qy is of IW»!-capacity zero
if there exists a sequence 6f° (2)-functionsy,, greater thanl on K and
converging to zero iqu?vl. The above statement means that

(2.15) (K compactV»'-capacity(K) = 0) = / f=0
K

Obviously, this is not true for any measyf@s soon ag < %+1 orp > 1+%,
(see, e.g. [] and the references therein for more details.)

Remark 2.2. The natural question is now the following. etk p < 1 + %
and f € M; (Qr), does there exist solution of .13 and if this solution
exists is it unique? It will make the object of a next work.

Proof of Theoren2.2. From .13, (2.14), we get the following inequality
(2.16) u—Au>c [Vull —ca+ Af inD(Qr).

Let K be a compact set W}l-capacity zero ang,, a sequence afy° (Qr)-
functions such that

(2.17) ¢n >10nK, ¢, — 0in W' and a.e im)r, 0 < ¢, < 1.
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Multiplying (2.16) by x,, = ¢? leads to

T T
(2.18) /\/ /an—i-cl/ /Xn|Vu|p
0o Ja 0
T
<c2/ /Xn—u% / /Vanu.
0 Ja

We useVy,, = ¢p? 'V, and Young’s inequality to treat last integral above:

Weak Periodic Solutions of

T T T Some Quasilinear Parabolic
(2_19) / / VXnVu < 5/ / Xn |Vu’p +c. / / |V<,0n|q Equations with Data Measures
0 Q 0 Q 0 Q

N. Alaa, M. Iguernane

Due to @.17), passing to the limit in4.18), (2.19 with ¢ small enough easily

leads to :
Title Page
(2.20) )\/ f=0. Contents
K
0 < 43
Remark 2.3. The result obtained here is valid if one replaces 1@ the < 4
operator—A by A that is to say for the equation Go Back
(we L' (0,T;Wy' () nC(0,T[; LY(Q)), Close
Quit

J(t,z,u,Vu) € L. (Qr)
S Page 12 of 31

w+ Au > J(tz,u, Vu) + Af  inD (Qr)

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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or also for the equation

u — Au+ [Vul’ = A

u(t,z) =0

u(0,2) = u(T,x)

[ inQr

on) .

in Q.
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3.1.1. Assumption First, we clarify in which sense we want to solve prob-
lem (1.1).

Definition 3.1. A functionu is called a weak periodic solution of (1) if

( = L2 (0 T H& (Q)) Nne ([0 T] L2 (Q)) Weak Periodic Solutions of

Some Quasilinear Parabolic
Equations with Data Measures

J(t,x,u,Vu) € L' (Qr)

N. Alaa, M. Iguernane

(3.1)
w — Au=J(t,z,u,Vu) + f inD (Qr)
Title Page
[ u(0) = u(T) € L*(Q), Contents
wheref is a nonnegative, integrable function and < 33
(3.2) J: Qr x R x RY — [0, +o0] is a Caratheodory function, that means: 4 >
(t,z) — J (t,z,s,r) is measurable Co 2EES
(s,7) — J (t,z,s,r) is continuous for almost everf, x) Close
(3.3) J is nondecreasing with respect ¢and convex with respect 0 Quit
(3.4) J(t,x,5,0) =min{J (¢, z,s,7),r € RN} =0 Page 14 of 31

(3.5) J(t,x,s,1m)<c(|s]) (|7’|2 + H(t,x)) ,

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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wherec : [0, +oo[ — [0, +oo| is nondecreasing anfl € L' (Qr) .


http://jipam.vu.edu.au/
mailto:alaa@fstg-marrakech.ac.ma
mailto:iguernane@ucam.ac.ma
http://jipam.vu.edu.au/

Definition 3.2. We call weak periodic sub-solution (resp. super-solution) of
(1.1) a functionu satisfying ¢.1) with “ =" replaced by < ” (resp.>).

3.1.2. The Main Result We state now the main result of this section

Theorem 3.1. Suppose that hypothesé&sd) — (3.5) hold and problemX.1) has
a nonnegative weak super-solution Then (L.1) has a weak periodic solution
u such that:0 < u < w.

