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Abstract

An integral inequality is deduced from the negation of the geometrical condition
in the bounded mountain pass theorem of Schechter, in a situation where this
theorem does not apply. Also two localization results of non-zero solutions to a
superlinear boundary value problem are established.
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1. Introduction and Preliminaries
Let p ∈ [2,∞), Ω be a bounded domain ofRn, and let

C1
0

(
Ω
)

=
{
u ∈ C1

(
Ω
)

: u = 0 on∂Ω
}

.

We consider the quantity

(1.1) λp−1 = inf


∫

Ω
|u|p−2 |∇u|2 dx(∫
Ω
|u|

p2

2 dx

) 2
p

: u ∈ C1
0

(
Ω
)
\ {0}

 .

For p = 2, λ1 is the first eigenvalue of the Laplacean−∆ under the Dirich-
let boundary condition, and1

λ1
represents the best constant in the Wirtinger-

Poincaré inequality (see [7] for the elementary Wirtinger’s inequality, [8] for its
extension to functions with values in an arbitrary Banach space, and [11] for
Poincaré’s inequality). Forp > 2 andn = 1 this quantity arises in the study of
compactness properties for integral operators on spaces of vector-valued func-
tions (see [13]). Let us also note that quantities alike (1.1) arising from physics
were studied by Pólya [9] and Pólya and Szegö [10] (see also [6] and its refer-
ences for more recent advances).

Remark 1.1. For n = 1 andΩ = (0, T ) , where0 < T < ∞, the exact value
of λp−1 can be obtained from a result of Gajek, Kałuszka and Lenic [3] in the
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following way. First by change of the integration variable one has

λp−1 = inf


∫ T

0
|u|p−2 u′2dx(∫ T

0
|u|

p2

2 dx

) 2
p

: u ∈ C1
0 [0, T ] \ {0}


= T−(1+ 2

p) inf


∫ 1

0
|u|p−2 u′2ds(∫ 1

0
|u|

p2

2 ds

) 2
p

: u ∈ C1
0 [0, 1] \ {0}


=

(
T 1+ 2

p sup

{(∫ 1

0

|u|
p2

2 ds

) 2
p

: u ∈ C1
0 [0, 1] ,

∫ 1

0

|u|p−2 u′2ds = 1

})−1

.

After substitutingv =
(

2
p

)
|u|

p
2 , we obtain

λp−1 =

(
T 1+ 2

p

(p

2

)2

sup

{(∫ 1

0

|v|p ds

) 2
p

: v ∈ C1
0 [0, 1] ,

∫ 1

0

v′2ds = 1

})−1

.

Notice that

sup

{∫ 1

0

|v|p ds : v ∈ C1
0 [0, 1] ,

∫ 1

0

v′2ds = 1

}
= sup

{∫ 1

0

|v|p ds : v ∈ C1
0 [0, 1] ,

∫ 1

0

v′2ds ≤ 1

}
.
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mailto:r.precup@math.ubbcluj.ro
http://jipam.vu.edu.au/


An Inequality which Arises in
the Absence of the Mountain

Pass Geometry

Radu Precup

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 21

J. Ineq. Pure and Appl. Math. 3(3) Art. 32, 2002

http://jipam.vu.edu.au

Now the sup in the right hand side is the quantity denoted byb in [3] and is
given by

b =

(
p (p + 2)

π

) p
2 21−p

p + 2

Γ
(

1
p

+ 1
2

)
Γ
(

1
p

)
p

.

As a result

λp−1 =

T 1+ 2
p p2

(
p (p + 2)

π

) p
2 2−1−p

p + 2

Γ
(

1
p

+ 1
2

)
Γ
(

1
p

)
p

−1

.

In this paper we are interested in finding upper and lower estimations for
λp−1. An upper bound is obtained from the negation of the geometrical condi-
tion in Schechter’s mountain pass theorem, in a situation where this theorem
does not apply. To our knowledge, this is the first time that a bounded mountain
pass theorem is used in order to obtain inequalities. Two localization results
of non-zero solutions to a superlinear elliptic boundary value problem are also
established in terms ofλp−1.

