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Abstract

The main objective of this paper is to establish explicit bounds on certain inte-
gral inequalities and their discrete analogues which can be used as tools in the
study of some classes of integral and sum-difference equations.
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1. Introduction
In [2], J.A. Oguntuase obtained a bound on the following integral inequality

(1.1) u (t) ≤ c +

∫ t

a

f (s)

(
u (s) +

∫ s

a

k (s, σ) u (σ) dσ

)
ds,

for a ≤ σ ≤ s ≤ t ≤ b in the form

(1.2) u (t) ≤ c

[
1 +

∫ t

a

f (s) exp

(∫ s

a

[f (σ) + k (σ, σ)] dσ

)
ds

]
,

under some suitable conditions on the functions and the constantc involved in
(1.1) and also the bound on the inequality of the form (1.1) when the function
u (σ) in the inner integral on the right side of (1.1) is replaced byup (σ) for 0 ≤
p < 1. In [2], the author tried to obtain the generalizations of the inequalities in
[3] and did not succeed, because of his incorrect proofs. Indeed, in the proof of
Theorem 2.1, the inequality below (2.7) on page 2 and in the proof of Theorem
2.7, the inequality below (2.19) on page 4 given in [2] are not correct. The aim
of the present paper is to correct the explicit bound obtained in (1.2) and also
obtain a bound on the general version of (1.1). The two independent variable
generalisations of the main results, discrete analogues and some applications
are also given.
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2. Statement of Results
In what follows,R denotes the set of real numbers andR+ = [0,∞), N0 =
{0, 1, 2, . . . } are the given subsets ofR. The partial derivatives of a function
v (x, y) , x, y ∈ R with respect tox, y and xy are denoted byD1v (x, y) ,
D2v (x, y) andD1D2v (x, y) = D2D1v (x, y) respectively. For the functions
w (m) , z (m, n) , m, n ∈ N0, we define the operators∆, ∆1, ∆2 by

∆w (m) = w (m + 1)− w (m) ,

∆1z (m,n) = z (m + 1, n)− z (m, n) ,

∆2z (m,n) = z (m,n + 1)− z (m, n)

respectively and
∆2∆1z (m, n) = ∆2 (∆1z (m,n)) .

We denote by

G1 =
{
(t, s) ∈ R2

+ : 0 ≤ s ≤ t < ∞
}

,

G2 =
{
(x, y, s, t) ∈ R4

+ : 0 ≤ s ≤ x < ∞, 0 ≤ t ≤ y < ∞
}

,

H1 =
{
(m, n) ∈ N2

0 : 0 ≤ n ≤ m < ∞
}

,

H2 =
{
(x, y, m, n) ∈ N4

0 : 0 ≤ m ≤ x < ∞, 0 ≤ n ≤ y < ∞
}

.

Let C (G, H) denote the class of continuous functions fromG to H. We use
the usual conventions that the empty sums and products are taken to be0 and
1 respectively. Throughout, all the functions which appear in the inequalities
are assumed to be real-valued and all the integrals, sums and products involved
exist on the respective domains of their definitions.
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Our main results on integral inequalities are established in the following the-
orems.

Theorem 2.1. Let u (t) , f (t) , a (t) ∈ C (R+, R+) , k (t, s) , D1k (t, s) ∈
C (G1, R+) andc be a nonnegative constant.

(a1) If

(2.1) u (t) ≤ c +

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds,

for t ∈ R+, then

(2.2) u (t) ≤ c

[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
,

for t ∈ R+, where

(2.3) A (t) = k (t, t) +

∫ t

0

D1k (t, τ) dτ,

for t ∈ R+.

(a2) If

(2.4) u (t) ≤ a (t) +

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds,

for t ∈ R+, then

(2.5) u (t) ≤ a (t) + e (t)

[
1 +

∫ t

0

f (s)

× exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
,
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for t ∈ R+, where

(2.6) e (t) =

∫ t

0

f (s)

[
a (s) +

∫ s

0

k (s, σ) a (σ) dσ

]
ds,

for t ∈ R+, andA (t) is defined by (2.3).

Remark 2.1. We note that the bound obtained in (2.2) is the corrected ver-
sion of the bound given in (1.2) and the inequality established in(a2) is a fur-
ther generalization of the inequality given in(a1) . In the special case when
k (t, s) = k (s) , the inequality given in(a1) reduces to the inequality estab-
lished earlier by Pachpatte in [3, Theorem 1] (see, also [4, Theorem 1.7.1, p.
33]).