3.2.1. Approximating Problem Letn > 1andj, (¢, z, s, -) be the Yoshida’s
approximation of the functiod (¢, z, s, -) which increases almost every where
to J (¢, x,s,-) asn tends to infinity and satisfies the following properties

jn < J, and Hjn,r (t,%, S, T)H < n.

Let
o (t,2,8,7) = Jn (8,2, 8,7) Ljw<n (2, 8,7),

wherew is a super-solution ofl(1).
It is easily seen thaf,, satisfies hypotheseS.@) — (3.5).
Moreover

(3.6) J, < Jl[wgn] and In < Jpiq.

On the other hand, sincg € L' (Q7), we can construct a sequengg in
L*> (Qr) such that

o< Forre Ifalliom < Iflon
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and f,, converge tof in ®’ (@) asn tends to infinity.
Let

F, = falpws<n)s w, = min (w,n),

and consider the sequenis,) defined by:uy = wy = 0,

u, € L?(0,T; HL ()N L>(0,T;L*())
(3.7) U, — Aty = Jy, (£, 2, U1, V) + F, inD (Qr)

u, (0) =u, (T) € L*(Q).
We will show by induction that3.7) has a solution such that
(3.8) 0 <up_1 < u, <w,.
To do this, we first consider the linear periodic problem

ue L?(0,T, H} (Q)NL>®(0,T,L*(Q)), u>0inQr
(3.9) ug — Au=Fy in @ (Qr)

w(0)=u(T) e L*(Q).

This problem has a solutian, (see [ 7, Theorem 6.1, p. 483]). We remark that
w IS a supersolution of3(9) and thanks to the maximum principle, we have
w; —uy > 0 onQr, hence there exists, such that

0<wuy <u <ws.

Suppose that3(9) is satisfied fom — 1.
Then from (8.6), u,,_; is a weak sub-solution of3(7). Let us prove thatv,, is
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a weak super-solution o8(7). Indeed, by the definition af),, and the mono-
tonicity of J,, we have

wy, € L2(0,T, H} ()N L>®(0,T, L* (Q))

Wy, — Awy, > Jp, (6,2, 0,1, V) + F, in D (Qr)

wy, (0) =w, (T) € L*(Q) .
Hence 8.7) has a solution,, such thatu,, ; < u, < w, (see [1]), which
proves 8.9) by induction.
3.2.2. A Priori Estimates and Passing to the Limit

A Priori Estimate In this section, we are going to give several technical results
as lemmas that will be very useful for the proof of the main result.

Lemma 3.2. Letu,v € L*(0,T; H}()), such that
in Qr
—Au>0in®D (Qr)
(3.10) —Av>0in® (Qr)
u(O) =u(T) € L*(Q
[ v(0)=v(T) € L*(Q).
Then, there exists a constant> o, such that

/ IV’ gc2/ Vol
T T

(O0<u<w

\_/\_/
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Lemma 3.3. Letu,, be a solution of §.7), then there exists a constant > o,
such that

/ In (t, 2, Uup—1, Vuy,) dedt < cs.

T

Lemma 3.4. Letu € L?(0,T, H} (22)), such that
Uy — AU =P in 9/ (QT)
pE ME;L (Qr) Weak Periodic Solutions of

Some Quasilinear Parabolic
u(0)=u(T) e L*(Q).

Equations with Data Measures

N. Alaa, M. Iguernane

Then
up € L' (Qr) and /QT up < /QT |Vul®. Tille Page
Lemma 3.5. Letu, u, € L*(0,T, H} (2)), such that Contents
(3.11) 0 <u, <uinQrandu(0) =u(T) € L* () 4 dd
< >
(3.12) u, — uweakly inL* (0, T, Hy (Q)) Go Back
Close
U, — Aty = pp IND (Qr) Quit
(3.13) U, (0) = u, (T) € L™ (Q) Page 18 of 31

Pn S L2 (QT) y Pn Z 0 and ||pnl|L1(QT) S ¢
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Proof of Lemma8.2. Sinceu € L? (0, T, H} (Q)) andAwu € L? (0,7, H* (Q)),
then

|19l = (-au.0).