1.1. Basic Results from the Theory of Linear Elliptic Equa-
tions

Here we recall some well-known results from the theory of linear elliptic bound-
ary value problems.

(P1) Let Ω ⊂ Rn be a bounded domain withC2-boundary. The Laplacean−∆
is a self-adjoint operator onL2 (Ω) with domainH2 (Ω) ∩ H1

0 (Ω) (see

http://jipam.vu.edu.au/
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[11, Theorem 3.33], or [4]). It can be regarded as a continuous opera-
tor from W 2,q (Ω) ∩ W 1,q

0 (Ω) to Lq (Ω) for eachq ∈ (1,∞) . Moreover,
−∆ is invertible andK := (−∆)−1 is a continuous operator fromLq (Ω)
into W 2,q (Ω) (see [2, Theorem 9.32]). Also,K considered inL2 (Ω) is a
positive self-adjoint operator.

(P2) (Sobolev embedding theorem) LetΩ ⊂ Rn be a bounded domain with
Lipschitz boundary,k ∈ N, 1 ≤ q < ∞. Then the following holds:

(10) If kq < n, we have

(1.2) W k,q (Ω) ⊂ Lr (Ω)

and the embedding is continuous forr ∈
[
1, nq

n−kq

]
; the embedding is

compact ifr ∈
[
1, nq

n−kq

)
.

(20) If kq = n, then (1.2) holds with compact embedding forr ∈ [1,∞).

(30) If 0 ≤ m < k − n
q

< m + 1, we have

(1.3) W k,q (Ω) ⊂ Cm,α
(
Ω
)

and the embedding is continuous for0 ≤ α ≤ k−m− n
q
; the embed-

ding is compact ifα < k −m− n
q
.

The above results are valid forW k,q
0 (Ω)-spaces on arbitrary bounded do-

mainsΩ (see [1], [15, p 213] or [2, pp. 168-169]).

http://jipam.vu.edu.au/
mailto:r.precup@math.ubbcluj.ro
http://jipam.vu.edu.au/


An Inequality which Arises in
the Absence of the Mountain

Pass Geometry

Radu Precup

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 21

J. Ineq. Pure and Appl. Math. 3(3) Art. 32, 2002

http://jipam.vu.edu.au

(P3) Let Ω ⊂ Rn be a bounded domain withC2-boundary. Letp0 = 2n
n−2

if
n ≥ 3 andp0 be any number of(2,∞) if n = 1 or n = 2. Let q0 be the
conjugate number ofp0. Clearly,p0 ∈ (2,∞) andq0 ∈ (1, 2) . From (P1),
(P2) we have thatK has the following properties:

(a) K : Lq (Ω) → Lp (Ω) for everyq ∈ [q0, 2] , 1
p

+ 1
q

= 1;

(b) K is continuous fromLq (Ω) toLp (Ω) for everyq ∈ [q0, 2] , 1
p
+1

q
= 1;

(c) the operatorK considered inL2 (Ω) is a positive self-adjoint operator.

Indeed,K is continuous fromLq (Ω) into W 2,q (Ω) . On the other hand
W 2,q (Ω) ⊂ Lp (Ω) with continuous embedding. This is clear ifq ≥ n

2
. For

q < n
2

and 1
p

+ 1
q

= 1, observe that

p ≤ 2n

n− 2
⇐⇒ p ≤ nq

n− 2q
.

According to [5, pp. 51-56], the properties (a)-(c) are sufficient for that the
operatorK considered fromLq (Ω) to Lp (Ω) , wherep ∈ (2, p0) and1

p
+ 1

q
= 1,

admits a representation in the form

K = AA∗,

where
A : L2 (Ω) → Lp (Ω) , Av = K

1
2 v

and
A∗ : Lq (Ω) → L2 (Ω)

http://jipam.vu.edu.au/
mailto:r.precup@math.ubbcluj.ro
http://jipam.vu.edu.au/


An Inequality which Arises in
the Absence of the Mountain

Pass Geometry

Radu Precup

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 21

J. Ineq. Pure and Appl. Math. 3(3) Art. 32, 2002

http://jipam.vu.edu.au

is the adjoint ofA. HereK
1
2 is the square root ofK considered as an operator

acting fromL2 (Ω) into L2 (Ω) .

