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ABSTRACT. For the given arbitrary sequence of real numbfrs}._, we construct several

lower and upper bound converging sequences. Our goal is to localize the absolute value of the
sequence maximum. Also we can calculate the value of such numbers. Since the proposed
algorithms are iterative, asymptotical convergence theorems are proved.

The presented task seems to be pointless from the ordinary point of view, but we illustrate
its importance for a set of applied problems: matrix analysis, measurement data processing and
Monte Carlo methods. According to the modern conception of fault tolerant computations, also
known as "interval analysis*, these results could also be treated as a part of interval mathematics.
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1. INTRODUCTION

We deal with an arbitrary sequence of real numHess._,. If all the sequence numbers are
explicitly given, an exact maximum (or it's absolute value) along with a quantity of such values
are searched directly.

The problem becomes harder if the sequence is not explicitly given and we are supplied only
it's mean value or in general — by power sums

sp=s(k) =) _af, k—natural.
=1

ISSN (electronic): 1443-5756
(© 2002 Victoria University. All rights reserved.
049-02


http://jipam.vu.edu.au/
mailto:edulov@matematicas.unal.edu.co
mailto:nandrian2000@yahoo.com
http://www.ams.org/msc/

2 EUGENEV. DULOV AND NATALIA A. ANDRIANOVA

For a variety of tasks we must also calculate the quantity of numbers, which are, by modulus
equivalent to the maximal one. Thus, we defmaltiplicity as a quantity of numbers whose
modulus is equal to the absolute value of a sequence maximum.

Moreover, if{z;};_, is stochastic, the usual meaning of the “maximum” becomes quite ar-
bitrary. Therefore considering a sequence of lower and upper bounds for the maximum (as
embedded intervals) seems to be reasonable. This idea leads us to the well-known estimation,
given for example in[9]:

Lemmal.1.If z4,...,x, are real numbers, such that< z,, < z,_; < ... < x, then
D i1 Ti 1 - D i1 Ti ’

1.1 == _— == ) < g

(1) n * n(n —1) Z v n =0

j=1

This lemma, in modified form, seg![7], may be used for estimating its maximal value by the
absolute value of the number in the sample. (In the following work we use the standard notion
of sample when referring to a sequerag}_,).

Lemma 1.2. Considering the real valued sample; }""_,, with & > 1 some integer,

1
2k

D Yi 1 zn: Do Y ’
1.2 i=1J1 2k __ i=1J1 < ;|
(1.2 n * n(n —1) ‘= Ui n - ?X‘y |

The above lemmas have an evident connection in statistics:

Mz} = ZHZT”E D{z} = %Z: (a;j - ZZT”“")Q

Herez & {x;};_,. According to one cornerstone theorem in statistics (See [3] for example):

(1.3) p <M{az} ++/D{z} < mlax\xl|> — 1.

Moreover, one can directly check, that the correctness of the inequality depends only on the
multiplicity.

2. ESTIMATION OF PROPER BOUNDS

Taking into account that
2
(2.2) D{r} = M{(x - M{a})’} = M{a”} = (M{a})* = = - =1,
we will investigate the properties of the generalized sequence

(2.2)

1
%
vk S L O ? Sk Sok St
fr(z,p) = LTy p ot — ) = |=+4/p (i — —’;)
n n n n non

The left hand side of expressi.2) is equivalen (2.2pfer —L;. In formula [2.2) we
directly use the power sums, mentioned in the introduction. In what follows we shall take
k = 27 in (2.9), which is equivalent to the consequent squaring of each number in the sample.
Under this supposition, sequenge [2.2) is proved to be at least linearly convergent, depending
on the parameter.

The fact that the generalised sequey‘i,g:(ar, ﬁ) converges tanax; |x;| from below can be
found in [7]. Here we investigate a more general resulf of (2.2) using other techniques.

1
k
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BOUNDING THE SEQUENCE MAXIMUM 3

Theorem 2.1. For £ a natural number,

(2, m) = [Sff) ¥ \/ om (2 ff“)]

is a decreasing sequence such that

27k

P(z,m) > [P (x,m) >0 > ;P (x,m) > ... > m;ax|xi|

of upper bound estimations for the modulus of the largest value in the sampldz;}; ;.
Herem, m < n is a multiplicity ofmax |x;].