The following theorem deals with two independent variable versions of the
inequalities established in Theorem2.1which can be used in certain situations.

Theorem 2.2. Let u (x, y) , f (x, y) , a (x, y) ∈ C
(
R2

+, R+

)
, k (x, y, s, t) ,

D1k (x, y, s, t) , D2k (x, y, s, t) , D1D2k (x, y, s, t) ∈ C (G2, R+) and c be a
nonnegative constant.

(b1) If

(2.7) u (x, y) ≤ c +

∫ x

0

∫ y

0

f (s, t)

×
[
u (s, t) +

∫ s

0

∫ t

0

k (s, t, σ, ξ) u (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+, then

(2.8) u (x, y) ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t)
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× exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,

for x, y ∈ R+, where

(2.9) A (x, y)

= k (x, y, x, y) +

∫ x

0

D1k (x, y, τ, y) dτ +

∫ y

0

D2k (x, y, x, η) dη

+

∫ x

0

∫ y

0

D1D2k (x, y, τ, η) dηdτ,

for x, y ∈ R+.

(b2) If

(2.10) u (x, y) ≤ a (x, y) +

∫ x

0

∫ y

0

f (s, t)

[
u (s, t)

+

∫ s

0

∫ t

0

k (s, t, σ, ξ) u (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+, then

(2.11) u (x, y) ≤ a (x, y) + e (x, y)

[
1 +

∫ x

0

∫ y

0

f (s, t)

× exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,
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for x, y ∈ R+, where

(2.12) e (x, y) =

∫ x

0

∫ y

0

f (s, t)

[
a (s, t)

+

∫ s

0

∫ t

0

k (s, t, σ, ξ) a (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+ andA (x, y) is defined by (2.9).

Remark 2.2. By takingk (x, y, s, t) = k (s, t) , the inequality given in(b1) re-
duces to the inequality given in [4, Remark 4.4.1] and the inequality in(b2) can
be considered as a further generalization of the inequality given in [4, Theorem
4.4.2].

The discrete analogues of the inequalities in Theorems2.1and2.2are given
in the following theorems.

Theorem 2.3. Let u (n) , f (n) , a (n) be nonnegative functions defined onN0,
k (n, s) , ∆1k (n, s) , 0 ≤ s ≤ n < ∞, n, s ∈ N0 be nonnegative functions and
c be a nonnegative constant.

(c1) If

(2.13) u (n) ≤ c +
n−1∑
s=0

f (s)

[
u (s) +

s−1∑
σ=0

k (s, σ) u (σ)

]
,

for n ∈ N0, then

(2.14) u (n) ≤ c

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
,
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for n ∈ N0, where

(2.15) B (n) = k (n + 1, n)
n−1∑
τ=0

∆1k (n, τ) ,

for n ∈ N0.

(c2) If

(2.16) u (n) ≤ a (n) +
n−1∑
s=0

f (s)

[
u (s) +

s−1∑
σ=0

k (s, σ) u (σ)

]
,

for n ∈ N0, then

(2.17) u (n) ≤ a (n) + E (n)

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
,

for n ∈ N0, where

(2.18) E (n) =
n−1∑
s=0

f (s)

[
a (s) +

s−1∑
σ=0

k (s, σ) a (σ)

]
,

for n ∈ N0 andB (n) is defined by (2.15).

Theorem 2.4. Let u (x, y) , f (x, y) , a (x, y) , k (x, y, s, t) , ∆1k (x, y, s, t) ,
∆2k (x, y, s, t) , ∆1∆2k (x, y, s, t) be nonnegative functions for0 ≤ s ≤ x,
0 ≤ t ≤ y, s, x, t, y in N0 andc be a nonnegative constant
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(d1) If

(2.19) u (x, y) ≤ c +
x−1∑
s=0

y−1∑
t=0

f (s, t)

×

[
u (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t, m, n) u (m, n)

]
,

for x, y ∈ N0, then

(2.20) u (x, y) ≤ c

[
1 +

x−1∑
s=0

y−1∑
t=0

f (s, t)

×
s−1∏
m=0

[
1 +

t−1∑
n=0

[f (m, n) + B (m, n)]

]]
,

for x, y ∈ N0, where

(2.21) B (x, y) = k (x + 1, y + 1, x, y) +
x−1∑
σ=0

∆1k (x, y + 1, σ, y)

+

y−1∑
τ=0

∆2k (x + 1, y, x, τ) +
x−1∑
σ=0

y−1∑
τ=0

∆2∆1k (x, y, σ, τ) ,

for x, y ∈ N0.