Throughout, by|·|p we shall mean the usual norm onLp (Ω) and by|A| we
shall mean

|A| = sup
{
|Av|p : v ∈ L2 (Ω) , |v|2 = 1

}
.

1.2. Schechter’s Mountain Pass Theorem

Now we present the main tool in this paper, Schechter’s mountain pass theorem
[14]. Let X be a real Hilbert space with inner product(·, ·) and norm|·| , BR =
{v ∈ X : |v| ≤ R} the closed ball ofX of radiusR, E : X → R a C1-
functional onX, v0, v1 ∈ X andr > 0 with

|v0| < r < |v1| ≤ R.

Let
Φ = {ϕ ∈ C ([0, 1] ; BR) : ϕ (0) = v0, ϕ (1) = v1} ,

cR = inf
ϕ∈Φ

max
t∈[0,1]

E (ϕ (t))

and let
KcR

= {v ∈ BR : E (v) = cR, E ′ (v) = 0}

be the set of critical points ofE in BR at levelcR.

We say thatE satisfies the Schechter-Palais-Smale condition onBR ((S-P-S)R-
condition) if

(vk) ⊂ BR, E (vk) - bounded,(E ′ (vk) , vk) → ν ≤ 0,

http://jipam.vu.edu.au/
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E ′ (vk)−
(E ′ (vk) , vk)

|vk|2
vk → 0

=⇒ (vk) has a convergent subsequence.

Theorem 1.1 (Schechter).Suppose

(i) E satisfies(S-P -S)R-condition;

(ii) there exists a constantC with− (E ′ (v) , v) ≤ C for |v| = R;

(iii) v 6= λ (v − E ′ (v)) for |v| = R andλ ∈ (0, 1) ;

(iv) max{E (v0) , E (v1)} ≤ inf {E (v) : |v| = r} .

ThenKcR
\ {v0, v1} 6= ∅.

We note that by the mountain pass geometry of a functionalE we mean the
geometrical condition (iv) in Theorem1.1.

http://jipam.vu.edu.au/
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2. Main Results
We first obtain a lower bound for all non-zero solutions of the superlinear prob-
lem

(2.1)

 −∆u = |u|p−2 u in Ω

u = 0 on∂Ω.

Theorem 2.1. Let Ω be a bounded domain ofRn with C2-boundary, letp ∈(
2, 2n

n−2

)
if n ≥ 3 and p ∈ (2,∞) if n = 1 or n = 2, and let 1

p
+ 1

q
= 1. If

u ∈ W 2,q (Ω) ∩W 1,q
0 (Ω) is a non-zero solution of the problem (2.1), then the

functionv = A∗ (|u|p−2 u
)

= A−1u satisfies the inequality

(2.2) |v|2 ≥ |A|−1 [(p− 1) λp−1]
1

p−2 .

Proof. Let us first prove that any solution of (2.1) belongs toC1
(
Ω
)
. Forn = 1

this follows from (1.3) (chooseα = 0, m = 1 andk = 2). Supposen ≥ 2 and
fix any numberq0 > n (p− 1) . If q ≥ n

2
, then (P2) guaranteesu ∈ Lq0 (Ω) .

Assumeq < n
2

and denoteq1 = q. Sinceu ∈ W 2,q1 (Ω) and q1 < n
2
, from

(1.2) we haveu ∈ Lq∗1 (Ω) , whereq∗1 = nq1

n−2q1
. Then|u|p−2 u ∈ L

q∗1
p−1 (Ω) . Let

q2 =
q∗1

p−1
. Sinceu = K

(
|u|p−2 u

)
and|u|p−2 u ∈ Lq2 (Ω) , from (P1), we have

thatu ∈ W 2,q2 (Ω) . If q2 ≥ n
2
, as aboveu ∈ Lq0 (Ω) ; otherwise we continue

this way. At the stepj we find that

(2.3) u ∈ W 2,qj (Ω) , qj =
q∗j−1

p− 1
, q∗j−1 =

nqj−1

n− 2qj−1

,

http://jipam.vu.edu.au/
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whereq1, q2, ..., qj−1 < n
2

(j ≥ 2). We claim that there exists aj with qj ≥ n
2
. To

prove this, suppose the contrary, that isqj < n
2

for everyj ≥ 1. Usingp < 2n
n−2

we can show by induction that the sequence(qj) is increasing. Consequently,
qj → q̄ ∈

[
q, n

2

]
asj →∞. Next, from (2.3) we obtain

qj (n− 2qj−1) (p− 1) = nqj−1.