Proof. Assume without loss of generality that values = max; |x;| are the first numbers in
the sample. Hence-) can be written as

n—m
s(2F) = mxi]f + Z xfk :
i=1

Denotingy;, = S.r " 22", By = Y722 the basic inequality theoretf® (x,m) > xp,

i 7

translates into the equivalent one

ok
- 3.

m

\/n —m [nmx?ﬁ“ + 03y — mPa? — 2mat s, — (21)2] > (n—m)z
m

Squaring and collecting similar terms gives

n—m ok+1

m J—

[m(n —m)z »2 — 2mal s, + nZQ]

m

> (n—m)?22 " + 52— 2(n—m)a> ¥,

m

and finally(n — m)X, > 2. According to [(2.1L) we have the inequality

(n—m)%(xf—w)QZO

n—m
fulfilled Vz; real andvk = 1,2, . . .. 0

Theorem 2.2. For k£ a natural number,

low 5(2%) n—(m+1) (s(2k1)  s2(2F)
& (x,m):[T—l—\/ m+1 ( n  n? )]

is an increasing sequence such that

27}6

P (@.m) < fP(rm) < - < fiPwm) < - < max |z

of lower bound estimations for the modulus of the largest value in the sample{z;}; ;.
Herem, m < n is a multiplicity ofmax |x;].

Proof. Under the same suppositions as above, the main inequlity:, m) < max; |z;| can
be written as

— 2.

m

\/p [m(n — m)a2™" + n¥y — 2maZ ¥ — (21)2} < (n—m)z>
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Further simplification leads us to

2k:+1
0 —

p(m(n —m)z 2ma’ Sy 4+ nSs — (31)7)

<(n-— m)QxffH —2(n — m)xifEl + (21)2,
(n — m):zcif+1 [n—m —pm] + in]:El[pm —n+m]+ (21)2(1 + p) > pns,
)2 ¥p)?
(n—m(1+p)) | (n—m)a2™ — 2y + E B s s,
n—-m n-—m
and
n—m(l+p) n—m(l+p)

n—m n—m

((n—m)xff —21)2+ (1 +p—

Simplifying the second factor we have

) (21)% > pn¥, .

— 1 2
n—m n—m
Analyzing the first summand we see that
n—m(1+p) 50 o p< n—m

n—m
is a necessary, but not sufficient positivity condition.
Transferring the second and third summands to the right and reducin@by a:) multiplier
gives us
(2.3) (= m(1+p)((n —m)aZ = 1) > prl(n —m)S? = (%1)?),

in which the right hand side attains its maximum with a non-zero number:2 — ¢, wheres
is a positive infinitesimal number. Substitution in (2.3) results in the inequality

(n—m(l+p)(n—m—1)z% +6)2 > pn(n —m —1)(z% — 5)2 .

Upon expansion
(2.4) @, (n—m—1)[(n—m(1+p))(n—m—1)—pn]
+&X(n —m — pm — pn?® + pnm + pn)
+2zme(n—m—1)[n —m —pm+pn] > 0.
Simplified factors at elements,, > andz,,c respectively, we have
(i) (n=m)(n—m—1[n—m—1)—p(m+1)]

(i1) (n—m)[p(n—1)+1] and

(i7) 2(n —m)(n —m — 1)[1 + p].

If there exists a parametgr> 0 for which all three coefficients are positive, then our proposi-
tion is proved. Since the second and third coefficients give inequqiiﬂiesrﬁ andp > —1
respectively,[(214) is fulfilled iff

n—(m+1) n—m

—-—m-1- 1H)>0p<
n—m p(m+1) > p < o -
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Corollary 2.3. Inthe case whem =n—1and p = Ll Theoren.2 prowdes an alternative
proof of the convergence theorem (Theorrim [[7].