(d2) If

http://jipam.vu.edu.au/
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(2.22) u (x, y) ≤ a (x, y) +
x−1∑
s=0

y−1∑
t=0

f (s, t)

×

[
u (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t, m, n) u (m, n)

]
,

for x, y ∈ N0, then

(2.23) u (x, y) ≤ a (x, y) + E (x, y)

[
1 +

x−1∑
s=0

y−1∑
t=0

f (s, t)

×
s−1∏
m=0

[
1 +

t−1∑
n=0

[f (m, n) + B (m, n)]

]]
,

for x, y ∈ N0, where

(2.24) E (x, y) =
x−1∑
s=0

y−1∑
t=0

f (s, t)

×

[
a (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t, m, n) a (m, n)

]
,

for x, y ∈ N0 andB (x, y) is defined by (2.21).
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3. Proofs of Theorems2.1, 2.2, 2.3and 2.4
Proof of Theorem2.1. (a1) Define a functionz (t) by the right hand side of
(2.1). Thenz (0) = c, u (t) ≤ z (t) and

z′ (t) = f (t)

[
u (t) +

∫ t

0

k (t, σ) u (σ) dσ

]
(3.1)

≤ f (t)

[
z (t) +

∫ t

0

k (t, σ) z (σ) dσ

]
.

Define a functionv (t) by

(3.2) v (t) = z (t) +

∫ t

0

k (t, σ) z (σ) dσ.

Thenv (0) = z (0) = c, z (t) ≤ v (t) , z′ (t) ≤ f (t) v (t) andv (t) is nonde-
creasing int, t ∈ R+, we have

v′ (t) = z′ (t) + k (t, t) z (t) +

∫ t

0

D1k (t, σ) z (σ) dσ

≤ f (t) v (t) + k (t, t) v (t) +

∫ t

0

D1k (t, σ) v (σ) dσ

≤
[
f (t) + k (t, t) +

∫ t

0

D1k (t, σ) dσ

]
v (t)

= [f (t) + A (t)] v (t) ,
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implying

(3.3) v (t) ≤ c exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
,

whereA (t) is defined by (2.3). Using (3.3) in (3.1) and integrating the resulting
inequality from0 to t, t ∈ R+, we get

(3.4) z (t) ≤ c

[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
.

The desired inequality in (2.2) follows by using (3.4) in u (t) ≤ z (t) .

(a2) Define a functionz (t) by

(3.5) z (t) =

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds.

Then from (2.4), u (t) ≤ a (t) + z (t) and using this in (3.5), we get

z (t) ≤
∫ t

0

f (s)

[
a (s) + z (s) +

∫ s

0

k (s, σ) (a (σ) + z (σ)) dσ

]
ds(3.6)

= e (t) +

∫ t

0

f (s)

[
z (s) +

∫ s

0

k (s, σ) z (σ) dσ

]
ds,

wheree (t) is defined by (2.6). Clearly e (t) is nonnegative, continuous and
nondecreasing int, t ∈ R+. First, we assume thate (t) > 0 for t ∈ R+. From
(3.6) it is easy to observe that

z (t)

e (t)
≤ 1 +

∫ t

0

f (s)

[
z (s)

e (s)
+

∫ s

0

k (s, σ)
z (σ)

e (σ)
dσ

]
ds.
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Now, an application of the inequality in(a1) we have

(3.7)
z (t)

e (t)
≤
[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
.

The desired inequality in (2.5) follows from (3.7) and the fact thatu (t) ≤
a (t)+z (t) . If e (t) ≥ 0, we carry out the above procedure withe (t)+ε instead
of e (t) , whereε > 0 is an arbitrary small constant, and then subsequently pass
to the limit asε → 0 to obtain (2.5).

Remark 3.1. By replacing the functionu (σ) in the inner integral on the right
hand side of (2.1) by up (σ) , 0 ≤ p < 1, and by following the proof of(a1)
with suitable modifications, we get the corrected version of Theorem 2.7 given
in [2].

Proof of Theorem2.2. (b1) Let c > 0 and define a functionz (x, y) by the right
hand side of (2.7). Thenz (0, y) = z (x, 0) = c, u (x, y) ≤ z (x, y), and

D1D2z (x, y)(3.8)

= f (x, y)

[
u (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) u (σ, ξ) dξdσ

]
≤ f (x, y)

[
z (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) z (σ, ξ) dξdσ

]
.