Letting j →∞ this yieldsq̄ (n− 2q̄) (p− 1) = nq̄ and so

q̄ =
n (p− 2)

2 (p− 1)
≥ q =

p

p− 1
.

This impliesp ≥ 2n
n−2

, a contradiction. Thus our claim is proved. Therefore,u ∈
Lq0 (Ω) . Furthermore|u|p−2 u ∈ Lq0/(p−1) (Ω) and sinceu = K

(
|u|p−2 u

)
,

we haveu ∈ W 2,q0/(p−1) (Ω) . Since q0

p−1
> n, by (1.3) one hasW 2,

q0
p−1 (Ω)

⊂ C1
(
Ω
)

(chooseα = 0, k = 2, m = 1). Henceu ∈ C1
(
Ω
)
.

Let u = K
(
|u|p−1) . Clearly, likeu, u ∈ C1

(
Ω
)

andu = 0 on ∂Ω. By the
weak maximum principle, we have

(2.4) |u| ≤ u onΩ.

Hence
−∆u = |u|p−1 ≤ |u|p−2 u.

If we “multiply” by up−1 and “integrate” onΩ, we obtain

(2.5) (p− 1)

∫
Ω

up−2 |∇u|2 dx ≤
∫

Ω

|u|p−2 updx.

http://jipam.vu.edu.au/
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Now Hölder’s inequality yields∫
Ω

|u|p−2 updx ≤
(∫

Ω

u
p2

2 dx

) 2
p
(∫

Ω

|u|p dx

) p−2
p

(2.6)

= |A (v)|p−2
p

(∫
Ω

u
p2

2 dx

) 2
p

.

Since|Av|p ≤ |A| |v|2 and by (2.4) one hasu 6= 0, from (2.5) and (2.6) we
deduce that

(p− 1) λp−1 ≤ |A|p−2 |v|p−2
2

that is (2.2).

Our next result is the following inequality.

Theorem 2.2. Let Ω ⊂ Rn be a bounded domain withC2-boundary. Then for
everyp > 2 one has the inequality

(2.7) λp−1 ≤
1

(p− 1) |A|2
.

Proof. We consider the functionalE : L2 (Ω) → R, given by

(2.8) E (v) =

∫
Ω

(
1

2
|v (x)|2 − 1

p
|(Av) (x)|p

)
dx.

Clearly, we have

E (v) =
|v|22
2
−
|Av|pp

p
.

http://jipam.vu.edu.au/
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For everyv, w ∈ L2 (Ω) , it is easy to compute

(E ′ (v) , w) = lim
λ→0

λ−1 (E (v + λw)− E (v))

and find
(E ′ (v) , w) = (v − A∗FAv, w) ,

where
F : Lp (Ω) → Lq (Ω) , F (u) = |u|p−2 u.

Hence
E ′ (v) = v − A∗FAv.

Notice if u is a solution of (2.1) thenv = A∗ (|u|p−2 u
)

= A−1u is a critical
point of the functional (2.8). Conversely, ifv is a critical point of the functional
(2.8), thenu = Av is a solution of (2.1).

Our plan is as follows: we show that for everyR < R0, where

(2.9) R0 = |A|−1 [(p− 1) λp−1]
1

p−2

(of course here we assumeλp−1 > 0, (2.7) being trivial if λp−1 = 0), v0 = 0
is the unique critical point ofE in BR = {v ∈ L2 (Ω) : |v|2 ≤ R} and that the
hypotheses (i)-(iii) in Theorem1.1hold. Consequently, there exist nov1 andr
with 0 < r < |v1|2 ≤ R such that the geometrical condition (iv) is satisfied. As
a result we obtain (2.7).