T

where (-,-) denotes the duality product betweel? (0,7; H} (©2)) and
L*(0,T; H'(Q)).

Moreover, we havel wuu; = 0and0 < u < v, then

Qr Weak Periodic Solutions of
Some Quasilinear Parabolic
9 Equations with Data Measures
/ Vu|” = (uy — Au,u) < (up — Au, v)
Qr N. Alaa, M. Iguernane
< —(Au,v) — (Au,v)
< 2/ VuVo. Title Page
T Contents
Using Young's inequality we obtain
g g q y <« NS
1
/ Vul? < 5/ |VU|2+C/ IVl « >
Qr Qr Qr
wherec is a positive constant . ] Go Back
Close
Proof of Lemma.3. Remark that
Quit
/ I (t, 2, Uup—1, Vu,) dedt = / I (t, w1, Vuy,) dedt Page 19 of 31
T QTm[unfl]
+ Jn (t, l’, un—h Vun) dl’dt J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002

http://jipam.vu.edu.au
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We note
I :/ In (6,2, U1, Vuy,) dedt
QTQ[UHSI]

and

I, = / I (t, 2, U, 1, Vuy,) dedt.
QTm[un>1}

Hypothesis 8.5) yields
Weak Periodic Solutions of
Some Quasilinear Parabolic

I, < C(l)/ (\Vun|2 + H(t,:l:)) daxdt. Equations with Data Measures
T

N. Alaa, M. Iguernane

But H € L' (Qr) and0 < u,, < w, then Lemma3.2, implies that there exists a

constant, such that Title Page
(3.14) I <ey. Contents
On the other hand, we have ah dd
< 4
I, < / Up S (t, 2, Up—1, Vuy,) dudt. Go Back
T
L. L. . . . Close
Multiplying the equation in$.9) by u,, and integrating by part yields: —
uit
I, < / \Vun|2. Page 20 of 31
T

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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Proof of Lemma.4. Consider the sequeneg, = min (u,m) . It is clear that
u, € L*(0,T, Hy (Q)) . Moreoveru,, converge ta: in L* (0,7, Hj (©2)) and

satisfies the equation
Uy, € L?(0,T, H} (Q))

(3.15) U, — Au,, > pl[u<m] in®’ (QT)

Um (0) = upy, (T) € L™ ().
Multiply (3.15 by u,,, and integrate by part o+, we obtain
<um7p1[u<m}> = <umyumt - Aum>

1
:—/ U%ﬁ/ |Vt |
2 T T
:/ |Vum|2.
T

Thanks to Fatou’s lemma, we deduce
/ up = / Vul® .
T T

Proof of lemma3.5. By relations 8.11) — (3.13, there existy € M, (Qr),
such that,

O

w — Au = pin® (Qr)
(3.16)
uw(0)=u(T) e L*(Q).

Weak Periodic Solutions of
Some Quasilinear Parabolic
Equations with Data Measures

N. Alaa, M. Iguernane
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Contents
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Close
Quit
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However,

/T|Vu—Vun|2:—/T(u—un)A(u—un)

:—/TuA(u—un)—i-/TunA(U_un)

:/ VuV(u—un)—/ VunVu—/ Uy, Vy,

= / VuV (u — uy,) — Vu,Vu— / U (U, — Auy,) .
Qr Qr Qr

Moreover, by Lemma&.4, we have
/ U (U, — Auy,) < / |Vul? .
T T

lim \Vu — Vu,|* dzdt = 0.

n—-4o0o Qr

Hence

]

Passing to the Limit According to Lemmeé3.3 and estimate3.8), (u,),, is
bounded in.? (0, T’; H () . Therefore there exists € L? (0,T; H} (), up
to a subsequence still denot@d,) for simplicity, such that

u, — u strongly inL? (Qr) and a.e. imQr
u, —u weaklyinL?(0,7T; H} ().
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However, Lemma3.5 implies that the last convergence is strong in
L?*(0,T; H} (). Then to ensure that is a solution of problem1(1), it suf-
fices to prove that

(3.17) o (s tn_1, V) — J (-, u, Vu) in L' (Qr) .