Remark 2.4. According to Theorems 2.1 and 2.2 bounding sequences are monotonically in-
creasing or decreasing, depending on paramet8o, if we have at least two estimatiofis fs,
or consequenty, fr+1 in general, we can calculate differencds(p) = fii1(z,p) — fr(x,p)
for consequent(l), [ =1,...,n— 1.
The pair of numbergl + 1,7) for which A (p(1)) x Ag(p(l + 1)) < 0, shows a change
of convergence character f¢r (R.2) i.e. indicating the multiplicity of maximum modulus to be
=1
The following example below illustrates this remark. et} , = {5,2 —5,4,-3,5}.
Herex,, = 5 andm = 3. In the table we represent approximate valyﬁg$( )) fi(p(D)) for
consequent=1,....,6

multiplicity | 1 2 3 4 5 6
difference\—o.6 —0.259 —0.0887 0.02636 0.1184 0.2049

Table 2.1: Evaluating multiplicity

Since the difference changes it’s sign for the pairt), thenm = 3.
Remark 2.5. Parametep = p(n, m) was introduced for two reasons:

(1) To provide strict lower and upper bounds for the maximum of the absolute value in the
sample;
(2) To make this estimations more exact. Namelyifer oo we have

. fele,p)? mA+ /pm(n —m)

Settingp = =™ < (' = 1. Thus, using “sample independent” parametelr,,| could be
better bounded.

Now we are ready to establish corresponding convergence theorems for the sequénce (2.2).

3. CONVERGENCE ANALYSIS

Theorem 3.1.Letey, = z,, — fx(z, p) — be the estimation residual aid= ‘”‘ <1y @i |xs| <
x, be the second greatest, by absolute value, number in the sample ‘of multiplibiey the
asymptotic convergence speed of the sequence

fr(z,p) = [%21{3) + \/p (S(%ljl) - Sigk))]

29—k

is
1 1 —~
(3.1) lim 2 = fim N
k—oo &g k=00 -, (m+\/m) 2 m
1 —
(3.2) lim L g 2 = 2
k—oo & 2 k—oo m
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Proof. Transformingf(x, p) we have

fio_ o
22t g2t
s(2%) + \/p (ns(2k+1) — s2(2F))
- nz?"
n—m 2k n—m 2k+1 n—m ok 2
m+ L) 4 mn +n L — |m+ L
5 () (e S @) - e )T
- n
For sufficiently largek we have
(3.3) F(k,p) = m+ 16% + \/p [(n—=m)m+1(n—1)0*"" — 2lms?"],
k
fel@p)\* _ Flk,p)
T n

with
klim F(k,p) = m+ v/pm(n —m).

Forp = »= expression| (3]3) becomes

3.4)  F(k) = m+ie® + \/ (n—m)? + 0= l;&” =) g _ gy — )
lim F(k) = n.

k—oo

Analysis of its residuals ratio gives, in general,

1 (F(k+1,p)>2kl
lim Skt _ lim " —
k—oo E&f k—o0 1— (F(k,p)>2

Considering both parameter cases, we obtain
(1) p # =2, DenotingC = Y2 Vp;"(n_m) + 1, we have
1—c! 1—c2" 1 1

N ) [N B S e L
(2) forp = ==, We analyze the influence of fast vanishing numbers, such that

(3.5) (@)M — (—F(k) _”+")2k 1y 2B 0

n n

Now (3.4) may be expressed in the form
c—l—\/bQ—l—azc—l—b—i—Q%, 0<axk1
and an estimation foF' (k) — n is

—(n —m) +16% + (n —m) (1 + M§2k+l — L(5216) :
m

2m(n —m) n—
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so that finally

. Ekt
lim ——

k—oo Ef

= lim

kﬂool_

1—

F(k)—n =~ Hn =1) garer
2m
Substituting this approximation if (3.5) we obtain

1 _ Un=) 52k 2
T Tmn 2kF2

1 I(n—1) §2F+1
T Tmn 2k

ok+1 52k+2

. 1
fto 22 g2FFT T 9

X k41
lim 6% .
k—o0

We illustrate Theorern 3.1 and Remark|3.2 by the same test sample, consider
{xi}i?:l = {57 2’ _1’ _5a47 _375}7 ITm = 57 m =3 ,(5 =0.8.

The column pairs in Table 3.1 represent the numerically evaluated convergence ratio and the

difference modulus between numerical and theoretical estimations.

Iter. p==6 p=1/6
ratio difference ratio difference
6 |0.498144 | 0.7826774e — 4| 0.501926 | 0.1253511le — 3
7 10.499033 | 0.6200297¢ — 7| 0.500901 | 0.9950568e — 7
8 10.499516 | 0.386122¢ — 13| 0.500450 | 0.629444e — 13
9 10.499758 | 0.406412¢ — 15| 0.500225 | 0.247138e — 15
10 | 0.499879 | 0.335205e¢ — 15 | 0.5001125 | 0.406203e — 15

Table 3.1: Asymptotical convergence rates: "non-optimal“ case

Remark 3.2. Considering the content of Taljle B.1, one can be confident in the convergence

character described by ety rmnmm) Vpnm("_m) summand. Whemp corresponds to multiplicity less
than real one, this constant is greater thaand the numerical estimates (see colums 6)

converges t(% from below.