(a) The (S-P-S)R-condition is satisfied for everyR > 0. Indeed, let(vk) be
any sequence of functions inBR with

(2.10) (E ′ (vk) , vk) → ν ≤ 0, E ′ (vk)− β (vk) vk → 0,

http://jipam.vu.edu.au/
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whereβ (vk) = (E′(vk),vk)

|vk|22
. Passing if necessarily to a subsequence, we

may suppose that|vk|2 → d for somed ∈ [0, R] . If d = 0 we are
done. So assumed > 0. Denotewk = E ′ (vk) − β (vk) vk. We have
wk = (1− β (vk)) vk − A∗FAvk. Hence

(2.11) vk = (1− β (vk))
−1 (wk − A∗FAvk)

and so

(2.12) Avk = (1− β (vk))
−1 (Awk −KFAvk) .

NoticeK (Lq (Ω)) ⊂ W 2,q (Ω) and the embedding ofW 2,q (Ω) intoLp (Ω)
is compact. Indeed, fromp ∈

(
2, 2n

n−2

)
and 1

p
+ 1

q
= 1, we easily see that

p ∈
(
2, nq

n−2q

)
whenq < n

2
. Hence the compact embedding is guaranteed

by (P2). As a result, we may suppose that (at least for a subsequence)
(KFAvk) is convergent. In addition, by (2.10), we have

Awk → 0, (1− β (vk))
−1 →

(
1− ν

d2

)−1

∈ (0, 1].

Then, from (2.12), we find that (at least for a subsequence)(Avk) is con-
vergent. Finally (2.11) guarantees that the corresponding subsequence of
(vk) is convergent.

(b) For eachR > 0, there exists a constantCR such that

− (E ′ (v) , v) ≤ CR for allv ∈ L2 (Ω) with |v|2 = R.

http://jipam.vu.edu.au/
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Indeed, if|v|2 = R, then

− (E ′ (v) , v) = − |v|22 + (A∗FAv, v)

= − |v|22 + (FAv, Av)

= − |v|22 + |Av|pp
≤ − |v|22 + |A|p |v|p2
= −R2 + |A|p Rp

= : CR.

(c) Zero is the unique critical point ofE with |v|2 < R0 (hereR0 is given
by (2.9)). Indeed, ifv ∈ L2 (Ω) is a non-zero critical point ofE, then
v = A∗FAv and soAv = KFAv. Henceu = Av is a non-zero solution
of problem (2.1). Therefore, according to Theorem2.1, |v|2 ≥ R0.

(d) The Leray-Schauder boundary condition (iii) holds for everyR < R0.
To prove this suppose the contrary. Then there exists av ∈ L2 (Ω) with
|v|2 = R and aλ ∈ (0, 1) with v = λ (v − E ′ (v)) , i.e. v = λA∗FAv. It
is easily seen that the functionv = λ1/(p−2)v satisfiesv = A∗FAv, i.e. v
is a critical point ofE with |v|2 < R0. According to the conclusion of step
(c), v = 0 and sov = 0, a contradiction.

(e) Proof of (2.7). Let
r = |A|−

p
p−2 .

Obviously, (2.7) can be written asr ≥ R0. To prove it, we shall assume
the contrary, i.e.r < R0. Choose anyR ∈ (r, R0) , λ ∈ (r, R] andε > 0
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sufficiently small so that

(2.13) φ (λ) + p−1λpε ≤ φ (r) ,

where

φ (σ) =
σ2

2
− p−1σp |A|p (σ ≥ 0).

Noticer is the maximum point ofφ, φ is increasing on[0, r] and decreasing
on [r,∞). Now we choose a functionv2 ∈ L2 (Ω) with

|v2|2 = 1 and|Av2|pp ≥ |A|p − ε.

We claim that condition (iv) in Theorem1.1holds forv0 = 0 andv1 = λv2.
Indeed

E (v1) = E (λv2)(2.14)

=
λ2

2
− p−1λp |Av2|pp

≤ λ2

2
− p−1λp |A|p + p−1λpε

= φ (λ) + p−1λpε.

Also, for everyv ∈ L2 (Ω) with |v|2 = r, we have

(2.15) E (v) =
r2

2
− p−1rp

∣∣A (r−1v
)∣∣p

p
≥ r2

2
− p−1rp |A|p = φ (r) .