Itis obvious by Lemm&.2and the strong convergencewfin L? (0, T, H; (2))
that

I (-, ©y Up—1, Vun) —J (~, < U, Vu) a.e inQT. Weak Periodic Solutions of
. . . . o Some Quasilinear Parabolic
To conclude that is a solution of {.1), we have to show, in view of Vitali's Equations with Data Measures
theorem that.J,,),, is equi-integrable il (Qr) . N. Alaa, M. Iguernane
Let K be a measurable subset®@f, ¢ > 0 andk > 0, we have
/ I (6,2, U1, Vu,) dedt = / I (6,2, U1, Vuy,) dedt Tide Page
K KN[u,<k| Contents
+ / Jn (t, T, Up—1, Vun) dxdt. 44 (S
KN[up>k]
We note that ¢ >
I = I (t, U1, Vuy,) dedt Go Back
KN[un<k]
Close
and
I = / Jo (t, 2, U1, V) dzdt. Quit
KnN[un>k]

Page 23 of 31
To deal with the ternd,, we write
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which yields from the equation satisfied by in (3.7)

1

I, < % / (unuy — upAuy,) dedt
1/|Vu | dadt.
k n

By Lemma3.2, there exists a constarif > 0 such that

(3.18) I, < =,
Then, there existg, > 0,such that, ifk > k, then
(3.19) L<$<

3
By hypothesis§.5), we have for alk > &

I < c(k)/ (IVuu|” + H (t,x)) drdt.
KN[un<k]

The sequencé|Vu,|*) is equi-integrable ir! (Qr) . So there exists; > 0

such that if K| < 6y, then

(3.20) c (k) /Km[ o (|Vun| ) dadt <

Oolm
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On the other hand € L' (Q7) , therefore there exists > 0, such that
(3.21) c(k;)/ H(t,2)dedt < <,
KNun<k] 3

whenevel K| < d,.
Choose), = inf (41, d9) , if | K| < do, we have

/ I (6,2, U1, Vu,) dedt < e.
K
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We will see in this section how to apply the result established below to a class
of raction-diffusion systems of the form

u — Au=—J (t,z,v,Vu) + F (t,z) inQr
) Weak Periodic Solutions of
v —Av=J (t’ x,0, VU) + G (t’ I) in Qr Some Quasilinear Parabolic
( 4 1) Equations with Data Measures
u=v=0 on ZT N. Alaa, M. Iguernane
L U (O) =u (T) » U (O> =v (T) in €2, Title Page
where() is an open bounded subset®¥, N > 1, with smooth boundary(, Contents
Qr=10,T[xQ, >, =10,T[x0QT > 0, F, G are integrable nonnegative “ 55
functions and/ satisfies hypothesgsl,) — (H,).
< | 2

Definition 4.1. A couple(u, v) is said to be a weak solution of the systeir)

if Go Back

(w0 € L2(0,T5 Hy () NC([0,T]; L% () Close

u — Au = —J (t,x,v,Vu) + F (t,z) inQr Quit

Page 26 of 31
v — Av=J(t,x,v,Vu)+ G (t,z) inQr

J. Ineq. Pure and Appl. Math. 3(3) Art. 46, 2002
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Theorem 4.1. Under the hypothese8.Q) — (3.5, andF, G € L? (Qr), system
(4.1 has a nonnegative weak periodic solution.

To prove this result, we introduce the functiensolution of the following
linear problem

w € L?(0,T; Hy () nC([0,T]; L*(Q))
(4.2) w—Aw=F+G in® (Qr)
w(0)=w(T) € L*(Q).

It is well known that ¢.2) has a unique solution, se&].
Consider now the equation

ve L2(0,T,H (Q)NC([0,T],L*(Q))
(4.3) v, — Av=J(t,z,0,Vw—Vv)+G inD (Qr)
v(0)=v(T) € L*(Q).

It is clear that solving4.1) is equivalent to solve4(3) and setu = w — v.

Proof of Theoremt.1. We remark thatv is a supersolution of4(3). Then by a
direct application of Theorer®.1, problem ¢.3) has a solution. O
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