Define a functionv (x, y) by

(3.9) v (x, y) = z (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) z (σ, ξ) dξdσ.
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Then, v (0, y) = z (0, y) = c, v (x, 0) = z (x, 0) = c, z (x, y) ≤ v (x, y) ,
D1D2z (x, y) ≤ f (x, y) v (x, y) , v (x, y) is nondecreasing forx, y ∈ R+ and

D1D2v (x, y)(3.10)

= D1D2z (x, y) + k (x, y, x, y) z (x, y)

+

∫ x

0

D1k (x, y, σ, y) z (σ, y) dσ

+

∫ y

0

D2k (x, y, x, ξ) z (x, ξ) dξ

+

∫ x

0

∫ y

0

D1D2k (x, y, σ, ξ) z (σ, ξ) dξdσ

≤ f (x, y) v (x, y) + k (x, y, x, y) v (x, y)

+

∫ x

0

D1k (x, y, σ, y) v (σ, y) dσ

+

∫ y

0

D2k (x, y, x, ξ) v (x, ξ) dξ

+

∫ x

0

∫ y

0

D1D2k (x, y, σ, ξ) v (σ, ξ) dξdσ

≤ [f (x, y) + A (x, y)] v (x, y) ,

whereA (x, y) is defined by (2.9). Now, by following the proof of Theorem
4.2.1 given in [4], inequality (3.10) implies

(3.11) v (x, y) ≤ c exp

(∫ x

0

∫ y

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
.
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Using (3.11) in (3.8) and integrating the resulting inequality first from0 to y
and then from0 to x for x, y ∈ R+, we get

(3.12) z (x, y) ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t)

× exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
.

Using (3.12) in u (x, y) ≤ z (x, y), we get the required inequality in (2.8). If
c ≥ 0, we carry out the above procedure withc + ε instead ofc, whereε > 0 is
an arbitrary small constant, and then subsequently pass to the limit asε → 0 to
obtain (2.8).

(b2) The proof can be completed by closely looking at the proofs of(a2) and
(b1) given above. Here we omit the details.

Proof of Theorem2.3. (c1) Define a functionz (n) by the right hand side of
(2.13), thenz (0) = c, u (n) ≤ z (n) and

∆z (n) = f (n)

[
u (n) +

n−1∑
σ=0

k (n, σ) u (σ)

]
(3.13)

≤ f (n)

[
z (n) +

n−1∑
σ=0

k (n, σ) z (σ)

]
.

Define a functionv (n) by

(3.14) v (n) = z (n) +
n−1∑
σ=0

k (n, σ) z (σ) .
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Then v (0) = z (0) = c, z (n) ≤ v (n) , ∆z (n) ≤ f (n) v (n) and v (n) is
nondecreasing inn, n ∈ N0, we have

∆v (n) = ∆z (n) +
n∑

σ=0

k (n + 1, σ) z (σ)−
n−1∑
σ=0

k (n, σ) z (σ)(3.15)

= ∆z (n) + k (n + 1, n) z (n) +
n−1∑
σ=0

∆1k (n, σ) z (σ)

≤ [f (n) + B (n)] v (n) ,

whereB (n) is defined by (2.15). The inequality (3.15) implies

(3.16) v (n) ≤ c
n−1∏
σ=0

[1 + f (σ) + B (σ)] .

Using (3.16) in (3.11) we get

(3.17) ∆z (n) ≤ cf (n)
n−1∏
σ=0

[1 + f (σ) + B (σ)] .

The inequality (3.17) implies the estimate

(3.18) z (n) ≤ c

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
.

Using (3.18) in u (n) ≤ z (n) we get the desired inequality in (2.14).
(c2) The proof of can be completed by closely looking at the proofs of(a2) and
(c2) given above.
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Proof of Theorem2.4. (d1) and(d2) can be completed by following the proofs
of the inequalities given above and closely looking at the proofs of the similar
results given in [5].
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4. Applications
In this section, we present some applications of the inequality(b1) in Theorem
2.2 to study certain properties of solutions of the nonlinear hyperbolic partial
integrodifferential equation

(4.1) uxy (x, y) = F

(
x, y, u (x, y) ,

∫ x

0

∫ y

0

h (x, y, σ, ξ, u (σ, ξ)) dξdσ

)
,

with the given initial boundary conditions

(4.2) u (x, 0) = α1 (x) , u (0, y) = α2 (y) , α1 (0) = α2 (0) = 0,

whereu ∈ C
(
R2

+, R
)
, h ∈ C (G2 × R, R) , F ∈ C

(
R2

+ × R2, R
)
.