Now (2.13), (2.14) and (2.15) guarantee (iv). From Theorem1.1it follows
thatE has a non-zero critical point in the closed ballBR of L2 (Ω) . This
contradiction to the conclusion at step (c) proves (2.7).
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We note that Theorems2.1-2.2were previously announced in [12].
The next inequality of Poincaré type shows thatλp−1 > 0 for p ∈

[
2, 2n

n−2

]
if n ≥ 3 and forp ∈ [2,∞) if n = 2. Moreover, its proof connectsλp−1 to the
embedding constant ofW 1,2

0 (Ω) into Lp (Ω) .

Theorem 2.3. Let Ω ⊂ Rn be bounded open and letp ∈
[
2, 2n

n−2

]
if n ≥ 3,

p ∈ [2,∞) for n = 2. Then there exists a constantc > 0 depending only onp
andΩ, such that

(2.16)

(∫
Ω

|u|
p2

2 dx

) 2
p

≤ c

∫
Ω

|u|p−2 |∇u|2 dx

for all u ∈ C1
0

(
Ω
)
.

Proof. According to (P2), we haveW 1,2
0 (Ω) ⊂ Lp (Ω) with continuous embed-

ding. Hence there exists a constantc0 > 0 with

|v|p ≤ c0 |v|W 1,2
0 (Ω) for all v ∈ W 1,2

0 (Ω) .

Here

|v|W 1,2
0 (Ω) =

(∫
Ω

|∇v|2 dx

) 1
2

.

SinceC∞
0 (Ω) is dense inW 1,2

0 (Ω) , we may suppose that

c0 = sup
{
|v|p : v ∈ C∞

0 (Ω) , |v|W 1,2
0 (Ω) = 1

}
.
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The spaceC∞
0 (Ω) is also dense inC1

0

(
Ω
)
, and so

λp−1 =

(
sup

{(∫
Ω

|u|p
2/2 dx

) 2
p

: u ∈ C∞
0 (Ω) ,

∫
Ω

|u|p−2 |∇u|2 dx = 1

})−1

.

After substitutingv =
(

2
p

)
|u|

p
2 , we obtain

λp−1 =

(
2

p

)2 (
sup

{
|v|2p : v ∈ C∞

0 (Ω) , |v|W 1,2
0 (Ω) = 1

})−1

=

(
2

p c0

)2

.

Thus (2.16) holds with the smallest constant

c = λ−1
p−1 =

(
p

c0

2

)2

.

Finally we establish a localization result for a non-zero solution to the prob-
lem (2.1).

Theorem 2.4. Let Ω be a bounded domain ofRn with C2-boundary and let
p ∈

(
2, 2n

n−2

)
if n ≥ 3 andp ∈ (2,∞) if n = 1 or n = 2. Then the problem (2.1)

has a solutionu with

(2.17) |A|−1 [(p− 1) λp−1]
1

p−2 ≤
∣∣A−1u

∣∣
2
≤ |A|−

p
p−2 .
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Proof. First notice the left inequality in (2.17) is true for all non-zero solutions
of (2.1) according to Theorem2.1.

Next we prove that for eachR > r = |A|−
p

p−2 , (2.1) has a solutionu such
that

(2.18)
∣∣A−1u

∣∣
2
≤ R.

Indeed, two cases are possible:

1. The Leray-Schauder boundary condition (iii) in Theorem1.1 does not
hold. Then, there arev ∈ L2 (Ω) and λ ∈ (0, 1) such that|v|2 = R
andv = λA∗FAv. It is easy to see that the functionv = λ1/(p−2)v satisfies
v = A∗FAv, i.e. v is a critical point ofE, and0 < |v|2 < |v|2 = R.
Henceu := Av is a solution of (2.1) and satisfies (2.18).

2. Condition (iii) in Theorem1.1 holds. Then, as follows from the proof
of Theorem2.2, all the assumptions of Theorem1.1 are satisfied. Now
the existence of a solutionu of (2.1) satisfying (2.18) is guaranteed by
Theorem1.1.

Finally, for each positive integerk we putR = r + 1
k

to obtain a solutionuk

with |A−1uk|2 ≤ r + 1
k
, and the result will follow via a limit argument.
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