Vice versa, fop corresponding to greater multiplicities, this summand is less trard the
numerical estimates (see columg- 1/6) converges t(% from above.

According to computer FPU, limitations estimations ko> 10 are not reliable and outline
the coincidence between theoretical and numerical results.

Table 3.2 presents the numerical estimations of residaall “error"—based calculatedfor
the optimal parameter valug'3.

Iter. €k )
2 | —2.4795358e — 2 | 0.8107121
3 | —2.1582945e¢ — 3 | 0.8037043
4 | —3.0960442¢ — 5 | 0.8009546
5 | —1.2261571e — 8 | 0.7999936
6 | —3.84762¢ — 15 | 0.7999976

Table 3.2: Asymptotical convergence rates: optimat 4/3

Here we represent three examples of applying (2.2) in practice.
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8 EUGENEV. DULOV AND NATALIA A. ANDRIANOVA

3.1. Estimation of the Matrix Spectral Radius. One can apply the introduced sequence in
matrix analysis for bounding matrix spectral radius. According to the spectral property of a
matrix trace operator we have

S N =tr{A*}, VE>1,
i=1
(see [2]) where\; denote eigenvalues of any matrix Hence, replacing ", =¥ by tr {Ak}
we obtain the required sequence. But these estimations are valid (compare with results in [7])
only for matrices with real spectrum, for example, a symmetric matrix.
For interested readers we recommend the recent artidles [5, 6] and [8] and compare these
results to the older ones![7] and [9]. The unique convergence speed estir@aﬂdhis type
was done by Friedland inl[1]. He obtained the result

p(A) = lim /|42
to be linear. This upper bound estimation rises from matrix norm properties [2].

3.2. Processing Data MeasurementsExperimental measurements are made by using sets of
identical measuring units that are normally independent. Measurements are however, close
enough to give detailed information about the device being tested.

Typically these units are equipped with several circuits, registering several observations dur-
ing the external synchronization cycle. In this case, we are usually given the mean and disper-
sion of the internally registered sample. Moreover, the measurement scale is usually shifted to
output only positive numbers.

According to Theorends 2.1 ahd .2, we can guaranteeftiiatn — 1) < z,, < fi(z,1).

If we could construct measuring units producing s¢ (bettersg thansg) and consequent
s(2%), then closer bounds far,, can be obtained. According to the afore-mentioned theorems,
we need to calculate differencég,(x,l) — fi(x,[) for consequent = 1,...,n — 1. The
pair of indices! + 1,1 locating the change of difference sign pointsiio= [. Hence the best
currently available estimation will be,, € [fi(x, m + 1), fx(z, m)] for the last made stef.

As we outlined in the introduction, the notion of the maximum or absolute maximum value
of the noised measurement sample could be meaningless. In contrast, the set of embedded
localization intervals containing this value is of great practical interest. The same principle
concerns the next example, which could be treated as a generalization of this principle for large
sample sizen.

3.3. Monte Carlo Methods. Monte Carlo and quasi-Monte Carlo methods are now widely
used in different fields of numerical modelling. Monte Carlo methods have their origins in
physics and mathematics, and are now used in computer graphics, bioinformatics, geoscience
and many other domains. Due to it's probabilistic properties and overall computational com-
plexity, Monte Carlo algorithms are optimized for best computational performance.

Therefore finding a maximum over the used lattice translates into a programming problem.
Moreover, since we can not guarantee that any one of the lattice points directly coincides with
points of the global maximum (minimum), the sequence of nested intervals becomes the only
reasonable approach to such a problem.

Consideration of computer hardware is an important component of the problem. Modern
scalar, super-scalar, parallel and distributed computers (often referreditond®r crunchels
employ branch prediction, prefetching and carrying to increase their performance. The branch
direction cannot be predicted in a maximum search. This means that inside the main MCM cycle
we must proceed through a branch prediction, which leads to a drastic drop of performance for

J. Inequal. Pure and Appl. Math3(3) Art. 44, 2002 http://jipam.vu.edu.au/
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all modern CPU’s (for example, Intel's Pentium 4 architecture will seriously suffer from the
performance drop-down in contrary to AMD’s Athlon).