The following theorem deals with the estimate on the solution of (4.1) –
(4.2).

Theorem 4.1.Suppose that

|h (x, y, s, t, u (s, t))| ≤ k (x, y, s, t) |u (s, t)| ,(4.3)

|F (x, y, u, v)| ≤ f (x, y) [|u|+ |v|] ,(4.4)

|α1 (x) + α2 (y)| ≤ c,(4.5)

wherek, f and c are as defined in Theorem2.2. If u (x, y) , x, y ∈ R+ is any
solution of (4.1) – (4.2), then

(4.6) |u (x, y)| ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t)

× exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,
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for x, y ∈ R+, whereA (x, y) is defined by (2.9).

Proof. The solutionu (x, y) of (4.1) – (4.2) can be written as

(4.7) u (x, y) = α1 (x) + α2 (y)

+

∫ x

0

∫ y

0

F

(
s, t, u (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u (σ, ξ)) dξdσ

)
dtds.

Using (4.3) – (4.5) in (4.7) we have

(4.8) |u (x, y)| ≤ c +

∫ x

0

∫ y

0

f (s, t)

[
|u (s, t)|

+

(∫ s

0

∫ t

0

k (s, t, σ, ξ) |u (σ, ξ)| dξdσ

)]
dtds.

Now, an application of the inequality(b1) in Theorem2.2 yields the desired
estimate in (4.6).

Our next result deals with the uniqueness of the solutions of (4.1) – (4.2).

Theorem 4.2.Suppose that the functionsh, F in (4.1) satisfy the conditions

|h (x, y, s, t, u1)− h (x, y, s, t, u2)| ≤ k (x, y, s, t) |u1 − u2| ,(4.9)

|F (x, y, u1, u2)− F (x, y, v1, v2)| ≤ f (x, y) [|u1 − v1|+ |u2 − v2|] ,(4.10)

wherek and f are as in Theorem2.2. Then the problem (4.1) – (4.2) has at
most one solution onR2

+.

http://jipam.vu.edu.au/
mailto:bgpachpatte@hotmail.com
http://jipam.vu.edu.au/


Bounds on Certain Integral
Inequalities

B.G. Pachpatte

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 23

J. Ineq. Pure and Appl. Math. 3(3) Art. 47, 2002

http://jipam.vu.edu.au

Proof. Let u1 (x, y) andu2 (x, y) be two solutions of (4.1) – (4.2) on R2
+, then

we have

(4.11) u1 (x, y)− u2 (x, y)

=

∫ x

0

∫ y

0

[
F

(
s, t, u1 (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u1 (σ, ξ)) dξdσ

)
− F

(
s, t, u2 (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u2 (σ, ξ)) dξdσ

)]
dtds.

From (4.9), (4.10) and (4.11) we have

(4.12) |u1 (x, y)− u2 (x, y)| ≤
∫ x

0

∫ y

0

f (s, t)

[
|u1 (s, t)− u2 (s, t)|

+

∫ s

0

∫ t

0

k (s, t, σ, ξ) |u1 (σ, ξ)− u2 (σ, ξ)| dξdσ

]
dtds.

As an application of the inequality(b1) in Theorem2.2 with c = 0 yields
|u1 (x, y)− u2 (x, y)| ≤ 0. Therefore,u1 (x, y) = u2 (x, y) , i.e., there is at
most one solution of (4.1) – (4.2) onR2

+.

We note that the inequality(d1) in Theorem2.4 can be used to obtain the
bound and uniqueness of solutions of the following partial sum-difference equa-
tion

(4.13) ∆2∆1z (x, y) = H

(
x, y, z (x, y) ,

x−1∑
m=0

y−1∑
n=0

g (x, y, m, n, z (m, n))

)
,
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with the given conditions

(4.14) z (x, 0) = β1 (x) , z (0, y) = β2 (y) , β1 (0) = β2 (0) = 0,

under some suitable conditions on the functions involved in (4.13) – (4.14). For
various other applications of the inequalities similar to that given above, see
[4, 5].

In concluding, we note that in another paper [1], Oguntuase has given the
upper bounds on certain integral inequalities involving functions of several vari-
ables. However, the results given in [1] are also not correct. In fact, in the proof
of Theorem 2.1, the equality in (2.3) and in the proof of Theorem 3.1 on page 5,
the equality on line 10 (from above) are not correct. For a number of inequal-
ities involving functions of many independent variables and their applications,
see [4, 5].
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