Hence a reasonable compromise may be found in calculating several additional sums for
f(x:)?, f(z)d, f(x;)®8, ... by consecutive squaring (take into account the increased effectiveness
of extended integer/float register files embedded in modern CPU'’s).

Leaving the main cycle we will have a number of sums

n \E
D P C I
n

wheren is a number of processed points. Consequently we can do the following:

(1) Model 1. Implement an aposteriori cycle to revise the behavior of differeficasz, [)—
fr(x, 1) for consecutivé = 1, ..., n—1. We need to determine a pair of numbéssl, [
for which the sequence change a convergence character. Henaefdrthe range es-
timation is[f(z, m + 1), fr(xz, m)] for the last availablé.

Since the typical number of lattice points can be in the order of millions, the above
mentioned approach can be treated as “doubling” the number of lattice points and being
directly implemented, Model 1 is just a point of theoretical interest. However, at the end
of this section we introduce an evident solution.

(2) Model 2. Without an additional cycle we can only estimate the lowest and highest
interval bounds:

felen—1) <zy < fr(z,1).
This rough solution is reasonable for smalbr fast changing functions.

Here we represent a small computational example in accordance to model 2. The scalar
function . 1
f(x) = ertsin(rl@=3)) max f = 7.389056
z€(0,1

is evaluated over a GLP (good lattice points, see [4]) set. A number of points taken-is
10000001. To compare the computational time an experiment was repeatédfot, 2, £k =
1,2,4 andl, 2,4, 8 (calculatingf;, f- and f,).

Table[ 3.3 below contains calculation times in seconds for the two processofgyianK6-
2/500(weak floating point unit, strong branch prediction) andrael P-11/350(strong floating
point unit and moderate branch prediction efficiency).

The third column of the table, entitled “upper” contains results calculatetfer 2 (appli-
cable because test function has only one maximum [ove}).

Experiment Maximum Upper AMD Intel
Direct 7.389049 36.3 42.9
1,2 [1.617683, 5866.923986] 4149.015164 38.9 42.6

1,2,4 [2.461533,199.026414]  167.365892  40.4 42.9
1,2,4,8 [3.730634, 36.416130] 33.394119  48.3 432

Table 3.3: Numerical experiment timings

Computational times prove that for CPU with several floating-point out-of-order execution
units we can replace the exhaustive maximum search by computation of two additional sums
minimum. In this case we can use Model 1 to compute a bounding range.

The other results, concerning the lowest and highest boundaries, seems to be inapplicable.
However, as a careful reader will see, that lattice points are very dense fornlargé®000001
and smooth functiorf. Hence, points close to = 1 will be treated numerically as equal. This
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leads to overestimating of upper bound and underestimating the lower one. For example, setting
my = 400000, m, = 350000,k = 1,2,4,8 provides a much better estimati@rB89056 <
[7.349532,7.469766

The simplest way to resolve this problem is by setting= m + A, A step have to be
about50000 for our example. This additional cycle will be repeated a2y times, which is
significantly less than a number of lattice points.

The other important remark is evident lattice dependence of multiphcityaking the other
GLP sequence for the samg, m., k provides a wrong localization interval 954751, 8.080737].
But settingm; = 750000, my; = 700000 gives the correct intervdlr.388547, 7.448697] >
7.389056.

The detailed discussion of this numerical example highlighted the best possible way for lo-
cating maximum value (and it's multiplicity) -binary search Applying it instead of fastened
linear search will require onlipg, n = 20 checks in our example.

4. CONCLUSIONS

In this paper we presented a non-standard, but powerful approach for solving some auxiliary
tasks aimed at bounding the maximum by modulus value in the given sample. This approach
is closely linked with current needs of interval analysis and can be neatly applied in several
engineering and mathematical tasks, as was illustrated above. Accompanied by a binary search
algorithm, this iterative bounding sequence can be successfully applied to MCM and quasi-
MCM computational algorithms even for huge lattices and multi-dimensional tasks.

Having a computational shortage in matrix algebra due to a time consumable matrix squaring,
this approach still is applicable in other cases.
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